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Abstract—This paper presents an adaptive control approach 

for robotic movement therapy that learns a state-dependent 

model of patient impairment. Unlike previous work, this 

approach uses an unstructured inertial model that depends on 

both the position and direction of the desired motion in the 

robot’s workspace. This method learns a patient impairment 

model that accounts for movement specific disability in neuro-

muscular output (such as flexion vs. extension and slow vs. 

dynamic tasks). Combined with assist-as-needed force decay, this 

approach may promote further patient engagement and 

participation. Using the robotic therapy device, FINGER (Finger 

Individuating Grasp Exercise Robot), several experiments are 

presented to demonstrate the ability of the adaptive control to 

learn state-dependent abilities. 

Keywords—adaptive control, assist-as-needed, rehabilitation 

robotics, movement therapy 

I. INTRODUCTION 

The use of robotic devices for post-stroke movement 
therapy continues to be an important and growing research 
area. Rehabilitation robots have previously demonstrated the 
ability to administer therapy in a consistent and prescribed 
manner, with therapeutic efficacy equal to or marginally 
exceeding conventional therapy (for reviews see [1],[2]). 
However, exactly how these devices should interact with 
patients during movement therapy remains an open and active 
research area. The goal is to create protocols and algorithms by 
which robotic therapy may maximize the functional recovery 
experienced by a patient.  

Previous works suggest that too much assistance may limit 
or reverse the effects of therapy. For example, [3], [4] 
demonstrated that patients will reduce their effort when given 
the opportunity to do so without drastically affecting the 
desired motion. That is, if the robot is able to “take over” the 
movement, patients are willing to allow it to do so. And 
because patient effort is known to promote motor-plasticity 
during therapy [5], [6], it is important for robotic devices to 
only assist as much as necessary for a prescribed therapy 
motion. 

To promote patient effort and engagement, assist-as-needed 

control strategies aim to restrain the power of a rehabilitation 
robot in a way that maximizes patient effort while 
simultaneously completing therapy movements. As noted in 
[7], a wide-variety of implementation approaches for assist-as-
needed control have been investigated, including both static 
(examples include [8]-[11]) and adaptive (examples include 
[4], [12], [13]). Unlike static approaches, adaptive strategies 
change control parameters during and/or between movement 
therapies in order to modulate assistance based on the patient’s 
ability. 

In previous work by the authors [4], the adaptive assist-as-
needed approach was implemented using passivity-based 
adaptive control [14]. This implementation included an 
unstructured adaptive model of patient abilities and a force 
decay term that limited the robotic assistance needed to 
complete the prescribed movements. The resulting controller 
demonstrated the ability to modulate patient effort while 
keeping tracking errors small. 

The need for an unstructured model stems from the nature 
of disability after stroke; each person who has suffered a stroke 
has unique neuro-muscular impairment. Because passivity-
based adaptive control assumes that the system parameters are 
constants and correlated directly to the geometry and 
kinematics of the robot, [4] implemented an unstructured 
model using radial basis functions to adapt to patient’s neuro-
muscular abilities. This use of radial basis functions allows the 
controller to create a model of each individual patient’s 
impairment as a function of position. While other unstructured 
modeling approaches are possible, radial basis functions are 
linear in term of their magnitudes, and may thus be 
incorporated into the passivity-based adaptive control structure.   

The work presented in [4] included two significant 
shortcomings. First, the adaptive model only represented 
patient force output and excluded inertial and viscous forces 
and is thus unable to properly assist with dynamic movements 
requiring higher velocities and specific timing. Increasing the 
rate of adaptation can improve the dynamic response, but at the 
expense of decreasing the compliance of the robot. This 
problem is noted in [15], which also presents a potential 
solution based on separate models for each target motion. 

The second noted problem with the approach in [4] is that 
the unstructured model assumed patient ability was only a 
function of position and not a function of velocity or 
movement direction. In fact, the ability to model patient 
impairment by movement direction may be significant for 
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rehabilitation. In the hand, for example, it has been shown that 
stroke survivors with hand impairment often have unequal 
impairment in metacarpophalangeal (MCP) joint movement. 
Often patients exhibit a deficiency in extension that is 
significantly greater than in flexion [16]-[19]. This 
phenomenon appears to be caused by an inherent weakness in 
extension activation signal [17] or inappropriate muscle co-
activation [16] rather than passive mechanisms such as 
stiffness and spasticity. Thus, it is important to model 
directional impairment for providing movement assistance to 
stroke survivors. 

