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Abstract—This work presents an algorithm for collabora-
tive control of an assistive semi-autonomous wheelchair. Our
approach is based on a statistical machine learning technique
to learn task variability from demonstration examples. The
algorithm has been developed in the context of shared-control
powered wheelchairs that provide assistance to individuals with
impairments that affect their control in challenging driving
scenarios, like doorway navigation. We validate our algorithm
within a simulation environment, and find that with relatively
few demonstrations, our approach allows for safe traversal of
the doorway while maintaining a high level of user control.

I. INTRODUCTION

The powered wheelchair is an enabling, assistive technol-
ogy that has been used to improve the quality of life for indi-
viduals with severe disabilities through enhanced independent
mobility [1] [2] [3]. However, individuals with certain motor,
cognitive, and visual impairments are excluded from using
powered wheelchairs, thus restricting their independence and
quality of life [4].

One approach to this problem is to provide a ”smart”
wheelchair with a shared-control architecture. A common
control split has robot autonomy handle path planning and
the human user handle manual driving [5]. To maintain, or
improve, an individual’s quality of life, these systems aim to
provide the right amount of control to the user, in the sense
that the user is given as much control as they wish within the
constraints of keeping them safe.

To date, numerous powered wheelchair systems have been
developed to address some of the challenging situations that
arise when operating a powered wheelchair. One example of
a challenging scenario is the traversal of doorways. Intelligent
systems such as Navchair [6], SYSIASS [7] [8], and the
wheelchair system from Carlson and Demiris [5] implement
doorway traversal. Our motivation with blending user and
robot control is to provide assistance in this scenario, while
also allowing the user to retain a maximal but safe amount of
control over their mobility.

In this paper, we present an algorithm for blending user
and robot control based on learned task variability. We extract
this variance from a set of demonstrated executions of the task,
based on the insight that variance in the demonstration data
encodes allowable flexibility in the task execution (as noted
in Argall et al. [9]). A Gaussian Mixture Model-Gaussian
Mixture Regression formulation (GMM-GMR) [10] is used to
extract the variance from the demonstrations. The result is a

shared-control, assistive robot navigation framework. Of note
is that our algorithm uses demonstration only to learn task
variance for blending control—that is, only in order to decide
how much control authority to cede to the user—and not to
learn generalized motion trajectories or understand user intent.

The remainder of the paper is formatted as follows. Re-
lated work regarding automated wheelchair navigation systems
and shared-control is overviewed in Section II. The core
foundations of our blending approach are presented in detail
in Section III. Section IV describes our system setup and
simulation-specific details. Section V presents the experimental
results of our evaluation. The paper is concluded in Section VI
along with some directions for future work.

II. RELATED WORK

In this section, various algorithms for collaborative
wheelchair navigation are discussed, which mainly center
around user performance estimation, user intent prediction,
and trajectory learning based approaches for blending user and
autonomous control.

Carmona et al. [11] presents a collaborative wheelchair
navigation system using weighted blending by an efficiency
function in a reactive, emergent way. In order to calculate
the human contribution, they check the performance of the
user, based on task metrics, namely, smoothness, directness
and safety. The autonomous planner uses a pure Potential Field
Approach presented by Khatib et al. [12], where every obstacle
is modelled as a repulsive force and the goal as an attractive
force. The robot’s angular and translational speeds are the
composition (weighted sum) of the user and robot’s proposed
velocities. Qinan et al. [13] use a similar approach with
different performance indices, safety, comfort and obedience.

Another system that provides adaptive assistance through
the prediction of user intent is presented by Carlson and
Demiris [5]. In this work, a system is developed that evaluates
the performance and attention of the user to provide shared
control. They perform plan recognition using a multiple-
hypothesis method where the user’s known actions are rep-
resented by models. Comparing these models from multiple
user actions, the required states are predicted in parallel to
achieve the tasks. A confidence for each possible nearby task
is calculated and when the system is confident a particular task
is being undertaken, the system guides the wheelchair using
waypoints along safe mini-trajectories. A similar concept of
intent prediction is also seen in work of Urdiales et al. [14].
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A behavior-based shared control system is presented by
Philips et al. [15]. Here the system gives the user full control
and blends in autonomous control based on the appropriateness
of the assisting behavior. Appropriateness is calculated from
a probability distribution over candidate controls, estimated
from signals received from the user through a brain-computer
interface. Given the environmental information, each behavior
derives its appropriateness level. The shared control system
then applies a winner-takes-all approach to determine which
behavior it activates, where the assisting behavior with the
highest appropriateness level is activated.

