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Ankle impairment and lower limb asymmetries in strength and 
coordination are common symptoms for individuals with selected 
musculoskeletal and neurological impairments. The virtual 
reality augmented cycling kit (VRACK) was designed as a 
compact mechatronics system for lower limb and mobility 
rehabilitation. The system measures interaction forces and 
cardiac activity during cycling in a virtual environment. The 
kinematics measurement was added to the system. Due to the 
constrained problem definition, the combination of inertial 
measurement unit (IMU) and Kalman filtering was recruited to 
compute the optimal pedal angular displacement during dynamic 
cycling exercise. Using a novel benchmarking method the 
accuracy of IMU-based kinematics measurement was evaluated. 
Relatively accurate angular measurements were achieved. The 
enhanced VRACK system can serve as a rehabilitation device to 
monitor biomechanical and physiological variables during 
cycling on a stationary bike.  

Key Words—Lower limb rehabilitation, Kinematics 
measurement, Inertial measurement unit, Kalman Filter. 

 

I.  INTRODUCTION 

Ankle injuries are common disorders that can occur due to 
overuse, trauma, and neural degenerations. Central and 
peripheral damage to nervous system can result in loss of 
coordination and range of movement (ROM) at the ankle joint. 
Ankle sprains represent 2.15 per 1000 person-years in the 
United States [1], with about 50% of occurrence during athletic 
exercise. In patients with neurological conditions such as stroke, 
ankle incoordination and weakness are common impairments 
that may interfere with activities of daily living (ADL) such as 
walking, running, and postural stability.  

Ankle joint is the distal effector in cycling. Cycle ergometry 
has been applied particularly for ankle rehabilitation and more 
generally to lower extremity (LE) in varied populations and at 
different phases of recovery. Cycling has been included in the 
rehabilitation of individuals in the sub-acute stage of high ankle 
sprains [2] with the goal of normalizing joint mobility. It was 

also recruited in the rehabilitation of individuals with Duchene 
MD [3] focusing on the LE endurance. Although measuring the 
ankle ROM may have not been the primary goal, cycling has 
been prescribed as a component of intensive rehabilitation 
exercise to promote LE endurance and improve mobility post-
stroke [4-6]. Most recently a trial has been proposed to 
establish efficacy of cycling ergometry as a form of repetitive 
functional training necessary for people in the early days post-
stroke [7].  

The partially documented benefits of cycling spans 
improved aerobic fitness [8-9], increased muscle strength [10-
12] and even transfer to other activities such as walking [9, 11]. 
Cycling has been performed in isolation, or in combination 
with electrical stimulation [9-11], and with augmented virtual 
reality (VR) environment [13]. With the purpose of coupling 
the assets of VR interface [14] with the benefits of cycling, the 
virtual reality augmented cycling kit (VRACK) was designed 
and implemented [15-16].  

The VRACK is a novel mechatronics system designed as a 
rehabilitation device to monitor biomechanical and 
physiological variables during cycling on a stationary bike. In 
the first version of this system the interaction forces of pedals 
and handlebars [15-16]; as well as the heart rate monitoring 
capabilities [17] were addressed. These inputs were transmitted 
into the VR environment to drive the behavior of the cycling 
avatar, and also used to record the cyclist’s performance.  

In the current iteration, the role of ankle kinematics during 
cycling was considered. Ankle joint’s kinematics can be used 
to identify mechanical efficiency, which has been associated 
with a more plantar-flexed ankle through the top and 
downstroke of the pedal cycle and more dorsi-flexed during the 
upstroke. Moreover the coupling of kinetic and kinematic data 
from the pedals can serve a surrogate measure of the rider’s 
underlying motor control. However due to our constrained 
problem definition, measuring the pedal kinematics was not a 
straightforward task.  

An Inertial Measurement Unit (IMU) is a combination of 
accelerometers and gyroscopes that is widely used in 
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navigation problems to measure velocity and orientation [18]. 
Sensitive to gravity, these micromechanical systems (MEMS) 
have been integrated into monitoring systems to record human 
movements outside laboratory environments [19]. Other 
applications span monitoring ADL and level of activity [20], 
human motor control and stability [21], load estimation and 
functional electrical stimulation [22]. Owing to our specific 
problem definition of having a standalone cycling kit 
independent from the stationary bike body, IMUs were selected 
for the VRACK system to measure the pedal kinematics. Both 
pedals were equipped with IMUs to collect acceleration and 
gyro and compute pedal angular displacements with respect to 
the external observer.  

