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Abstract— Recent studies in rehabilitation have shown 
potential benefits of patient-initiated exploratory practice. 
Such findings, however, lead to new challenges in how to 
quantify and interpret movement patterns. We posit that 
changes in coordination are most evident in statistical 
distributions of movements. In a test on 10 chronic stroke 
subjects practicing for 3 days, we found that inter-quartile 
range of motion did not show improvement. However, a 
multivariate Gaussians analysis required more complexity at 
the end of training. Beyond simply characterizing movement, 
linear discriminant classification of each patient’s movement 
distribution also identified that each patient’s motor deficit left 
a unique signature. The greatest distinctions were observed in 
the space of accelerations (rather than position or velocity). 
These results suggest that unique deficits are best detected with 
such a distribution analysis, and also point to the need for 
customized interventions that consider such patient-specific 
motor deficits. 
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I.  INTRODUCTION 
Recent investigations suggest that sensorimotor training 

with interactive technology can improve upper extremity 
function [1], yet the fundam ental principles for designing 
effective therapy have remained elusive. One key challenge 
is accommodating the wide differences in im pairments, 
which can include loss of sensation, spasticity, im balanced 
muscle strength [2, 3], jerky movement s [4, 5], abnormal 
muscle coupling [6] and point to point reaching inaccuracies 
[7], each at varying levels of severity [8-10]. Such variation 
creates challenges for assessmen t [11, 12]. H ence, more 
comprehensive characterization of patient deficits could be a 
great asset to improving therapy. 

An important lesson from robotic therapy studies is that 
patients fail to improve when limbs are moved for them [13-
15]. Exploratory practice coul d promote a greater sense of 
agency since the individual mu st make continuing choices 
of where to and how to express movement. Such practice 
might also facilitate generalization, in a m anner similar to 
the effect of introducing task variety [16, 17 ]. Exploratory 
movements are thought to be an important part of motor 
learning in human development [18, 19], and hence could 

support neuroplasticity in rehabilitation. Training over a 
broader domain, for example on a variety of tasks, provides 
better improvement in function than repetitions of the sam e 
task [16, 17], and m ight facilitate “system identification” as 
a part of learning [20].  

Besides the impact on training,  analysis of self-directed 
movement practice could allow for new tools for 
characterizing motor deficits. Historically, approaches in 
robot-assisted therapy began w ith guidance [21, 22], which 
restricts movement to prescribed patterns. The variable 
nature of exploratory moveme nt, on the other hand, reveals 
information about an indivi dual’s deficits through their 
movement tendencies. Movements following stroke exhibit 
stereotypic gestures that ar e thought to reflect abnormal 
muscle tone or coupling between joints [6], referred to by 
some as synergies. Stroke research suggests that forced-use, 
where the patient is encouraged to m ake actions with the 
impaired limb, can reverse th e impact of “learned non-use” 
[23-25]. In a sim ilar way, neglect of movement patterns 
might perpetuate abnormal coordination. A rationale for this 
study is that analysis of self-directed m ovement will allow 
identification of individual characteristics of motor deficits. 

This study investigated how patterns of movement 
within motor exploration evolve with practice and to what 
extent they differ between individuals. Our recent work 
showed that motor exploration combined with n egative 
viscosity from a robotic interface (which exaggerates 
movements) enhanced learning in healthy subjects and in 
stroke survivors [26, 27]. He re, we consider new analyses 
on the data from our previous work with stroke survivors. 
Focusing on the control condition w here no external forces 
were applied, we examine how the statistical distribution of 
kinematic variables (position, velocity, acceleration)  
changes over the course of training. O ne possibility is that 
motor deficits manifest as uncoordinated and highly variable 
movements, such that no systematic patterns can be found.  
Alternatively, distributions potentially could reveal 
stereotyped patterns that correspond to an individual’s 
unique form of motor impairment, and show tangible 
broadening of capability as the subject trains.  
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II. METHODS 

A. Humans Subjects 
We consider data from a study in which stroke survivors 

performed manual exercises with and without robot-applied 
external forces [28]. Subjects performed the task w ith their 
affected arm. Each subject provided inform ed consent in 
accordance with the University Institutional Review Boards. 
Individuals were paid for their participation. 