A common design pattern for these shared-control systems
is to have a navigation planner that provides robot velocity
control commands and, using a weighted sum, blend user
commands with the planner’s commands. In our work, we
also use a navigation planner to provide autonomous control
and blend the user control. However, our blending approach is
novel, in that we augment user-based and task-based metrics
with learned task variance when computing the blending factor.

III. CONTROL BLENDING VIA LEARNED TASK VARIANCE

Our approach to blending user control with automated
control considers the allowed variability in the control
commands—as inferred from the variance seen between mul-
tiple demonstrations of the same task. Here the task vari-
ance encodes differences in execution speed seen during the
demonstrations, and the automated control is a local obstacle
avoidance navigation system (full details in Section IV-B).

Our system is focusing on a very specific task environment:
assisted doorway navigation. That is, we are trying to assist
the users in tight spaces and more importantly blend their
control during this assistive phase. Thus, detecting doorways
is the first step of our system design that enables and starts
the navigation system. Once a doorway is detected, we define
a goal state. This goal state is a point 1 meter inside the door,
pointing outwards from the door in the direction normal to the
doorway. This goal is sent to the robot path planner when the
user requests assistance via a button press on the joystick.

In Section III-A, we define our learning space. We then
present our blending technique in Section III-B. In Sec-
tion III-C, we briefly explain, the GMM-GMR technique.
Finally in Section III-D, we discuss the doorway detection
algorithm used.

A. Learning Space

Several probabilistic approaches in robotics are used to
generalize over a set of demonstrations [10], often learn-
ing means along with covariances and extracting generalized
trajectories. Our work is concerned only with the variance
encoded within such models. The specific formulation we will
use is a Gaussian Mixture Model (full details in Section III-C).
The input space for our Gaussian Model consists of sensor
features and translational speed. The output space is the
clockwise and counter-clockwise angular speed of the robot.

We define our dataset as a multivariate set of inputs and
outputs. Sensor features {dl, df , dr} are computed as follows.
The local obstacle avoidance navigation (i.e. the automated
controller) utilizes a local 2-D occupancy grid, which is a

(a) (b)

Fig. 1. Left: Regions defined for computing sensor features. Right: The
blending coefficient β is a function of learned covariance σ and 4ω, the
difference between user and planner angular speeds.

discretization of the ground plane into a grid and an occupancy
value within [0,1] representing the probability of an obstacle
within a given grid cell. We use this occupancy grid to
generate our sensor features. The space surrounding the robot
is divided into three regions defined by extending the distance
to the front, left and right boundaries of the robot, as seen
in Figure 1(a). A sensor feature is defined as the Euclidean
distance from the robot to the closest occupied grid cell in a
particular region.

The input variables of our dataset then are ξI =
{dl, df , dr, vx}, where vx is the robot’s translational speed.
We include the translational speed in our input space, because
we expect the range of observed angular speeds to narrow,
both in tight spaces and as the translational speed increases,
leading to a smaller learned variance. The task variance thus
is expected to also change as a function of translational speed,
so it is modelled in our input space.

The robot’s counter-clockwise angular speed ωl and clock-
wise angular speed ωr are the output variables ξO = {ωl, ωr}.
We model the two speed directions separately because we sus-
pect that the variance in counter/clockwise rotational speeds
does differ. For example, in a scenario when exiting a doorway
with obstacles to the right, but not to the left, we would expect
to see a large variance in observed ωl, and zero variance
in ωr (i.e. the demonstrations never turned right into walls,
so all ωr = 0). This would not be captured by a single
speed dimension however; instead, the large variance observed
from turning left during demonstration would apply equally to
angular speed, regardless of direction; effectively granting the
user the flexibility to turn right, towards obstacles.1

B. The Blending

We define β as the blending coefficient that will weight
the human and the planner’s commands when computing a
final angular speed. During the doorway navigation task, both
the user and the robot planner are issuing translational speed
and angular speed commands. The angular speeds need to be
blended in a manner that constrains the user input. This is
because in challenging situations, it is harder to control the
heading of the robot, so the speed might need to be restricted.