The common challenge in using IMU sensors is the 
excessive amount of noise in the acquired signals that leads to 
inaccurate measurements. This problem is caused by the highly 
sensitive internal MEMS structure, and also the dependency 
upon variety of environmental conditions such as temperature, 
gravity or fluctuations in the supply voltage [23-4]. The 
accuracy of the acquired signal can be increased by using 
advanced signal processing methods. There is a body of 
research on using IMU with Kalman filter in various fields 
including navigation of autonomous vehicles, camera 
calibration, and rehabilitation [25-8]. But most of these 
applications have low or negligible acceleration with respect to 
gravity. The application of IMU was not recommended for 
problems with relatively comparable instantaneous acceleration 
amplitude with respect to gravity, such as cycling.  

In this paper, the brief description of the VRACK system is 
presented. The integration of IMU in the smart pedal structure, 
to measure the pedal acceleration and gyro with respect to the 
external reference, is explained. The application of Kalman 
filter to process the noisy IMU data channels and compute the 
pedal angle is discussed. The benchmarking setup to assess the 
accuracy of the final pedal kinematics during cycling is 
presented.  

II. SYSTEM OVERVIEW 

The complete building components of the virtual reality 
augmented cycling kit (VRACK) are presented in Figure 1. 
The primary engineering problem was to build an independent, 
compact cycling kit to be assembled on a typical stationary 
bike with the purpose of assessing human biomechanical 
interaction with this popular exercise equipment. The system 
was engineered with two sensorized pedals (B), two 
handlebars with hydraulic pressure sensors (A) and a heart rate 
monitor (D). Two separate visual media were considered for 
the patient and the therapist. Virtual reality (F) was used as an 
interface with the human subject and more elaborate measures 
were integrated into the practitioner interface for monitoring 
purposes (E).  

Two smart pedal modules, shown in Figure 2, are installed 
on the stationary bike that host force and angle measurement 
transducers. The applied force to the pedal raceway is 
transferred to a load cell (LC302-500, Omega Engineering), 
using a force-transition mechanism, so as to measure the 
interaction forces between the subject’s foot and the pedal. This 
force sensing mechanism is calibrated to measure -20 lbs. (≈ -
90 N) of tensile force to +100 lbs. (≈ 450 N) of compression 

force. The kinematics measurement capability of the smart 
pedals is described in the next section.  
 

 

 
Fig. 1.  VRACK system complete overview; A: Handlebar module; B: 

Smart pedal; C: Power supply, preamplifier and the data acquisition board; D: 
Heart rate monitor, E: Practitioner interface; F: Virtual reality environment. 

Two sensorized handlebars with hydraulic pressure sensors 
(PX35, Omega Engineering) are installed around the 
mechanical handlebars of the stationary bike. Subjects grasp 
the sensorized handlebars, and apply force, to control the bike 
balance during ongoing simulated cycling in the virtual reality 
environment.  

The wireless heart rate monitor (RE07L, Polar Electro Inc.) 
is strapped around the patient’s chest to measure heart rate 
during cycling exercise. This physiological variable is used by 
the practitioner, to set the training intensity by adjusting the 
speed of the pacer in the VR game.  

The biomechanical and physiological variables are 
collected using the data acquisition board (NI-USB 6216) and 
transferred to the self-developed code (LabVIEW 8.2, 
National Instruments Corp.). The acquired data is 
demonstrated in real-time in practitioner interface; is recorded 
in a text file for post processing and drives the virtual reality 
game.  

With the purpose of entertainment and more engagement 
for the patient, the virtual reality game showing a cycling 
avatar is displayed. The avatar speed is controlled by the 
pedaling speed. His direction and postural balance are 
controlled, respectively, by the measured forces at the 
handlebars and the force balance among the left\right pedals. 
The vibration feedback, installed on the pedal foot binding, is 
triggered when riding off the road into the surrounding grassy 
verge area.  