In this paper we present an unstructured model for 

adaptively learning patient abilities that includes both inertial 

terms and state dependence (position and direction). By 

modeling patient impairment with better state-dependent 

resolution, the robot will be able to further minimize assistance 

to the minimal amount needed. In the following section, we 

describe the control algorithm and its implementation on a 

robotic device developed for finger rehabilitation. We then 

present experimental results that demonstrate the ability of the 

presented approach to learn a direction specific inertial model 

in order to assist with dynamic movements with unbalanced, 

directionally dependent force disturbances. 

II. METHODS 

A. Robotic Therapy Device 

The robotic therapy device, FINGER (Finger Individuating 
Grasp Exercise Robot) was used for experimental validation of 
the presented adaptive control approach. FINGER consists of 
two stacked, planar 8-bar mechanisms each with a single 
degree-of-freedom (DOF) [18,19]. FINGER is capable of 
guiding the index and middle fingers individually through a 
naturalistic grasping motion that was based on motion capture 
of unimpaired subjects. Range of motion is limited with hard 
stops and the grasping mechanisms incorporate several easily 
adjustable components to accommodate physical differences 
between patients. 

Several characteristics of FINGER make it an excellent test 
platform for the control strategies outlined in this paper. First, 
the combination of low-friction bearings, precision machining, 
lightweight components, and high speed linear actuators 
produce a high bandwidth (about 8Hz at -3dB) of direct force 
control. Furthermore, because the linear actuators lack any 
gearing or other high-friction components, FINGER is highly 
back-drivable.  

B. Passivity Based Adaptive Control 

One successful model-based adaptive controls system was 
implemented by [4] and expanded by [15]. This approach 
follows  [14], which defines the adaptive control as 
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where 
rF  is the assistive force applied by the robot, x  is an 

1n vector of generalized coordinates of the robot (subscript 

d denotes desired), Y  is an n m  matrix of functions of 

known parameters and system dynamics  , , , , ,d d dx x x x x â  is 

an 1m  estimate of system parameters ,a and
PK  and 

DK are 

symmetric, positive-definite gain matrices. In (1), the terms 

PK x and DK x  are the proportional and derivative feedback 

portions of the control and ˆYa is a model of system dynamics.  

In this application, ˆYa  is used to model state-dependent neuro-

muscular impairment. The regressor matrix, Y is a sparsely 
populated, quasi-diagonal matrix with the form of 
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and g is a 1p  vector ( m np ) of radial basis functions 

(RBFs) that spans the workspace of the robot with elements 
defined by 
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where the center of the
thn  radial basis function is .

n
μ  The 

standard deviation, ,  specifies the width of the RBFs and 

may be selected to allow proper overlap. Adaptation of the 

amplitudes of the RBFs is achieved by 
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where   is the decay time constant and Γ is a diagonal, 

positive-definite gain matrix. The first term governs the 
“assistance-as-needed”; it exponentially decays the weights in 
order to address the tendency of patients to allow a stiff 
controller to take over [4]. The second term in (4) updates the 
parameter estimates according to the error defined by the 
sliding surface, ,s which is defined as 

 , s x Λx   (5) 

where Λ is a diagonal constant gain matrix that specifies the 
ratio of position error to velocity error. The adaptive controller 
described above was modified in [15] by splitting up the 
desired trajectory into multiple segments and utilizing a 

separate â vector for each, thus reducing the need for fast 

adaptation which increases controller stiffness. The adaptive 
control approach presented in this paper also improves 
controller compliance, but unlike [14], it does so with a 
continuous workspace model of patient impairment, that is 
state-dependent. This impairment model represents the 
inability of a patient to generate forces during movement as a 
function of both movement position and direction. 

C. Inertial Adaptive Control Model 

 In [4] the regressor matrix Y does not include viscous or 
inertial components. This limits complexity, but it also restricts 
the types of dynamic movements that can be effectively 
assisted. The following describes the implementation of the 
inertial and viscous components. Since physical validation will 
be completed on FINGER, the model can be reduced to a 
single DOF. This is for experimental validation and is not a 
limitation of the approach, which can be expanded for multi- 
DOF robotic devices. For the single DOF robotic device 
FINGER, we define an impairment model according to  

  1 ,ng w g w x xY   (6) 



where 
1 ng 

 are n  RBFs distributed from full extension to full 

flexion of the finger, and .dw x x   By using radial basis 

functions, the system mass is not required to be constant across 
the range of motion, and more closely match the inertial ability 
(as mass) of the patient as a function of position. The 
corresponding system parameter vector is 

 1 γ γ
ˆ b k ,

T
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where 
1 n 

 are the amplitudes of the respective radial basis 

functions and k  and b are adapted stiffness and damping, 

respectively. 

