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Abstract— In this paper, we present an algorithm that 
provides human motion intention based assistance to users 
teleoperating a remote gripper for preshaping over an object in 
order to grasp it. Human motion data from the remote arm is 
used to train a Hidden Markov Model (HMM) offline. During 
the execution of a grasping task, the motion data is processed in 
real time through the HMM to determine the intended preshape 
configuration of the user. Based on the intention, the motion of 
the remote arm is scaled up in those orientation directions that 
lead to the desired configuration, thus providing the necessary 
assistance to the user to preshape for grasping. Tests on healthy 
human subjects validated the hypothesis that the users are able 
to preshape quicker and with much ease. Average time savings 
of 36% were obtained. 

I. INTRODUCTION 

There has been a lot of research on service robots for 
carrying out activities of daily living (ADL). For all the 
ADLs, grasping is one of the most important tasks. 
Autonomous grasping, also known as grasp planning or grasp 
synthesis, is a widely researched area [1]-[3]. Autonomous 
grasping is a time consuming and a computationally intensive 
process.    This problem is mainly due the high dimensionality 
of the search space over which an optimization of the grasp 
criterion is carried out [4]. Ciocarlie and Allen [4] 
demonstrated that a human input can reduce the time it takes 
for an autonomous planner to compute a robust grasp. In their 
work, the human preshaped a gripper at a point around the 
object and the planner computed a locally optimized grasp. 
This way, they reduced the problem from a global to a local 
optimization one. Their method took less than 2 seconds to 
compute a force closure grasp which was far quicker than the 
autonomous planners. Human knowledge and cognitive 
abilities can determine initial poses that lead to a robust grasp 
better and faster than the most advanced grasp planners. In 
their work, a human hand would manually preshape the 
electronic gripper around the object. In an actual setting using 
a service robot, the gripper will be teleoperated by a human 
user.  Teleoperation is a mentally and physically challenging 
activity [5], [6]. Due to mapping and scaling issues, 
teleoperation leads to errors in motion. Errors occur while 
translating as well as orienting the remote arm. It makes the 
process time consuming and leads to frustration on the part of 
the user.  Preshaping involves various rotations of the gripper 
which are challenging to execute. Orienting the remote arm 
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gripper, so that it is at a convenient configuration for grasping 
an object of interest, is the one of most difficult sub-tasks [7]. 

In this work, we provide orientation assistance to a user 
teleoperating to preshape a gripper for grasping an object. The 
assistance is in the form of direction based scaling in which 
the components of orientation that lead to the desired 
configuration are scaled up while those that cause deviation of 
the gripper from the desired configuration are scaled down. 
This concept of scaled teleoperation was first introduced [8] 
for assistance in translation. We have applied it for assistance 
in orientation. We propose that our method would enable the 
user to teleoperate the gripper to the desired configuration 
with fewer errors, faster and with much ease. The desired 
configuration is determined by recognizing the intention of 
the user, i.e. to what specific preshape configuration the user 
would like to align the gripper to. This intention is recognized 
using a Hidden Markov Model (HMM) that is trained offline 
from the user’s data. Once the gripper is preshaped, the object 
can be either grasped directly or an autonomous planner can 
perform a local search to find an optimum grasp posture. The 
novelty of this work lies in providing motion intention based 
assistance in orientation to a user teleoperating an arm to 
preshape over a desired configuration on an object.  

Previous studies have used HMM theory to determine 
human intention for automatically segmenting a teleoperation 
task but none that provide intention based assistance in 
orientation for grasping an object having multiple grasp 
configurations. Hannaford and Lee [9] were the first to use 
HMM to segment a teleoperation task into sub-tasks using 
end-effector force data. Yang et al. [10] used HMM theory to 
learn human skills employed in a teleoperation task and for 
gesture recognition. Yu et al. [11] applied a virtual fixture, an 
attractive field or a repulsive field depending on the task viz. 
following a trajectory, aligning with a target or avoiding an 
obstacle. Li and Okamura [12] switched a virtual fixture on 
or off depending on the task viz. following a path or avoiding 
an obstacle. Both [11] and [12] employed HMM for sub-task 
modeling and recognition and the operator performance was 
found to have improved. Aarno et al. [13] used HMM to 
identify the trajectory being followed so that a virtual fixture 
could be applied in the identified direction. This provided 
appropriate assistance to the user. 