The practitioner interface is a more technical medium for 
the purpose of activity monitoring during exercise in real-time. 
The practitioner is able to follow the instantaneous applied 
forces to both pedals and handlebars, monitor the pedaling 
speed and heart rate status.  
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III. METHODS 

During cycling, the principal components of ankle joint 
movements are dorsiflexion and plantarflexion. The ergonomic 
foot bindings (Flow Snowboarding, CA, USA) were used to 
strap and secure the patient’s feet to the pedal raceway. This 
arrangement was employed to transfer the slightest changes in 
the ankle joint to the pedals.  

In a typical bike structure, the pedal body is fastened to the 
crank arm with the pedal shaft. A set of ball bearings are 
between the pedal body and the pedal shaft. Consequently the 
pedal shaft is fixed relative to the crank arm. The pedal rotates 
freely relative to the pedal shaft, and the crank arm. Cycling as 
defined by rotating the crank arm, relative to the external 
reference, is accompanied by the pedal rotation with respect to 
the crank.  

 
Fig. 2.  The smart pedal components. A: Ergonomic foot bindings; B: 

Detachable vibration element; C: Inertial measurement unit; D: Electronics 
safety enclosure; E: High-flexibility double shielded cable; F: Pedal raceway. 

Due to this intrinsic complexity in the pedal-bike force 
transmission structure, measuring the pedal angle with respect 
to the external reference is not a straightforward task. This 
issue was more stressed in our compact design problem, so as 
to have an independent module from the stationary bike. 
Accordingly the combination of IMU sensor with advanced 
post-processing Kalman filtering was used for this application.  

 

A. Hardware  

A 3D accelerometer unit can be used as an inclinometer to 
measure the angle of the pedal with respect to the vector of 
gravity [16-20]. This method was mostly practiced in the 
absence of externally applied acceleration or if the magnitude 
of the dynamic acceleration is negligible with respect to the 
gravity [17]. Gyroscope can also be used, as an additional 

source of the same measure, to be fused with the accelerometer 
data and provide a more accurate angle measurement.  

The 5-degrees of freedom IMU (SEN-09268, Sparkfun 
Electronics) was used for the purpose of measuring the pedal 
angle with respect to the external reference. The electronic 
circuit board is composed of a two-axis vibrating beam 
gyroscope (IDG500) and a three-axis piezo-resistive 
accelerometer (ADXL335), on a 20*23 mm2 printed circuit 
board with less than 5 g weight. This sensitive MEMS structure 
provides the possibility of collecting the angular velocity in roll 
and pitch orientation in addition to the acceleration along X, Y 
and Z axes, as shown in Figure 2.  

As shown in Figure 2, the IMU was placed in a face-down 
position parallel to the pedal raceway. Considering this 
placement with respect to gravity, the pedal angle can be 
computed from the gyroscope, by taking the integral of the roll 
(ω) component, as well as the angle between Y and Z 
components of the accelerometer: 
 

௔௖௖ߠ ൌ arctan ቀ
௔೤
௔೥
ቁ                   (1) 

 
Due to the inherent large amount of noise in the IMU data, 

the computed angular displacement during human cycling was 
very noisy and henceforth unreliable. This problem was more 
significant in the dynamic cycling activity, which has 
comparable acceleration to gravity. Kalman filtering was 
recruited as a post-processing step to improve the accuracy of 
the final measurements.  
 

 
Fig. 3.  IMU benchmarking setup. A: Encoder circuit on the grooved pulley; 
B: Encoder and IMU on the test-pedal; C, E and H: Mechanical adaptors made 

by 3D printer; D: Optical encoder on the grooved pulley; F: Optical encoder 
on the test-pedal; G: Face-down IMU PCB. 

X 

Z 

Y 



4 
 

B. Benchmarking 

The Kalman filter algorithm was used to fuse the 
acceleration and angular velocity and compute the angular 
displacement. This method is explained in the appendix.  