B. Experiment Protocol 
We asked subjects to control the movement of a planar 

force-feedback device as described in our previous work  
[28]. To focus training on the coordination of the forearm 
and upper arm, subjects operated the device through a wrist 
brace. Using an overhead proj ector mounted on the ceiling, 
real-time feedback of the handle position, visual reference 
cues, and experiment instructions were presented on a 
horizontal surface overlaying the planar workspace of the 
arm (see Fig. 1). In addition, the real-tim e animation 
included two segments approximating the motion of the 
forearm and upper arm . Visual reference cues included a 
larger rectangular region,  indicating the bounds of 
movement for the motor exploration portions of the 
experiment.  

During the m otor exploration phases, we instructed 
subjects to move the handle at  their own discretion using a 
variety of directions, speeds, and positions within the 
rectangular workspace (0.2 x 0.6m). We explained that each 
exploration phase should serve as preparation for a 
subsequent evaluation phase  in which subjects would 
perform prescribed circular  movements. The computer 
signaled the user to halt motor exploration after 25 m of 
handle endpoint travel.  

Subjects performed three sessions on different days. Each 
session included several alternating t raining phases (16) and 
evaluation trials (160). The intervals between training 
phases varied between 4 or 20 trials, as shown in Fig. 3. W e 
included different intervals of performance evaluation to test 
possible differences in retention. Each session included two 
1-hour blocks, with a 15-minute intervening break.  

C. Analysis  
Range of motion: This study investigates whether 

distribution analysis can provide a more complete 
description of the changes in movement patterns as stroke 
survivors practice.  As a poin t of comparison we first obtain 
the classic estimates of overall changes in ranges by 
calculating inter-quartile differences. W e summarize the 
results in terms of the change in displacem ent area (position 
data), and analogously for velocity and acceleration, as the 
products of two axes of moti on (left-right and fore-aft, 
defined as  and  degrees of freedom).  

Next, to obtain a more detailed view of how movement 
patterns varied throughout the workspace, we tabulated 
histograms in 2D. Contrasts of  significant beginning-to-end 
histogram counts gauged the effect of training. 

Analysis of m odel components: We next examined 
whether modeling analysis of distributions could reveal 
changes in available m ovement patterns. To do so w e fitted 
these histograms with a w eighted sum of multivariate 
Gaussian-normal components according to maximum 
likelihood estimates: 

(Eq-1) 

for k dimensions. Each j-th co mponent is associated with a 
covariance matrix , and a center  Increasing the number 
of components J improved model fitness. We fit this model 
to the observed hand motion distributions for each 
exploration trial, resulting in  two-dimensional histograms 
for position, velocity and acceleration were no rmalized so 
that sum of observations was unity. The coefficient of 
determination measured models fit. M ovement pattern 
complexity was related to model fitness was compared over 
the course of training sessions. W e summarized the results 
in terms of the change betw een the first and the last day of 
training (Day 1 and Day 3). 

Individual differences: To determine whether 
individuals’ histograms could be uniquely identified , we 
performed classification analys is. Training and test sets 
were constructed from alternating trials. A reduced set of  

classification ‘features’ were  obtained from histogram  
bins that were significantly different than the group mean 
containing over 0.5%  of data. W e then performed linear 
discriminant analysis (LDA) cl assification with the selected 
features, using ‘classify’ function with M ATLAB software 
(MATHWORKS, Natick, M A), and presented a confusion 
matrix of predictions versus actual subject identifiers. To 
characterize the performance of the classifier, we computed 
the overall error rate for successf ul identification of trials 
and an error rate for successful identification of the test data 
as a whole for each subject. 

III. RESULTS 
Changes in the range of motion in terms of position, 

velocity and acceleration were not detected according to 
analysis inter-quartile ranges (See Fig. 2). The change in the 
range of motion from day 1 and 3 was not significant in 
terms of the interval between the 25th and 75th percentiles of 
data (p=0.13, 0.67, 0.87; product of inter-quartile change for 

 and  degrees of freedom ) for displacement ( -

Fig. 1 The robotic device interfaced to the arm about a free pivot at the 
wrist. Subjects were allowed to freely interact with each load in a 
“motor exploration” stage. Following exploration, subjects made 
counter-clockwise circular movements during task performance trials 
at random starting locations of a 0.1 m radius circular track. Only the 
motor exploration data was analyzed in the current work. 