II. MOTION INTENTION RECOGNITION USING A HIDDEN 
MARKOV MODEL  

A Hidden Markov Model is a type of statistical model that 
models a stochastic process. Originally introduced in the 
1960s by Baum and his colleagues [14], they have been 
applied to a number of real-world processes like speech 
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recognition. Our process of teleoperating to a desired 
orientation is stochastic in nature. The randomness of our 
process comes from the fact that a human will produce errors 
in motion when trying to orient the gripper to a desired 
orientation. Even in the simple case of following a linear 
trajectory in teleoperation, the user deviates from it unless 
guided by a virtual fixture. The errors in the case of 
orientation are more pronounced. We need a model that 
models these errors and generates a likelihood (or probability) 
of a desired orientation out of several possible ones that the 
user is trying to teleoperate to. HMM is the stochastic model 
of our choice because of its already successful application in 
the field of teleoperation [9] - [13]. 

 
Fig. 1: Desired grasp configurations along various axes for an object 

Consider the object shown in Fig. 1.  There are a number 
of possible grasp configurations for grasping the object - one 
along each alignment vector 𝐶1, 𝐶2, 𝐶3, … 𝐶𝑁 as shown. If we 
consider orthogonal grasps [3], [15], for a grasp along an 
alignment vector 𝐶𝑥, the z-axis of the gripper frame, 𝑧𝑖 will 
need to be aligned with 𝐶𝑥. 

Let 𝑘 be the magnitude of the projection of 𝑧𝑖 on 𝐶𝑥. 

 𝑘 = 𝑧𝑖. 𝐶𝑥. (1) 

 

 
Fig. 2: Graphical representation of a Hidden Markov Model 

Consider a process of 𝑁 discrete states and 𝑀 discrete 
observation symbols. Let, 𝑆 = [𝑆1, 𝑆2, 𝑆3, … 𝑆𝑁] represent the 
states, which are hidden. Let 𝑞𝑡 be the state at a particular 
time instant 𝑡. Let, 𝑉 = [𝑂1, 𝑂2, 𝑂3, … 𝑂𝑀] represent the 
observation symbols, which are visible as observations. The 
states change based on a probability distribution and a state at 
particular time instant is only dependent on its predecessor 
state. The observation at a particular time instant is only 
dependent on the state at that time instant and both are related 
by a probability distribution. An HMM for such a process is 
shown diagrammatically in Fig. 2 and is defined by the 
following parameters. 

• Initial State Distribution, π = { π𝑖} where 

 𝜋𝑖 = 𝑃[𝑞1=𝑆𝑖],                        1≤  𝑖 ≤ 𝑁 (2) 

• State Transition Probability Distribution, 𝐴={ 𝑎𝑖𝑗} 
where 

 𝑎𝑖𝑗  = 𝑃[𝑞𝑡+1=𝑆𝑗 |𝑞𝑡=𝑆𝑖],            1 ≤ 𝑖,𝑗 ≤  𝑁 (3) 

• Observation Symbol Probability Distribution at 
state 𝑗, 𝐵 = {𝑏𝑗(𝑘)}, where 

 𝑏𝑗(𝑘) = 𝑃[𝑣𝑘 at 𝑡|𝑞𝑡=𝑆𝑗]          1≤  𝑗 ≤ 𝑁  
  1≤ 𝑘 ≤ 𝑀 (4) 

For the case in which the observations are continuous, 𝐵 
is computed as a probability density function (PDF), 

 𝑏𝑗(O) = N(O, 𝜇𝑗, Σ𝑗) (5) 

where O is the observation vector being modeled, N is a 
PDF, usually a Gaussian [16], 𝜇𝑗 is the mean, and Σ𝑗 is the 
covariance for the distribution for 𝑗th state. 

Once a model is defined, it can be used to solve three 
basic problems [16], viz.: the evaluation of the probability of 
a sequence of observations given a specific HMM; the 
determination of the best sequence of model states; and the 
adjustment of model parameters to best account for the 
observed signal. 

In our implementation, each grasp configuration along a 
vector 𝐶𝑥 (Fig. 1) represents one state. To determine the 
intended final orientation of the user, we need to determine 
the most likely state at each time instant as the user 
teleoperates. Thus, we will be solving problem 2 of the 
HMM using Viterbi decoding [16]. The observation vectors, 
O in our case, are the projections determined using (1). Since 
these values are continuous, we will be using (5) and 
Gaussian probability density function for determining 
observation probabilities. Our observation vectors at each 
time instant will be of the order 𝑁X1 since the z-axis of the 
gripper frame will be projected on all the 𝑁 vectors at each 
time instant. 