The rotary encoder is a sensor that converts the motion of 
the central axle to a measurable voltage. The axle or the shaft 
rotates relative to the encoder body. In order to assess the 
accuracy of the final pedal kinematics measurement, IMUs 
were fabricated, in a similar orientation, in a separate test-pedal 
structure along with an encoder, as a direct reference from 
angular displacement. The benchmarking circuit was installed 
on the stationary recumbent bike (Cybex 700R), as shown in 
Figure 3. The benchmarking setup consisted of two relative 
optical encoders (RCML 15, RENCO). One was fabricated 
with the IMU to the test-pedal, and the second encoder was 
fabricated to the grooved (rear) pulley of the bike.  

Two encoders were installed on the grooved pulley and the 
test-pedal with the efficient fabrication and housing structures 
so as to collect angular displacement. The encoder circuit A 
was mounted on the grooved pulley of the stationary bike to 
measure the crank angle with respect to the global reference. 
The encoder circuit B was mounted on the test-pedal shaft to 
measure the pedal angle with respect to the crank. The 
subtraction of the two measures, by considering the pulley 
diameters, is the pedal angular displacement with respect to the 
global reference.  

Installation of encoders on the pedal shaft and grooved 
pulley required manufacturing and fabrication of mechanical 
motion transmission structures. The mechanical components 
were designed in 3D computer-aided design (CAD) software 
(SolidWorks 2012) and manufactured using rapid prototyping 
by 3D printer (EDEN 333, Stratasys Ltd.).   

 
The error in pedal angle measurement was defined as the 

difference between the calculated angle from the encoders and 
the outcome from the IMU and the Kalman filter: 
 

ߪ ൌ ௘௡௖௢ௗ௘௥௦ߠ	 െ  ௄ிିூெ௎        (2)ߠ
 
The performance index for the method was considered as 

the root mean squared (RMS) value of the instantaneous error: 
 

ሻߪሺܵܯܴ ൌ ට׬ ݐሻ݀ݐଶሺߪ
௧మ
௧భ

          (3) 

 
The data was collected in LabVIEW at 500 Hz sampling 

rate and transferred to MATLAB (R2012b, Natick, USA) for 
post-processing. The nominal pulley ratio was calculated (r = 
13”/3”), this value was experimentally measured as 0.23635. 
All raw data was filtered by a 2nd order Butterworth low-pass 
filter at 50 Hz cut-off frequency prior to post- processing.  

IV. RESULTS 

In the first step, the left IMU was fabricated on the left test-
pedal. A single male healthy subject was recruited to perform 
the cycling exercise. He was positioned on the sixth grade of 
the seat shuttle on the recumbent stationary bike, with his knee 
joint fairly extended. He was instructed to cycle at his 
comfortable speed. Ten trials, each 45 sec, were collected.  

 
Fig. 4.  The angular displacement of the left pedal during cycling; the 

computed angle from accelerometer raw data in Equation 1 (dashed line), the 
filtered IMU (solid line), reference profile (dotted line). Dorsiflexion is in 
positive direction and Plantarflexion is toward negative direction. Positive 

range of data is due to the subject extended leg posture on the bike. 

The IMU was calibrated according to the manufacturer 
instructions. The Kalman filter was used to fuse the gyro and 
acceleration data and compute the optimal estimate for the 
pedal angle. Accordingly the roll (ω) from the gyroscope was 
considered as the input vector and the ߠ௔௖௖ from the 
accelerometer, as in Eq. 1, was considered as the measured 
noisy output. The state space equations were framed as:  
 

෠௞ߠ
ᇱ ൌ ෠௞ିଵߠ ൅  (4)                 ݐ݀߱
௞ݕ ൌ  ௔௖௖                         (5)ߠ

 
Accordingly the state space parameters were considered as, 

A = 1, B = dt (= 0.002 sec), and C = 1 and the initial condition 
was set to zero. The measurement noise (v) and process noise 
(w) were estimated using the variance of the accelerometer and 
gyroscope respectively (ݒ ൌ ௔௖௖ߠ	 ݓ , ൌ ݐ݀߱	 ). These values 
were computed while the pedal, and hence the IMU, was left 
stationary on the bike. The probability distribution of these 
random variables was compared to the presumed Gaussian 
distribution. The corresponding variances (Q, R) were 
estimated and inserted into the Kalman filter algorithm, so as to 
achieve the most accurate results. The initial conditions were 
set to zero. The ultimate angle displacement from the encoder 
and the Kalman filter were filtered by the 2nd order Butterworth 
high-pass filter at 0.01 Hz cut-off frequency to remove constant 
or drift components.  

