
  

   

Abstract— This paper investigates the capability of naïve 
individuals to recognize dystonic- or spastic- like conditions 
through physical manipulation of a virtual arm. Subjects 
physically interact with a two-joint, six-muscle hypertonic arm 
model, rendered on a two degrees-of-freedom robotic 
manipulandum. This paradigm aims to identify the limitation 
of manual manipulation during diagnosis of hypertonia. Our 
results indicate that there are difficulties to discriminate 
between the two conditions at low to medium level of severity. 
We found that the sample entropy of the executed motion and 
the force experienced during physical manipulation, tended to 
be higher during incorrectly identified trials than in those 
correctly assessed. 
 

Index Terms—hypertonia, spasticity, rigidity, dystonia, 
assessment, haptic discrimination 

I. INTRODUCTION 

YPERTONIA is a frequent condition that contribute to 
reduced voluntary motor performance or involuntary 

muscle in neurological disease such as cerebral palsy, 
Parkinson’s disease  or after stroke [1, 2]. Hypertonia is 
characterized by a concurrent manifestation of symptoms 
that can include active contraction of the muscle at rest, 
hyperexcitability of motoneurons and excessive co-
activation , muscle contracture and other impairments that 
induce an abnormal increase in resistance to externally 
imposed movement [3]. Depending on the pathophysiology, 
hypertonia can be referred as spastic hypertonia, rigidity, 
dystonic hypertonia, among others.  Accurately diagnosing 
of the intrinsic characteristics of hypertonia is vital to 
determine appropriate interventions or treatment outcomes 
[3]. An erroneous clinical decision can lead to an increased 
treatment time, rise in overall costs, or even be detrimental 
for the overall condition. Therefore, the simultaneous 
manifestation of such conditions presents unique challenges 
for diagnosis. 

To make an overall assessment of hypertonia, therapists 
physically manipulate the patients’ limb so that each joint is 
tested individually; these movements are then rated by the 
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therapists using current clinical scales (e.g. modified 
Ashworth scale, Tardieu scale, Hypertonia Assessment 
Tool) [4-7]. However, it would be useful to extend the 
assessment of hypertonia  to multiple degrees of freedom at 
the same time, so to capture alteration of inter-muscular 
(heteronymous) reflexes [8] or abnormal multi-joint 
couplings [9, 10].  

The quantitative measure of limb mechanics is crucial for 
an accurate diagnosis. Several system-identification methods 
have been proposed encompassing non-parametric [11-14] 
and parametric modeling [15, 16]. Such assessments ought 
to be preferred for accurate diagnoses but require 
sophisticated set-up, such as robotic devices, making most 
of these classical engineering approaches difficult to apply 
in clinical setting of rural areas due to lack of appropriate 
equipment.  

In order to develop tools that can be easily incorporated in 
a routine clinical setting, we are interested in identifying the 
human competences to recognize and differentiate haptic 
stimuli during physical patient-therapist interaction. 
Specifically, an important endeavor is to understand the 
strategies and capabilities of humans to recognize between 
different types of hypertonic-like conditions. 

In this paper we evaluated the capability of naïve subjects 
to discriminate between dystonic- and spastic-like arms at 
different level of severity by means of a physical simulator. 
Our results indicate that i) non-therapists naïve subjects may 
have an inherent bias to misjudge spasticity-like symptoms 
as dystonic and ii) physical manipulation characterized by 
high sample entropy (both in force and position) may lead to 
a misjudgment of an impairment. This is in line with 
Norwich’s “Entropy theory of Perception” [17], which states 
that more accurate identification of a stimulus occurs with 
lower level of entropy. 

Therefore, we hypothesize that specific probing motions, 
characterized by low sample entropy, but executed in 
appropriate directions, may facilitate the diagnosis of multi-
joint hypertonia via patient-therapist physical interaction. 
The ultimate goal of this research is to define a set of 
probing motions that are characterized by low entropy, but 
that are executed in the appropriate directions so as to 
maximize exchange of information. This might foster the 
realization of simple devices that can provide immediate 
feedback during routine patient-therapist interaction without 
the need of sophisticated or expensive equipment. 
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II. METHODS 

A. Subjects 

Nine right-handed subjects (age 25 to 35 years) 
participated in the study. Subjects gave informed consent 
prior participation. Experiments were approved by the 
Northwestern University’s Institutional Review Board. 