1) Estimating HMM parameters 

In order to develop an HMM, its parameters viz. 𝜋, 𝐴 
and B need to be estimated. In our case, we assume that the 
user can start orienting from any of the available desired 
configurations. Thus, all the configurations have equal initial 
probability values. For  𝑁 states, we have π = [1/ 𝑁, 1/ 𝑁 
…1/ 𝑁] and it is of order 𝑁x1. If a sensor can determine 
obstacles because of which a few of the configurations are 
impossible to achieve, then those elements in π can be made 
to be equal to zero. 

We also assume that the user normally adheres to a 
particular desired configuration throughout a grasping task. 
For this reason, we assume high values for the diagonal 
elements of the state transition matrix 𝐴. This is a natural 
assumption because humans normally adhere to their chosen 
orientation for a particular grasp. Thus, matrix 𝐴 can be 
written as: 



  

𝐴 = �

0.9 0.1/(𝑁 − 1) ⋯ 0.1/(𝑁 − 1)
0.1/(𝑁 − 1) 0.9 ⋯ 0.1/(𝑁 − 1)

⋮ ⋮ ⋱ ⋮
0.1/(𝑁 − 1) 0.1/(𝑁 − 1) ⋯ 0.9

� (6) 

Alternatively, the value of 𝐴 can also be estimated by 
training, i.e. by running several trials and determining the 
likelihood of the user changing their intention for a task once 
they begin executing it. 

Our observation probability distribution being Gaussian, 
we need to estimate 𝜇𝑗 and Σ𝑗 for every state 𝑗. Observation 
vectors O, generated from preshaping over each 
configuration are used to estimate the parameters 𝜇𝑗 and Σ𝑗 
as follows: 

Let 𝑂1, 𝑂2, …  𝑂𝜏 be the observation vectors. Let, 𝐾 = 
[𝑂1, 𝑂2, … 𝑂𝜏] and let 𝐼 = [1, 1, 1, …  1]𝜏, where 𝐼 is a 𝜏x1 
vector of ones. Here, 𝜏 is the number of observation vectors 
from training data for a state 𝑗. Then,  

 𝜇𝑗 = 1
𝜏
  𝐾 𝐼 (7) 

Let, 𝑋 = 𝐾 - 𝜇𝑗𝐼𝜏 be the deviation of the observations 
from the mean. Then the covariance matrix Σ𝑗 is computed as, 

 Σ𝑗 = 1
𝜏
 𝑋 𝑋𝜏 (8) 

Similarly, we compute 𝜇𝑗 and Σ𝑗 for all the remaining 
states. 

2) Determining the Optimal State Sequence 

After the HMM parameters have been estimated, the 
next step is to determine the intention of the user from the 
observations. Since the intention or the desired configuration 
are the states of the HMM, we solve for determining the 
optimal state sequence given the HMM and the observations. 
For this we use the Viterbi decoding [16]. 

III.  ASSISTANCE IN ORIENTATION USING SCALED 
TELEOPERATION 

After we determine the desired grasp configuration from 
the Viterbi decoding, we apply scaled orientation 
teleoperation to achieve assistance.  

Let 𝑅𝑖𝑂 and 𝑅𝑓𝑂 represent the initial and final orientations 
of the gripper frame with respect to the robot base frame at 
each time instant as the arm is moving. 

 𝑅𝑖𝑂= �
𝑛𝑥𝑖
𝑛𝑦𝑖

𝑜𝑥𝑖 𝑎𝑥𝑖
𝑜𝑦𝑖 𝑎𝑦𝑖

𝑛𝑧𝑖 𝑜𝑧𝑖 𝑎𝑧𝑖
� and 𝑅𝑓𝑂= �

𝑛𝑥𝑓
𝑛𝑦𝑓

𝑜𝑥𝑓
𝑎𝑥𝑓

𝑜𝑦𝑓 𝑎𝑦𝑓
𝑛𝑧𝑓 𝑜𝑧𝑓 𝑎𝑧𝑓

�  (9) 

The angular velocity of the gripper frame is given by [17] 
as: 

 𝜔𝑖 = 1
2

 (𝑛𝑖 × 𝑛𝑓 +  𝑜𝑖 × 𝑜𝑓 + 𝑎𝑖 × 𝑎𝑓) (10) 