Left pedal’s angular displacement data from different 
sources during cycling is demonstrated in Figure 4. Due to the 
Kalman filter convergence time in the beginning of the trial, 
the RMS value was computed after t1 = 5 sec. Accordingly the 
computed RMS for the above trial was 2.70 deg and for the 
whole exercised 10 trials in this experiment was 2.61 ± 0.10 
deg.  

The same procedure was conducted for the right test-pedal. 
The computed RMS value for the corresponding 10 trials of the 
right pedal was 2.77 ± 0.14 deg.  
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V. DISCUSSION AND CONCLUSION 

The basic problem definition was to design a set of smart 
pedals so as to measure the lower extremity kinetics and 
kinematics during cycling task. We could not install any sensor 
on the bike body as our compact design problem was restricted 
to two instrumented pedals. This paper was focused on the 
pedal kinematics measurement.  

The application of IMU to measure angular displacement, 
post-processed by Kalman filter, was presented. The novel 
benchmarking method by optical encoders provided an 
accurate reference for the computed angle. The Kalman filter 
was used to compute the statistically optimal measure of a 
pedal angle, from two noisy measurements. Derivatives of 
angular displacement, from two separate sources 
(accelerometer and gyroscope), were fused to compute a more 
accurate estimate. In spite of the large acceleration amplitude 
during the cycling task, the computed accuracy was 
comparable to the reported values in the literature [17].  

While cycling at lower speeds resulted in a better accuracy, 
filter coefficients (Q, R) needed minimal tuning to provide 
similar accuracy at higher pedaling speeds. The transient 
convergence time of the Kalman filter, in the first 5 sec of the 
trial, is rooted in the filter adaptation process. This transient 
time can be significantly reduced by utilizing the priori 
knowledge from the previous trials. The positive range of 
angular displacement, as in Figure 4, is due to the subject 
extended leg posture on the bike. The effect of gyroscope offset 
was not significant in this application. This might be due to the 
short time period of the collected trials.  

The VRACK is a compact mechatronics system to measure 
biomechanical and physiological data during cycling exercise 
while immersing them in a virtual reality simulation. The 
system provides visual, auditory and haptic feedback to the 
subjects. The therapist can customize the exercise in real-time 
and quantitatively monitor the intervention during the ongoing 
exercise. The collection of kinetics with kinematic 
measurements can serve as a unique platform for the physical 
therapy of ankle injuries and asymmetries in lower extremities. 

In the future work, implementation of real-time Kalman 
filter will be considered into the practitioner interface. Due to 
the limited achievable accuracy in the IMU measurements, the 
application of encoders with a new pedal design will be 
reconsidered. This modification will also enable us to compute 
the crank angle. By considering the relatively fixed position of 
the individuals hip joint (and center of crank), anthropometric 
data can be collected to estimate the leg segment orientation on 
the pedal. Accordingly the fairly accurate ankle kinematics can 
be computed, due to this reform.  

The force transmission mechanism may also be replaced, 
with a lower friction structure, to improve the accuracy of force 
measurements during dynamic cycling task. The high fidelity 
of the ankle kinematics measures coupled with the kinetic 
variables will provide a biological variable, measure of 
stiffness, to aid in rehabilitation of ankle impairments and 
lower limb asymmetries. The system has to potential to deepen 
our understanding from human motor control of lower 
extremities and movement disorders.  

 
 

APPENDIX (KALMAN FILTER) 

In his seminal paper Kalman presented a state-based filter 
that has been used in IMU applications [29]. The discrete 
Kalman filter (DKF) uses a state-space recursive model that is 
updated based on two physical sensor readings, with dissimilar 
uncertainties. The early version of the Kalman filter was 
developed for the state (ݔ ∈ ܴ௡ ) estimation problem of the 
following stochastic linear system: 
 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅  ௞                        (6)ݓ
௞ݕ ൌ ௞ݔܥ ൅  ௞                              (7)ݒ

 
Where ݑ ∈ ܴ௣  is the input vector; ݕ ∈ ܴ௠  is measured 

output; ܣ௡ൈ௡ is the state matrix; ܤ௡ൈ௣ is the input matrix; ܥ௠ൈ௡ 
is the output matrix. 