B. Apparatus 

Subjects sat in front of a two degrees of-freedom robotic 
manipulandum and by holding the robot’s handle interacted 
with a series of force fields that can be proper of an impaired 
arm [18]. The model was implemented in Simulink and was 
executed in real-time using xPC Target at a rate of 1 kHz. 

The subject’s acromion was aligned to the imaginary line 
joining the robot’s shoulder joint and the center of the 
robot’s workspace. Subjects’ elbow flexion and a shoulder 
adduction were kept approximately at 110° and 30º on the 
horizontal plane of the robot arm. A right arm model of 
patient with hypertonia (see Neuro-mechanical model of the 
human arm) was rendered as if the latter was seated facing 
the participants. The model’s equilibrium position was such 
that the virtual hand matched the center of the robot’s 
workspace. An opaque horizontal screen was interposed 
between the subjects’ and the robot arm impeding their 
direct view. We projected on the screen both the image of 
the rendered virtual arm and a 35 cm diameter circle which 
was centered at the virtual arm endpoint equilibrium 
position. The circle was use as a representation of the virtual 
arm workspace. Prior of each trial, the static image of the 
arm was shown on the screen while a white dot indicated the 
position of the subject’s hand and moved synchronously 
with it. In order to activate the trial, subjects needed to 
overlap the white dot to the endpoint of the virtual arm. 
Thus, the white dots would turn green, the virtual arm would 
start moving as a function of the subject hand position and 
the force field was rendered. 

C. Experimental protocol 

The experiment was divided in two successive phases: i) 
familiarization and ii) assessment. During familiarization, 
the participants interacted with the virtual arm where 3 
conditions were presented (i.e. normal, dystonic, and 
spastic) (see Simulating hypertonic-like forces). The two 
impaired conditions were rendered at the maximum of their 
severity to clearly illustrate their salient haptic features to 
the subjects. Subjects’ and virtual arm were connected via a 
virtual object (a spring-damper system) with stiffness of 
1625 [N/m], critically damped. All subjects interacted 
sequentially with each condition in blocks of 15s for five 
times (5 presentations x 3 conditions = 15 trials). During this 
phase, a legend appeared on the top right corner of the 
screen indicating the condition that the subject was 
experiencing. 

Subjects’ movements were not constrained during neither 
during the familiarization nor during assessment. This gave 

us the possibility to evaluate the sample entropy of both 
kinetic and kinematic hand variables. During assessment, 
subjects were randomly presented with either a dystonic or 
spastic virtual arm where the level of severity could span 
between very mild, mild, moderate and severe. Subjects’ 
task was to identify the nature of hypertonia simulated by 
the virtual arm.  Subjects were presented each condition 
twelve times in blocks of 10s (2 conditions x 4 levels of 
severity x 14 presentations = 112 trials). The only feedback 
given to the subjects was the configuration of the virtual arm 
and the rendered force at the end effector. After the probing 
motion, subjects were presented with 2 yellow dots on the 
screen indicating a number (1,2) and the words dystonia, 
and spasticity. Subjects were required to select one of the 
two options by moving a white dot connected to the end-
effector position, on top of their chosen answer. 

Subjects could take as much time as they wanted to give 
their assessments and start a new trial. The whole 
experiment lasted for about 25 minutes. 

D. Neuro-mechanical model of the human arm 

To model the virtual arm dynamics and interaction with 
the environment while moving on a horizontal plane we 
used the following equation: 

( ) ( )
( ) ( )( )
external( ) ,

, ( )

T
q

T

H q q C q q q J q F

J uλ λ λ λ

⋅+ =

− Φ + Ψ⋅





 
 (1) 

( )H q is the arm inertia matrix of a double pendulum 

system as defined in [19], q denote the vector of shoulder 

and elbow joint angles [rad], ( ),C q q q   is the term 

corresponding to Coriolis and centripetal forces, ( )qJ q  is 

the Jacobian matrix transforming endpoint force into joint 
torque. Simulation-specific parameters are estimated using 
anthropometrical tables from Winter [20] and reported in 
Table I. 