Ordinarily, 𝜔𝑖 is determined from the master device and 
is sent to the arm control program to move the remote arm. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Concept diagram of scaled teleoperation applied to orientation 

Let 𝜔𝑑 be the desired angular velocity for orienting the 
gripper from its current frame to the desired object frame 
(refer to Fig. 3), the latter being determined from the intention 
recognition algorithm. Let 𝜔𝑝1 be the unit vector in the 
direction of 𝜔𝑑. Let, 𝜔𝑝2 and 𝜔𝑝3 be unit vectors 
perpendicular to 𝜔𝑝1 such that the three form a Cartesian 
triad. Let 𝑎𝑝1, 𝑎𝑝2 and 𝑎𝑝3 be the vectors generated as a result 
of the projection of 𝜔𝑖 onto 𝜔𝑝1, 𝜔𝑝2and 𝜔𝑝3. 

 𝑎𝑝1 = 𝜔𝑖. 𝜔𝑝1, 𝑎𝑝2 = 𝜔𝑖. 𝜔𝑝2, 𝑎𝑝3 = 𝜔𝑖. 𝜔𝑝3 (11) 

In order to implement scaled teleoperation in orientation, 
we need to scale up those components of gripper angular 
velocity (given by (10)) which are along the direction of the 
desired angular velocity, and scale down those components 
which are in the directions along the perpendiculars to the 
desired. In other words, components of 𝜔𝑖 in the direction of 
𝜔𝑑 are scaled up, while those along 𝜔𝑝2 and 𝜔𝑝3 must be 
scaled down. Let, 𝑎𝑝1′ , 𝑎𝑝2′  and  𝑎𝑝3′  be vectors such that, 

 𝑎𝑝1′  = 𝑠𝑢𝑝 𝑎𝑝1 
 𝑎𝑝2′  = 𝑠𝑑𝑜𝑤𝑛 𝑎𝑝2 (12) 
 𝑎𝑝3′  = 𝑠𝑑𝑜𝑤𝑛 𝑎𝑝3 

where 𝑠𝑢𝑝 is a scalar of a relatively higher value than 
𝑠𝑑𝑜𝑤𝑛. The difference depends on the amount of assistance to 
be provided to the user. The higher the difference the faster 
the user is able to align the gripper with the desired 
configuration. Finally, the angular velocity that needs to be 
sent to the arm control program to move the arm with scaled 
orientation is given by, 

 𝜔𝑛𝑒𝑤 = 𝑎𝑝1′  + 𝑎𝑝2′  + 𝑎𝑝3′  (13) 

 

IV. EXPERIMENTS 

The experiments were conducted in two parts. The first 
part involved, training and testing of the HMM and intention 
based scaled teleoperation method was validated in the 
second part. 

The complete test-bed is shown in Fig 4. A 6 degree of 
freedom (DOF) Phantom Omni device [18] was the master 

 

 
 



  

and an in-house developed 7 DOF wheelchair mounted 
robotic arm (WMRA) [19] system was the slave. A parallel- 
jaw gripper was mounted on the end-effector of the arm. The 
wheelchair was stationary throughout the experiments and 
movements of only the arm and the gripper were used. 
Cartesian mapping, joint limit avoidance and singularity 
avoidance have been implemented and tested on the arm for 
ease of teleoperation.  

 

 

 

 

 
 

 

 

 

 

Fig. 4: Test-bed consisting of the master device, the robotic arm with 
gripper mounted on it and the object to be grasped 

A commonly available camera tripod was used as the 
object to be grasped. It was our object of choice due to a 
variety of grasping configurations possible on its parts like the 
mounting plate, various knobs, handles etc. Specifically, we 
focused preshaping for grasping the tilt release knob and the 
mounting plate (refer to Fig. 5). The two parts gave us a good 
range of rotational movements of roll, pitch and yaw for 
testing our orientation assistance concept. 

 

 

 

 

 
 

Fig. 5: The gripper in the desired preshaping configurations for grasping 
the tilt release knob and the mounting plate of the tripod 

It is important to note that in this work we are only 
concerned with preshaping for grasping and not actually 
grasping the object. Force-closure grasps, finding optimal 
grasping points etc. are out of the scope of this work. We 
limited our work to aligning the gripper with the object and 
assisting the user to do so using intention based scaling. The 
accuracy of aligning is determined by the experiment 
supervisor or human observation. 