1An alternative is to infer whether the variance applies to the counter- or
clockwise directions by taking the sign of the mean, and presume the variance
on the other direction to be zero. There are however cases for which this would
over generalize (e.g. for ambiguous demonstrations).



1: Given Model Ω

2: while DoorwayNavigationExecuting do
3: (vtH , ω
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7: ∆ωt ← |ωtP − ωtH |

8: βt ← e
−|∆ωt|
σt

9: vtblend ←
vtP+vtH

2

10: ωtblend ← (1− β)ωtP + βωtH
11: end while

Fig. 2. Algorithm for blending user and automation inputs.

Our approach blends the angular speeds based on the amount
of allowable flexibility in angular speed in either direction.
Conversely, the translational speeds are directly blended by
averaging the user’s and the planner’s translational speed input.

Our proposed approach learns this variation in angular
speeds, from the variability observed during teacher demon-
strations of the task. This learned variance is then used to
calculate a coefficient that smoothly blends the user and
planner’s speed commands. Psuedocode for this approach is
presented in Figure 2.

In particular, we blend the user’s angular speed, ωtH , with
the planner’s angular speed, ωtP , according to

ωtblend = (1− βt)ωtP + βtωtH (1)

where the blending coefficient, βt, is calculated as

βt = exp(−∆ωt

σt
), ∆ωt = |ωtH − ωtP | (2)

The idea behind this blending coefficient formulation is the
following: As the variance σt → 0, all of the control should
increasingly go to the planner, since there is no allowable
flexibility in angular speed, and so βt → 0. As ∆ωt → 0,
the user’s speed commands are approaching planner’s, and
so βt → 1, giving the user the control. All other cases—
including, importantly, cases like ∆ωt 6= 0,∆ωt < σt which
allocate most control to the user—vary βt smoothly (Fig. 1(b)).

In short, the larger the ratio ∆ωt

σt , the less the user is able
to pull the angular speed away from the planner’s commanded
speed.

Lastly, while two dimensions of allowable variance (σl
and σr) are calculated from our learned model, only one is
used at a given timestep in the calculation of the blending
coefficient βt: the variance related to whichever speed di-
rection is commanded by the planner, since the planner is
also performing obstacle avoidance and its commands are
considered safe commands. Formally, the variance used in
Equation 2 is selected according to

σt =

{
σtr, ωtP < 0 or (ωtP = 0 & ωtH < 0)

σtl , ωtP > 0 or (ωtP = 0 & ωtH > 0)
(3)

C. GMM-GMR

As explained in Section III-A our dataset has 6 dimensions:
4 input variables (ξI ) and 2 output variables (ξO). We collect
our set of 6-D data points through human demonstration, where
the teacher/clinician drives the robot in different doorway
scenarios. The dataset is encoded in a Gaussian Mixture Model
(GMM) Ω with K Gaussian components (K is empirically
set to 3 in our system), where each component k ∈ [1..K]
has prior probability πk, mean µk, and covariance matrix
Σk. Gaussian Mixture Regression (GMR) then considers the
complete GMM when finding the expected probability of
output ξO, given component k and input ξI ,

P
(
ξO|ξI , k

)
∼ N (ξ̂k, Σ̂k) =

K∑
k=1

hkN (ξ̂k, Σ̂k) (4)

where ξ̂k is the expected mean and Σ̂k the expected covariance
matrix for component k,

ξ̂k = µOk + ΣOIk (ΣIk)−1(ξI − µIk)

Σ̂k = ΣOk + ΣOIk (ΣIk)−1ΣIOk
(5)

and hk = P(k|ξI) is the probability that the Gaussian
distribution k is responsible for ξI

hk =
P(k)P(ξI |k)∑K
l=1 P(l)P(ξI |l)

=
πkN (ξI ;µIk,Σ

I
k)∑K

l=1 πlN (ξI ;µIl ,Σ
I
l )

(6)

The conditional expectation of ξO given ξI can then be
approximated with a single gaussian distribution N (ξ̂, Σ̂),

ξ̂ =

K∑
k=1

hk ξ̂k, Σ̂ =

K∑
k=1

h2
kΣ̂k (7)

We then obtain the variance [σl, σr] for our output di-
mensions ωl, ωr by taking the square root of the associated
diagonal elements from the covariance matrix Σ̂.