D. State-Dependent Adaptive Control 

 Many stroke survivors exhibit significant weakness in one 
direction (typically extension) over the other [16]-[19]. Due to 
this phenomenon, (6) is modified to account for possible 
variation in patient impairment between flexion and extension. 
To achieve this, a separate parameter vector is used for flexion 
and extension, such that (6) becomes 
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where 
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T
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The system parameter vector was expanded from (7) to   

 
1 α α 1 β β

ˆ b k b k
T

n n      a   (10) 

where n  represents the amplitude of the 
thn  radial basis 

function in flexion and n  represents the corresponding 

amplitude in extension. Combining the amplitudes with the 
RBFs creates distribution models of the effective “mass” in 
flexion and extension that describes the inability of the subject 
to create forces necessary to accelerate their fingers according 
to a desired trajectory. These “mass” distribution models are a 
function of position and defined for a single mass distribution 

model, m, a flexion specific model, ,Fm and an extension 

specific model,  ,Em according to: 
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 The hyperbolic tangent functions included in (8) activate 
either the first or second set of radial basis functions based on 
the direction of the desired velocity.  They also remove the 
discontinuity that occurs as the desired velocity crosses zero. 
Thus, in the small region around zero (approximately ±.02 m/s) 
both the flexion and extension sets of parameters will be 
proportionally updated and will both influence output. This 
method could be expanded to a spatial robot by using two sets 
of radial basis functions for each Euclidean direction.  

E. Experimental Protocol 

Four experiments were conducted to validate the presented 

adaptive controller. For each experiment, four unimpaired 

subjects, securely connected to FINGER (see Fig. 1), were 

guided by a simple visual interface that displayed two markers 

on a radial path (see Fig. 2). One marker corresponded to the 

position of the user’s finger and the other marker represented 

the desired location. The participants were instructed to follow 

the desired marker which followed a minimum jerk trajectory 

between two points pseudo-randomly distributed between the 

bounds of FINGER’s functional workspace. This point-to-

point trajectory operated at 1.5 Hz, regardless of movement 

size. Each of the three experiments was repeated with 

adaptation based on a direction specific (using the model 

defined by (8), (9), and (10)) and a single mass distribution 

(using the model defined by (6) and (7)) model.  

These four experiments were designed to investigate the ability 
of the proposed approach to adapt to directionally dependent 
patient impairment. In order to simulate impairment, 
directional viscous force fields were superimposed with the 
robot.  

 
Fig. 2. The visual interface during experiments. The blue marker shows the 

desired angle/position and the yellow marker shows the actual angle/position.  

In the first experiment, only the inertia and friction of the 
device (both relatively low) impeded the performance of the 
participants. For the second procedure, the desired trajectory 
and visual feedback were unchanged. However, a significant 
viscous field was superimposed in the flexion direction. The 
experiment was then repeated with the viscous field 
superimposed in the extension direction. This impeded the 
ability of the subject to perform the flexion or extension task. 

Fig. 1. Finger INdividuating Grasp Exercise Robot (FINGER) viewed from 

the top. FINGER can individually guide the index and pointer fingers through 

a naturalistic grasping motion. 



The third experiment follows the same procedure as the 

second with the inclusion of the forgetting term with a force 

decay rate of 1  . The fourth experiment followed the same 

procedure as the second, except that the artificial viscous field 

was removed suddenly after 40 seconds. All four experiments 

are summarized in Table I. 

During testing the controller gains and adaptation 

parameters were set to 1.15,PK   0.575,DK   0.02,  and 

0.5.   Furthermore, 15n   RBFs were evenly distributed 

with 
20.007 m .   The magnitude of the superimposed 

viscous field was 1 N s

m
C  in all pertinent experiments.  

Table I. Summary of the experiments. 

Test Task Controller   Force Field 

1 

Min. jerk 

tracking 

at 1.5 Hz 

Both with and 

without direction 

specific adaptation. 

  None 

2 
Min. jerk 
tracking 

at 1.5 Hz 

Both with and 
without direction 

specific adaptation. 

  
Viscous field applied opposing 

either flexion or extension. 