The Jacobian matrix Jλ  [m] transforming muscle length 

into joint angle, was assumed to be constant [21]. This is 
equivalent to assume constant muscle moment arms ρ [m] at 
any particular position. Moment arms’ values where 
assumed based on reported anthropometric data in the 
literature, so that:  

TABLE I - INERTIAL AND GEOMETRICAL PARAMETERS 

Symbol Denomination Value 

msubject Virtual patient mass* 75 [kg ] 
l1, l2 Upper and lower arm 

length* 
0.31,0.35 [m] 

r1, r2 Upper and lower arm 
center of mass* 

0.135, 0.150 [m] 

m1, m2 Upper and lower arm 
mass* 

2.1, 1.2 [kg] 

I1, I2 Upper and lower arm 
moment of inertia about 
the proximal joint* 

0.0593, 0.0407 [kg m2] 
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Where the value in [m] of each moment arm is: 
0.03sf seρ ρ= = , 0.021ef eeρ ρ= = , 

1 1
0.044bf beρ ρ= = , 

2 2
0.0338bf beρ ρ= =  [21].  

The sub-indexes correspond to sf, shoulder adductors 
(Deltoid anterior, Coracobrachialis, Pectoralis major clav.); 
se, the shoulder abductors (Deltoid posterior); ef, elbow 
flexors (Biceps long, Brachialis, Brachioradialis); ee, elbow 
extensors (Triceps lateral, Anconeus); bf, bi-articular flexors 
(Biceps short); and be, bi-articular extensors (Triceps long) 
muscle groups. The force of each muscle group is modeled 
as a linear combination of active (i.e. produced by a motor 
command u) and passive (i.e. produced by intrinsic rigidity 
of the muscles and connective tissue) components.  

The force produced on each muscles’ group by the motor 
command u is given by [22, 23]: 
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Where τ  is the intrinsic muscle stiffness, and ( )u λ  is the 

active motor command that is function of the muscle stretch 
velocity so that: 
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The coefficient β relates to a “stretch reflex gain”. The 

variables ,rest iλ , max,iλ , and max,iλ are the average length of 

the thi muscle group at rest, its maximum length and 
maximum rate of length change, respectively. The maximum 
rate of length change was computed assuming to move the 
end point of virtual arm along the circle of 35cm in diameter 
at a frequency of 2Hz. 

The intrinsic rigidity of the muscles and surrounding 
connective tissue is function of the muscle length and 
generates the following force vector: 
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The term λ and mK represent the muscle length and 

muscle rigidity respectively.  

E. Selection of Rigidity boundary parameters 

We assumed the maximum and minimum joints rigidity  
on literature data acquired during passive movements. [15, 
24]. Based on both stroke survivors and unimpaired 
individuals data, we assumed that the lower boundary of the 
stiffness that we rendered as the joint passive stiffness of 

unimpaired individuals 
2 0.5

[ / ]
0.5 1qK N m rad
 

= ⋅ 
 

. 

The upper boundary of joint rigidity was assumed to be the 
passive joint stiffness recorded on stroke survivors which 
score 4 on a Modified Ashworth Scale (MAS) 

14 3
[ / ]

3 8qK N m rad
 

= ⋅ 
 

 [9, 25]. 

F. Simulating hypertonic-like forces 

Even though hypertonia is the combination of numerous 
factors, our objective is to verify the participants’ ability to 
discriminate nonlinear forces produced by abnormal position 
dependent stiffness (associated with dystonia) and velocity 
dependent stiffness (associated with spasticity). To this end, 
we modeled hypertonic-like forces as function of both 
intrinsic rigidity mK and  muscle stiffness α , as shown in 