 
Fig. 5.  The Kalman filter algorithm. 

The random variables ݓ,ݒ	represent the measurement and 
the process noise respectively. They are assumed to 
independent with white Gaussian distribution, with zero mean 
and constant covariance matrices R, Q.  

The overall objective is to find the optimal estimate ݔො௞ of 
the internal state vector ݔ௞. The error cost function is termed as: 
 

݁௞ ൌ ௞ݔ െ  ො௞                              (8)ݔ
௞ܲ ൌ ሾ݁௞݁௞ܧ

்ሿ                              (9) 
 
௞ܲ is the mean squared error to be minimized. Assuming the 

prior estimate of ݔො௞  is called ݔො௞
ᇱ , the update equation for the 

new estimate is given by:  
 

ො௞ݔ ൌ ො௞ݔ	
ᇱ ൅ ௞ݕ௞ሺܭ െ ො௞ݔܥ

ᇱ ሻ         (10) 
 
Where ܭ௞  is the Kalman gain; and the term in the right 

parentheses is called the innovation or measurement residual. 
By replacing Eq. 10 and Eq. 8 into Eq. 9 and looking for the 
minimum in the formulated quadratic function, the optimal 
Kalman gain is computed as:  

 
௞ܭ ൌ ௞ܲ

ᇱ்ܥሺܥ ௞ܲ
ᇱ்ܥ ൅ ܴሻିଵ         (11) 

௞ܲ ൌ ሺܫ െ ሻܥ௞ܭ ௞ܲ
ᇱ                 (12) 

 
Where ௞ܲ

ᇱ  is the prior estimate of ௞ܲ . Equation 12 is the 
update equation for the error covariance matrix with optimal 
gain. The last three Equations 10-12 can be used to project an 

Prediction

Correction

ା૚࢑ෝ࢞
ᇱ ൌ ࢑ෝ࢞࡭ ൅ ࢑࢛࡮ (9)
ା૚࢑ࡼ
ᇱ ൌ ࢀ࡭࢑ࡼ࡭ ൅ ࡽ (10)

Time Update 

࢑ࡷ ൌ ࢑ࡼ
ᇱ ࢑ࡼ࡯ሺࢀ࡯

ᇱ ࢀ࡯ ൅ ሻି૚(7)ࡾ
࢑ࡼ ൌ ሺࡵ െ ࢑ࡼሻ࡯࢑ࡷ

ᇱ (8)
࢑ෝ࢞ ൌ ࢑ෝ࢞	

ᇱ ൅ ࢑࢟ሺ࢑ࡷ െ ࢑ෝ࢞࡯
ᇱ ሻ (6)

Measurement Update 

initialize
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estimate of the priori state variable ݔො௞ାଵ
ᇱ  and the covariance 

matrix ௞ܲାଵ
ᇱ  as: 

ො௞ାଵݔ
ᇱ ൌ ො௞ݔܣ ൅  ௞                (13)ݑܤ

௞ܲାଵ
ᇱ ൌ ܣ ௞்ܲܣ ൅ ܳ              (14) 

 
The procedural algorithm of the Kalman filter is presented 

in Figure 5. The generic version of the DKF has five main 
equations, two in the time update or prediction (Eqs. 13-14) 
and three in the measurement update or correction (Eqs. 10-12).  

The ultimate goal of the filtering process is to find the best 
estimate of the internal state  ݔ௞. The mathematical model of 
the physical system, i.e. A, B, C matrices in Eqs. 6-7, are 
assumed to be known as the priori knowledge. Also the input 
and output vectors are physically measurable. At every time 
step, the next a priori state estimate is computed by using the 
preceding optimal state estimate and the known physical model. 
This step is called prediction as it offers the first guess for the 
internal state vector. In the correction step, the predicted priori 
state estimate will be revised by the physically measured output 
vector. 
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