Five subjects were used for testing on the system. They 
were all males, aged 24 to 40 years and with no experience in 
teleoperating a robotic arm. Each subject familiarized with the 
system before they began with their trials. All the subjects 
were quick in learning the skills needed to teleoperate and 

could teleoperate the arm after 2 trials. They could translate 
and orient the arm in all the possible directions, and could 
satisfactorily preshape the gripper over the different parts of 
the tripod. 

A. HMM Development 
As mentioned earlier, we focused on preshaping to grasp 

the mounting plate and the tilt release knob. Thus, our HMM 
has two states viz. preshape configuration over the tilt release 
knob and the one over the mounting plate. Our observation 
vector has two elements viz. projection of the gripper z-axis 
on the alignment vectors 𝐶𝑥 (refer to (1)) for the two parts of 
the tripod. Let, 𝐶1 be the alignment vector for the tilt knob, 
and 𝐶2 for the mounting plate. In this proof of concept, 𝐶1 and 
𝐶2 were determined offline by aligning the gripper with the 
part such that it results in an orthogonal grasp. The -ve of the 
gripper z-axis then gave us 𝐶1 and 𝐶2. In an actual setting, 
these alignment vectors could be determined by using a depth 
based vision system, such as Microsoft Kinect. Such a system 
would give the alignment vectors in the form of principal axes 
of the object parts after reconstructing them. Our state 
transition vector is assumed to be 𝐴 =�0.9 0.1

0.1 0.9� and our 
initial probability distribution is, π = [0.5 0.5] based on the 
assumptions mentioned previously in Section II. 

1) Training the HMM 
As mentioned earlier, 𝜇𝑗 and Σ𝑗 are the parameters that 

need to be determined in order to develop our HMM. For 
this, we collected training data from the subjects in the form 
of observation vectors O. Each subject is asked to teleoperate 
the gripper to preshape for grasping each object part 10 times 
starting at a different gripper pose every time. These datasets 
were combined for each preshape. (7) and (8) were applied 
on this combined dataset to determine, 𝜇𝑗 and Σ𝑗 for each 
preshape or state. The number of trials, 10, was randomly 
chosen. Lesser trials may have given approximately the same 
parameter values but this was not analyzed. 

2) Testing the HMM 
We collected test data from subjects in the form of 

observation vectors over 10 trials for each preshape 
configuration. The subjects were asked to preshape to the 
desired configuration starting from random initial poses that 
were close to the desired configuration for 5 of the trials, and 
starting from random initial poses not close to the desired for 
the other 5 trials. This way, a good range of starting poses 
were taken into account. Viterbi decoding over the training 
data was used to determine the average time per subject per 
preshape configuration to detect the right intention. 

B. Comparison of Intention based Scaled Teleoperation 
with Unassisted Teleoperation 

 In order to determine the user intention in preshaping to 
a desired configuration, the observations vectors generated as 
a result of teleoperation were processed through the Viterbi 
algorithm. Based on the intention, scaling in the appropriate 
direction was provided to the user to assist in preshaping. In 
this implementation of the Viterbi algorithm, we took the 
average of the intention values generated over the last 100 
time instances to determine the overall intention. The 

 

 

 
 

  
 



  

logarithm of the probability values were used in order to 
avoid data underflow issues which can occur due to low 
probability values. The scaling values chosen to be 3 and 0.2 
for 𝑠𝑢𝑝 and 𝑠𝑑𝑜𝑤𝑛  respectively (refer to (12)). 

The subjects were asked to teleoperate the gripper to 
preshape over the tilt knob and the mounting plate in two 
modes viz. without any intention recognition or assistance 
and with intention based orientation assistance. For each 
mode and object part, each subject executed the preshaping 
task six times. Each time, random initial poses were selected. 
For the intention based assistance modes, the user had the 
option of activating scaled assistance or deactivating it by 
toggling a keyboard key. They would deactivate when the 
system would detect a wrong intention and would otherwise 
activate it. This gave the user the ultimate control of the arm 
and avoided their motion being scaled to the wrong preshape. 
In 3 out of the 6 trials for each subject and object part, they 
were asked to change their intention midway during the task 
and preshape the other part. This test case would determine 
the robustness of the intention based scaling versus 
unassisted mode.  In a real-life setting, this action can be 
viewed as the user changing intention due to not being able 
to grasp from a certain configuration.  In all, each subject 
performed 24 trials.  The average time it took for each 
subject to complete a preshape task and the gripper 
orientations during teleoperation were recorded. 