0.0022±0.00043 m2), velocity (0.0087±0.062 (m/s) 2), or 
acceleration (0.084±1.55 (m /s/s)2). Individual degrees of 
freedom in , , , , and ,  showed similar trends  

 (p=0.94, 0.04, 0.61, 0.83, 0. 29, 0.68).  The trend shown 
for x-velocity was actually a decrease from (0.090±0.022 
m/s) to  (0.078±0.028 m/s).  

In contrast to the scalar metrics used above, our analysis 
of movement distribution suggest s that stroke survivors can 
exhibit changes in movement  gestures within a few days of 
training.  Acceleration data fit to m ixed multivariate normal 
functions (Gaussian models) revealed that m ore model 
components were needed to accurately represent the last day 
of training.  By Day-3, typical  subjects exhibited movement 
distributions that contrasted significantly with respect to a 
single component Gaussian model (See in Fig. 3) .  A 
summary analysis for all subjects (See Fig. 4) showed that 
coefficients of determination (R2) values were significantly 
lower (mean change: -0.1118±-0.1043) for Day-3 (mean: 
0.64±0.18) distributions co mpared to Day-1 (mean: 
0.75±0.13) using only one co mponent (p=0.008, paired t-
test). This trend in increasing number of Gaussian 
components suggests that training resulted in more complex 
movement patterns. Note that  the choice of histogram bin 
density did not affect trends, though lower p-values resulted 
from fewer bins.  

Our results also showed that distributions differed 
between subjects. W e tested how well a portion of a 
subject’s data could predict another portion of their data, 
and compared this to how  well this could predict other 

subjects. We found that the mean coefficient of 
determination for self-to-self com parisons was generally 
high (0.90±0.05, 0.90±0.07, 0. 95±0.03) while the self-to-
others was poor (0.18±0.14, 0. 21±0.17, 0.18±0.23) for the 
position, velocity, and acceleration distribution analyses, 
respectively. These results de monstrate that a significant 
portion of distributions differed between individuals. 

Classification analysis served  as a more precise measure 
of how easily subject differences could be identified. This 
analysis revealed better discriminations for higher 
derivatives. Focusing only on day-1, the LDA-classifier 
identified subjects correctly fo r 80.0% of the trials w hen 
using acceleration data, while it was 67.5%  and 35.0%  
correct for velocity  and position  (Fig 5). U sing half the 
available data for the test (rather than single trials), 
identification success rose to 100% for acceleration, 96.54% 
for velocity, and 82.0%  for position, show ing how each 
subject’s unique signature can be captured. 

IV.  DISCUSSION 
 This study exam ined whether analysis of the statistical 

distribution of movement can reveal more detailed 
information about abnormal patterns of coordination. W e 
analyzed data from a previous study in which stroke 
survivors performed self-directed motor exploration. W e 
first considered scalar metrics to describe the overall change 
in range of motion in terms of position, velocity, and 
acceleration, but found m ixed results (if anything) for 
improvement with training. In  contrast, analysis of the 
distribution of m ovement in m ultiple dimensions 
demonstrated more general trends across practice days. Our 
first main finding demonstrated that as the days of training 
progressed, the analysis required m ore multivariate 
Gaussian normal components to accurately model 
movement distributions. Our second finding from 
classification modeling was that  each subject’s distributions 
were unique and differed from others.  

This investigation employed a novel approach of 
examining the distribution of  movement in terms of 
candidate models of m ultivariate normal functions.  T he 
motivation of this analysis is to detect the presence of 
movement tendencies and how they change with practice. 
Because our results suggest that more model components 
are needed by the third day (Fig 3) we speculate that 
subjects are in fact broadening their movement capabilities. 
The fact that this trend was not evident in the conventional 
metrics of the range of motion is not surprising, since these 
would not capture interactions in m ultiple degrees of 
freedom (see Fig. 4). Researchers have investigated the 
notion of motor primitives, either in term s of oscillators or 
field functions [29-31], whic h act as fundamental building 
blocks of goal-directed actions. Our analysis of model 
components, in a similar manner, provides evidence of new 
movement manifestations, which have yet to prove their 
potential for functional capabilities. 