D. Doorway Detection

We use the doorway detection algorithm presented by
Derry et al. [16]. The algorithm uses 3D point cloud data
generated by an RGB-D sensor to detect doorways. A 3D point
cloud is a set of vertices in the three dimensional space, that
stores depth information with respect to the camera frame. The
algorithm uses only this depth data, thus making it robust to
changes in illumination and lighting. The algorithm scans for
walls in a scene; and for each wall in the scene, the wall is
scanned for gaps within the range of door width. Once a gap
is found, a count of points in the original point cloud is made,
using the door height, ground plane, gap position, and wall
location as boundaries. Open doorways are detected if this
count is below a small threshold (to compensate for sensor
noise). For each doorway detected, a position and orientation
is calculated. We use this position and orientation to set the
goal for the planner.
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Fig. 3. Actual (a) and simulated (b) wheelchair robots. Simulated IR and
Kinect sensor data (c) and validation doorway scenarios (d).

IV. SYSTEM IMPLEMENTATION

In this section, we discuss our simulated experimental
environment. We use a simulated approximation to our actual
robot, Figure 3(a), that is built on a powered wheelchair base
and outfitted with a ring of IR distance sensors and a Microsoft
Kinect. The simulated model operates as a differential drive
robot and simulates a front facing Microsoft Kinect Sensor, 6
outward facing IR distance sensors, 3 IR sensors on each of
the left and right sides of the robot (Fig. 3(b)).

In order to validate our proposed approach, simulation is
an important first step, before testing on real hardware and
a target population that includes users with impairments. We
use the Gazebo Simulator integrated with the Robot Operating
System (ROS) to provide demonstrations, simulate, and test
our algorithm. An instance of the environment is seen in
Figure 3(c), where simulated sensor data is visible.

Our shared-control approach depends on an autonomous
path planner to locally plan paths based on current sensor read-
ings. We use the ROS move base package, that implements
local planning and navigation without the need of a global
map. For the task of doorway navigation, we demonstrate
a range of angular speeds in a variety of different doorway
configurations, such that an estimate of the associated task
variance (i.e. allowable flexibility in angular speed) can be
learned.

Section IV-A presents the joystick controller for user input,
and Section IV-B discusses the path planner. In Section IV-C
we discuss our GMM learning.

A. User Control

The user drives the wheelchair model in the simulation
using a Sony Playstation 3 (PS3) controller. The same interface
is used when the teacher teleoperates the robot to provide
demonstrations. The PS3 controller is a wireless bluetooth
controller with 10-bit analog joysticks. We use the left analog
joystick to control the wheelchair. We use the X button as an
indicator for assistive mode, the pressing of which starts the

autonomous navigation system, triggering the user and planner
control blending, as discussed in Section III-B.

B. Local Path Planning

Our system targets indoor wheelchair navigation, but we do
not require a global map for navigation assistance. Instead, we
use the ROS move base package which implements obstacle
avoidance and local path planning using a rolling window local
costmap. The costmap is a mapping of an occupancy grid to
costs. These costs are directly related to the proximity of a cell
to an obstacle. The costmap also inflates costs near obstacles
to accommodate a margin of safety when the robot navigates
close to an obstacle. The occupancy grid, from which the
costmap is calculated, is generated from the Kinect sensor and
the IR distance sensors which observe the local environment
around the robot. In our system, navigation is used only to
avoid obstacles and reach a defined goal as part of the doorway
traversal assistance.

We assume that the user sends a binary flag (e.g. button
press) asking for assistance. Once this indication is received,
the doorway detection node scans the scene to autonomously
detect the doorway location and orientation, and provides the
desired goal to the safe path planner. The path planner then
plans a path and starts issuing velocity commands to the robot
base to reach the desired goal.

C. Learning the GMM

In order to capture task variability within the Gaussian
Model, we need to first observe variations in angular speeds
from a set of demonstrations. Our demonstrations are done in
a simulated environment in different doorway scenarios where
the robot approaches, enters and exits a doorway starting with
several initial poses and reaching different final exit poses.
There are four different scenarios: open doorway, left wall
after doorway, right wall after doorway, and hallway, as seen
in Figure 3(d).

During demonstration, the wheelchair platform is teleop-
erated by issuing user commands, received from the PS3
controller, to the robot base. The demonstrations are given
at both moderate and slow translational speeds. At slower
translational speeds, a broad range of angular speeds are
possible. As translational speeds increase, this range narrows.