V. RESULTS AND DISCUSSION 

Fig. 6 shows the average number of frames it took for 
the intention recognition algorithm to detect the right 
intention per subject per object part, averaged over all trials. 
Each frame is equivalent to one run of the Viterbi algorithm, 
which ran at approximately 450 Hz. Standard errors have 
also been determined and are shown in the figure. 

 
 
 

 

 

 

 

 

Fig. 6: Average number of frames to detect the right intention when 
preshaping over the knob and the plate 

From the figure we can see that the time the system took 
to detect the right intention is different for different subjects. 
This is because it depends on a lot of factors like the speed at 
which the subject teleoperates, stating pose, skill level of the 
subject etc. No analysis was conducted to determine the 
effect of any of these parameters on the speed of intention 
detection. We also see that the detection was quicker for the 
plate. This indicates that it might have been easier and 
quicker for the subjects to orient over the plate but no 
statistical results were generated to confirm this. 

The average time per subject to complete a preshape task 
in both the modes for the knob and plate is presented in Fig. 
7 and 8. For these tests, the subjects began teleoperating 
from random initial poses and preshaped over a particular 
object part. 

 
 
 
 
 
 
 

 

 
Fig. 7: Time plots comparing intention based assistance with unassisted 
teleoperation when preshaping over the knob from random initial pose. 

 
 

 

 

 

 
 

Fig. 8: Time plots comparing intention based assistance with unassisted 
teleoperation when preshaping over the plate from random initial poses. 

From the two figures, it is clear that intention based 
assistance enables the subjects to complete the task much 
faster. Percentage difference in the time per subject per 
preshape task was determined as the fraction of the 
difference between the average times in the two modes, over 
all trials. This value averaged over all subjects is the average 
percentage time difference in the two modes per preshape 
task. For knob preshape task, it was 45%, and it was 34% for 
the plate preshape task. 

Fig. 9 and 10 show the time results when the subjects 
were asked to preshape over an object part and then while 
they were in the process of doing so, were asked to preshape 
over the other object part. 

 

 

 

 

 
 

 
Fig. 9: Time plots comparing intention based assistance with unassisted 

teleoperation. The subject was asked to preshape over the knob while in the 
process of preshaping over the plate 

 

 

 

 

 



  

 

 

 

 

 

 

 
Fig. 10: Time plots comparing intention based assistance with unassisted 

teleoperation. The subject was asked to preshape over the plate while in the 
process of preshaping over the knob. 

The intention based assistance enabled the user to 
preshape quicker. Average percentage difference in time for 
the knob preshape task was 25% while it was 39% for the 
plate preshape task. 

The subjects found the intention based orientation 
assistance very useful in aligning with the target in 
teleoperation. It made the aligning task much easier to 
perform, and they preferred it over the unassisted 
teleoperation mode. A common feedback from the subjects 
was that the method made rotations very easy. With the 
intention based assistance mode, the subjects had to make 
fewer movements. Also, fewer deviations were observed by 
the subjects from their orientation paths when performing 
preshaping with intention based assistance. This was 
naturally expected since the motion was scaled up in the 
desired directions. Some subjects, however, did overshoot 
when aligning the gripper with the target, and others found 
using the keyboard key to switch assistance mode on and off 
as annoying. According to their feedback, it diverted their 
attention from the gripper movements.  

VI. CONCLUSION AND FUTURE WORK 
In this work, we have demonstrated that intention based 

assistance improves the task performance in preshaping 
around an object. Human subjects found the assistance in 
orientation very helpful, and according to their feedback, it 
made the preshaping task much easier for them to execute in 
teleoperation. This combined with intention recognition 
further sped up the task execution. Average percentage 
difference over all tasks for all subjects was 36%. 

While the results are promising, further improvements and 
validations are needed to realize the benefits of the 
methodology. The next step will be to use more concepts 
from the HMM theory and apply the algorithm to general 
indoor objects with multiple preshape configurations. We 
will evaluate if the extended algorithm is able to determine 
the object of interest and the intended human preshape 
configuration on that object when a number of such objects 
are placed in the environment. For this extension, increasing 
the dimensions of the feature vector by including projections 
of incremental translation vectors will be needed. Integrating 
a depth based vision system that estimates the shape and 
pose of novel objects will preclude the need to use 

predetermined grasp configurations for testing. Statistical 
analysis of data from experiments is part of the future work. 
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