The methods employed in this study might be the best 
methods to date in identifying the underlying causes of motor 

 
Fig. 2 The inter-quartile range (expressed here as the product of x and 
y axes) for position, velocity, and acceleration (upper middle and lower 
panel) changed significantly for some subjects between day 1 and 3, 
though there was not a common trend of increases or decreases. 
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deficits. Characterizing motor deficits is  a daunting task in 
part because of the wide va riety of pathologies. Current 
methods in robotic rehabilitat ion focus largely on discrete 
movements (such as a reach to a target) for measuring  
performance, but larger datasets from exploratory movement 
could enable a m ore complete description of capability. For 
example, the distribution of data could at some points exhibit 
sparseness that suggests a lack of expression. Limits in range 
of motion should also easily identify sharp changes  in 
distribution that are consiste nt with hard biomechanical 
limits such as the changes arm mechanics due to contracture.  

Our classification analysis provides evidence that motor 
deficits due to stroke manifest in individual specific patterns 
of movement. While it is perhaps unsurprising that 
individuals exhibit some signatu re characteristics, w e note 
that such accuracy in discri mination would likely not be 
possible with simple scalar m etrics.  Furtherm ore, the 
particular forms of movement  tendencies evident in the 
histograms of acceleration (See Fi g. 4) provide insights into 
how particular subjects are adapting their natural practice 
patterns. Interestingly, we would found more clear separation 
between the ten subjects in th e distributions for acceleration 
compared to the lower orders of movement (See Fig. 5).  

This finding might indicate that the distributions of hand 
position, while clearly affected by impairment, exhibit 
variation simply due to natural changes in movement goals. 
It is also possible that accelera tion is more closely connected 
to force production or motor planning, which has been 
posited as being sources of motor deficits in stroke [32]. Loss 
of coordination, weakness, and abnormal reflex patterns, 
manifest from a loss of neural resources needed to send 
motor commands. Consequently, differences in such control 

might be more evident in patterns of how muscles apply 
force.  

 Furthermore, the distribution analysis in this study could 
provide more powerful tool s for designing customized 
therapy. Recent work has shown how interactive machines 
can inform a direct mathem atical relationship between 
patient deficits and applied interventions [33]. We argue that 

 
Fig. 4 The coefficient of determination R2 characterized the fitness of 
multivariate normal functions to observed histograms of hand acceleration in 
the plane. Increasing the number of components yielded diminishing returns 
with 4-5 components (95 CI for 10 subjects in Day 1 and Day 3 shown).  In 
term of changes in R (lower plot) Day-3 exhibits significantly worse fit with 
one component compared to Day-1.  These trends suggest that stroke 
survivors develop new patterns of movement with practice. 
 

 
Fig. 3 (A) Contour plots of acceleration histograms (for two typical subjects) versus multivariate normal functions with 1, 2, and 5 components, reveal 
new movement patterns from Day-1 and Day-3 (Red/blue indicates greater/lesser observations). (B) Contrasts of histograms versus model functions 
indicate lower contrast with increasing components (columns), and higher contrast on Day-3 compared to Day-1. The color gradation (red/blue) 
indicates differences (greater/lesser) in the data compared to the models.   These results show irregular changes in movement distribution across 
workspace. 
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rehabilitation techniques should capitalize on the rich  

information available in m ovement distribution analysis 
to enhance training customization strategies. Such data is 
potentially is more informative since it reveals the spectrum 
of possible actions, not simply  the mean behavior.  One 
important limitation of this study is that the patterns of motor 
exploration are not yet contrast ed against those of healthy 
control subjects. W hile subjects evidently exhibited some 
uniquely identifiable deficits, it is not yet clear if this result 
necessarily implies that such deficits dem and customized 
therapy. However, the evoluti on (over time) of the observed 
distribution model components suggests changes in 
movement tendencies. Consequently, one plausible strategy 
is to employ the nervous  system’s natural use -dependent 
learning mechanisms [34] along w ith robotic forces to shift 
these tendencies away from unwanted patterns. It is clear that 
self-directed motor exploration can serve as a tool for 
identifying movement tendencies. The fact that patterns from 
one subject to the next are unique indicates the need for 
custom-designed, patient-specific therapy.  
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