eqs. (3) and (5). Our goal was to simulate a plausible scale 
of both dystonia and spasticity that could be recognized by 
our subjects via proprioceptive feedback. Haptic literature, 
has proposed the just noticeable difference (JND), as a 
parameter describing the sensitivity to biological stimuli. 
When the stimulus is a variation of stiffness, the JND is 
defined as “the ratio between the perceived difference in 
stiffness about a specific stiffness level and the stiffness 
level itself normalized to 100” (i.e. / 100JND K K= Δ ⋅ ) 
[26]. Frequently, KΔ is defined as the difference between 
the first and the third quartile of a stiffness distribution that 
the subject is able to differentiate. The values of JND when 
testing the sensitivity of subjects to a variation of contact 
stiffness, strongly depend on the probing motion used to 
explore the environment. When a fixed displacement 
palpation strategy is used, the value of stiffness JND was 
reported to be 8% [27]. On the other hand, free exploration 
produces much higher values where JND was estimated to 
reach up to 67% [28]. Given that clinical assessments are 
performed with free exploration strategies we imposed a 
stiffness JND=60% to define the different level of dystonia. 
The Weber fraction of these stimuli is 0.6, defining it as the 
JND of the stimulus normalized to 1. Hence, we designed 
five intervals of adjacent stiffness levels, segmenting the 
rigidity range within the minimum and maximum boundary 
condition. The ratio between the stiffness at different levels 
for the specific muscle group i was set so that: 
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We constructed the stiffness level following a Fibonacci 
succession that approximates a 0.6 Weber fraction. 
Coincidentally, our five levels of severity – normal, very 
mild, mild, moderate and severe are also similar to the five 
levels of MAS (i.e. 0,1,2,3,4). Indeed, at least the boundary 
conditions are the same where a score of 0 represents a 
“normal” joint stiffness and a score of 4 corresponds to our 
“severe” level where the joint is very hard to move. 
However, little can be said on the correspondence between 
our proposed intermediate values and the MAS scores.  

It is important to observe that the Jacobian transformation 
is linear. Hence, multiplying the matrix of muscles’ stiffness 
by a scalar κ will increase the joint stiffness and Cartesian 
stiffness by the same proportion. In order to obtain a 
“normal” level of rigidity with 3κ =  we imposed a nominal 
muscle stiffness as follows:  
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To render the different hypertonic conditions in our 
experiment, the hypertonic gains (i.e. υ and �  in eqs. (4) 

and (6)) were applied to all the muscle groups and the 
corresponding values of joint and Cartesian stiffness are 
shown in Table II.  
To simulate spasticity we imposed a linear variation of υ  

from 0 to 1 in eq. (4) so to achieve five equally spaced reflex 

gains levels. Literature reported ratios between level
mK and 

α to vary between 1 and 10 [16, 29-31]. Since we assumed 

the intrinsic muscle stiffness α  to be / 4level
mK , the 

variation of level
mK  following eq. (6) would automatically 

produce an increase in the active force Φ  following a 
Weber law (see  eq. (8)).  

III. RESULTS 

We constructed a psychometric curve for each subject to 
test the probability of assigning one specific condition. The 
resulting average curve highlights the low sensitivity of 
subject to differentiate between dystonia and spasticity 
(Figure 2). The curve tends to be quite flat especially when 
the intensity of the stimuli is low. We can observe that for 
the assessment of very mild spasticity, the probability that 
the subject would give a correct assessment is less than 
40%. This highlights a possible intrinsic bias for subjects to 
select dystonia as impairment. We can also observe that the 
probability of misjudging spasticity at its higher level is 
higher compared to the same case for dystonia.  

In an attempt to understand why subjects mislabeled the 
different conditions, we looked at the sample entropy 
(SampEn) of both the force and motion produced by the 
physical manipulation of the virtual arm. SampEn is an 
alternative metric to the approximate entropy (ApEn) [32] 
and it quantifies the complexity of a signal while addressing 
some practical problems of ApEn [33]. In a nutshell, 
similarly to ApEn, SampEn “quantifies the negative natural 
logarithm of the conditional probability (CP) that a short 
epoch of data, or template, is repeated during the time series. 
If the data are ordered, then templates that are similar for m 
points are often similar for m+1 points, CP approaches 1, 
and the negative logarithm and entropy approach 0.” [33] 

The calculation of SampEn requires the selection of two 
parameters that are: i) the size of the template (m), and ii) 
the tolerance for considering similar templates (r).  For our 
analysis, we selected m=2 and r=0.2*std(trial data) as 
suggested by [32] for the analysis of heart rate data. For our 
analysis, we used the Matlab® SampEn toolbox developed 
by [34]. 