The task variance is learned offline2 and the model is then
used online to get the joint probability of the output given
the input. As mentioned in Section III-C we model our GMM
with 6 dimensions, 4 input variables and 2 output variables.
We use 3 gaussian components to model our data. Empirically,
σt of Equation 2 is set to 3σ, based on preferred performance
({σ, 2σ, 3σ} were tested).

V. RESULTS

Initial empirical validation has shown our approach to
perform well, granting the user a large amount of control
when possible (Sec. V-A). Moreover, the allowable flexibility
in angular speed was learned from a relatively small number

2We thank Sylvain Calinon for the use of his GMM Matlab code, available
at http://www.mathworks.us



Fig. 4. Examples of learned variance. The value of the angular speed variance is directly proportional to the width of the blue triangle, which is centred on
the user-commanded velocity vector (blue arrow). Narrower triangles mean angular speed is more restricted. The gray grid cells depict the obstacle costmap.

of demonstrations (6 per door configuration, assembled into a
single dataset). This suggests that data will be very reasonable
to collect on a real robot system, which is important for future
transfer to general (i.e. non-laboratory) domains.

A. Performance

A sampling of example scenarios, and their associated
variances extracted from the Gaussian model, are shown in
Figure 4. Figure 5 shows three snapshots, in a single image,
of the system being stress tested as the wheelchair is being
assisted in a scenario where the doorway exits into a room
with a wall on the right side.

From the graphs it can be seen that the user commands
a hard left and right angular speed (i.e. stress tests). In both
cases, throughout the execution, a certain amount of the user’s
commanded speed is included in the blended command. This
can be seen prominently in the shaded regions of (a) and (b)
(light gray depicts the user’s commanded speed and dark gray
the user’s executed speed). In the final case (c), where the robot
exits the door, the user commands a hard right towards a wall.
Here, much less user control is executed (see dark/light gray
shaded area after time t = 5), thus ensuring the wheelchair
does not get too close to the wall.

We ran equivalent tests on all four types of doorways shown
in Figure 3(d), with similar performance results. In particular,
the user was never given so much control that a collision
occurred, but was given more control than a comparative
distance-based blending approach, discussed next.

B. Comparison with Distance-Based Blending

We compared our approach against a distance-based blend-
ing approach that takes as input the obstacle features and the
translational speed to calculate β directly. This β formulation,
βDIST , is inversely proportional to the obstacle distance and
translational speed.3

In Figure 5, the green line shows the blended control
given by the distance based blending approach. One notable
difference is during the doorway exit (c), when our approach
allocates more control to the user control than the distance-
based approach. Furthermore, the allocation made by our
approach is quite responsive: when a hard right user command

3Specifically, replacing σt of Equation 2 with the distance to the nearest
obstacle multiplied by the normalized (by the maximum possible) translational
speed.

is issued toward a wall, the control immediately swings back
to the planner as the user comes very close to the wall.

This highlights a strength of our approach, in that addi-
tional flexibility can be provided with appropriate demonstra-
tions. By contrast, the distance based approach proved too
rigid to allow for close obstacle navigation in some instances,
yet more cautious obstacle navigation in others. In fact, our
experience showed that tuning the distance-based blending
proved to be rather difficult, as it generally either allowed the
user to drive dangerously close to obstacles, or restricted too
much control.

Another notable difference is during the doorway approach
(a), when the wheelchair is far from any obstacles. In this
case more control is allocated to the user by the distance-
based method. This points to a limitation of our approach, and
demonstration-based algorithms in general: the dependence
on the contents of the dataset. Our demonstrations focused
on showing variability in the exit conditions, and did not
show the full range of controls appropriate for the open space
before reaching the door—and accordingly had a smaller (than
necessary) associated variance in that part of the state space.
We note that this is a limitation easily surmounted by providing
more demonstrations—that appropriately show the range4 of
desired controls—while acknowledging that such a solution
will not scale well with large state spaces.

VI. CONCLUSION

This paper has presented a new approach to shared control
for collaborative wheelchair navigation. The key idea is to
learn task variance from demonstrations and extract allowable
user command constraints from the variance. This variance is
used to blend user and robot control in challenging navigation
scenarios, like doorway navigation. First results in a simulation
domain are promising and show good performance. Future
work will transfer this approach to our real robot platform,
and perform more extensive user studies.
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