Figure 2 shows the mean force and movement SampEn 
calculated for each subject for both correctly and incorrectly 
labeled trials. We found that that force and movement 

TABLE II - JOINT AND CARTESIAN STIFFNESS WHEN ALL MUSCLE 

GROUPS ARE IMPAIRED 

Level of 
severity 

υ  κ  
| 0

[N m/rad]

qK λ =

⋅


 

| 0

[N/m]

xK λ =
 

Normal 0.0 3 
. .

. .

2 03 0 47

0 47 1 18

 
 
 

 
. .

. .

23 48 10 65

10 65 17 72

−

−

 
 
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Very mild 0.25 5 
. .

. .

3 39 0 78

0 78 1 96

 
 
 

 
. .

. .

39 14 17 76

17 76 29 54

−

−

 
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Mild 0.5 8 
. .

. .

5 43 1 26

1 26 3 15

 
 
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. .

. .

62 62 28 42

28 42 47 27

−

−

 
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 

 

Moderate 0.75 13 
. .

. .

8 83 2 05

2 05 5 15

 
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. .

. .

101 76 46 18

46 18 76 82

−

−

 
 
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Severe 1.0 21 
. .

. .

14 27 3 31

3 31 8 27

 
 
 

 
. .

. .

164 39 74 60

74 60 124 10

−

−

 
 
 

 

Figure 1. Mean (n=9) and individual psychometric curves showing 
the probability of labeling dystonia and spasticity at different levels 
of severities.



  

SampEn was lower in trials where a correct assessment of 
impairment was made.  Force SampEn was more sensitive to 
this effect than movement SampEn. A Wilcoxon signed-
rank test revealed statistical significance in force SampEn 
between correctly and incorrectly assessed trials (p<0.05), 
but not in movement SampEn (p=0.12). However, a t-test on 
the percentage error resulted statistically different from zero 
for both force and movement SampEn (p<0.05).  

IV. DISCUSSION 

Norwich’s “entropy theory of perception” defines entropy 
as a measure of uncertainty of the stimulus [17].  According 
to this theory, the value of entropy of a signal is a measure 
of uncertainty that directly correlates with the perception of 
a physical phenomenon in a leaving creature. In particular, 
this theory predicts that more accurate identification of a 
stimulus occurs with lower level of entropy. We found 
results that support this hypothesis by calculating the 
movement and force sample entropy during the interaction 
with impaired virtual arms and looking at the percentage of 
correct identification. 

While several studies have been performed on the 
perception of force and stiffness [26], to our knowledge, our 
study is the first to compare the sensitivity of naive subjects 
to physiologically compatible stimuli within the context of 
multi-joint hypertonia assessment. Specifically, we tested 
the sensitivity of subjects to recognize dystonic- and spastic-
like conditions. Our results suggest that non-therapists naïve 
subjects may have an inherent bias to misjudge spasticity-
like symptoms as dystonic-like. While our experimental 
subjects could make a clear distinction between stimuli at 
their maximum magnitude, the individualization was 
difficult as the level of severity decreased. This is 
particularly evident for very-mild and mild impairments. It 
should be noted that if a submaximal setting was used to 

familiarize the subjects, they may have obtained a more 
sensitive ability to discriminate between the conditions. 

While our model might not represent the whole 
complexity of a hypertonic arm, it can certainly capture its 
salient features, and it is designed following physiologically-
feasible models of muscle mechanics and limb geometry. 
We also asked the opinion of three different licensed 
therapist, experts in the assessment of hypertonia; the three 
of them agreed that the haptic sensation produced by 
manipulating our model closely represented their memory of 
manipulating an arm at different levels of spasticity and 
dystonia. 

The tactile sensation of mechanical stimuli during wide 
movement of the arm has limited influence on the overall 
perception [35]. The assessment of hypertonia (as in current 
clinical practice) relies mostly on proprioception via  muscle 
spindles, Golgi tendon organs and skin stretch, which 
signals are inherently noisy  [36]. Therefore, lower 
complexity of a stimulus may be required to better 
disassociation between signal and noise.  

We are currently investigating i) the perceptual sensitivity 
of trained physical therapist [37], ii) how the perception of 
hypertonia is affected by the impedance introduced by the 
virtual connection between a patient and a clinician 
interacting remotely [38], and iii) the possibility to design 
specific probing motions with appropriate force sample 
entropy, so to increase the overall sensitivity and reduce 
bias.  
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