3 
Min. jerk 
tracking 

at 1.5 Hz 

Both with and 
without direction 

specific adaptation. 

1 
Viscous field applied opposing 

either flexion or extension. 

4 

Min. jerk 

tracking 
at 1.5 Hz 

Both with and 

without direction 
specific adaptation. 

  
Viscous field applied opposing 

flexion or extension for the first 
40 seconds. 

III. RESULTS 

The results from the first experiment shown in Fig. 3 

illustrate how RBF coefficients adapt with the either the 

direction specific or a single mass distribution models. The 

figure shows the four subject average of the converged mass 

models for both flexion, ,Fm  and extension, ,Em using the 

direction specific model for adaptation. It also shows the 

converged mass model, ,m  when adaptation was based on a 

single mass distribution. In all cases, adaptation is limited near 

both ends of the workspace (full flexion and full extension) 

because the desired trajectories lack significant velocity and 

acceleration in those regions (and thus mass adaptation is 

limited). 

With careful inspection of Fig. 3, it is clear that when 

direction specific adaptation is present, the mass model for 

flexion has greater amplitude near full extension ( 0x m ). 

Conversely, the mass model for extension has greater 

amplitude near full flexion ( 0.114x m ). A possible 

explanation for this phenomenon is that larger motions require 

higher accelerations which cause faster adaptation, as evident 

in (6), and larger flexion motions must start near full 

extension. Thus, the largest adaptation for the flexion model 

appears near full extension. The same argument is valid for 

extension motions and the extension mass model. However, 

adaptation with a single mass distribution does not take 

advantage of this propensity and all weights increase/decrease 

regardless of the direction of motion.   

In the second experiment, a viscous force field was 

superimposed on the subjects separately during either flexion 

or extension. Fig. 4 is analogous to Fig. 3 and shows the mass 

distribution using the direction specific and single mass 

distribution models with the viscous field applied in flexion. 

Because the force field was applied in only one direction, the 

results show a clear difference in the direction specific 

modeling versus the single mass distribution. 

 

 
Fig. 3. Estimated average mass distribution of four subjects from the first 

experiment. The blue and green markers are the mass distribution in the 

direction specific model and red is the single mass distribution. 

 

 
Fig. 4. Estimated average mass distribution of four subjects with a viscous 
field applied in flexion from the second experiment. The blue and green 

markers are the mass distribution in the direction specific model and red is the 

single mass distribution. 

 

Fig. 5 shows the position error of a subject under the two 

adaptive control schemes. Position errors are slightly smaller 

when the direction specific adaptive control is used. Since the 

viscous field was applied in flexion, the position error doesn’t 

have a zero mean; the subjects have to overcome the force 

field and are behind the desired trajectory. This causes the 

error to be biased toward positive numbers.  The results from 

extension were similar.  



 
Fig. 5. Position error using the two adaptive control schemes from the second 
experiment for one patient. 

 

Fig. 6 demonstrates how the adaptation gains evolve 

throughout a typical trial when the viscous field was applied to 

subject in the flexion direction. The two adaptive controller 

schemes were used to assist the subject to follow the same 

desired trajectory. Fig. 6 (a) shows the instantaneous mean of 

the mass parameters, 
M , 

M and M , versus time. It is 

observed that, as suggested by Fig. 4, in the direction specific 

controller, the average mass parameters are smaller than the 

ones in the controller with single mass distribution. Since 

there is no apparent stiffness in the system, one could predict a 

zero estimated stiffness. However, this is not the case when 

the single mass distribution adaptation is used. In contrast, the 

direction specific adaptation settles to the predicted zero 

stiffness as shown in Fig. 6 (b). 

Fig. 6 (c) shows how the two damping parameters are 

independently adapted in the direction specific adaptation. The 

parameter along the direction that the force field was applied 

(flexion) continues to adapt while the coefficient associated 

with extension goes to zero.  

In the third experiment, the procedure from the second 

experiment was repeated with the forgetting portion of the 

control included ( 1  ). Fig. 7 shows the parameter 

adaptation of a trial with a viscous field applied in extension. 

In the final experiment, the direction specific adaption and 

a directional force field was applied separately in both 

directions. However, the force field was removed after forty 

seconds. As a result, the damping coefficient estimate 

corresponding to the direction that the force field was applied 

increased until forty seconds and then suddenly went to zero 

as force field turned off as predicted by the model. This is 

shown in Fig. 8 for a case where the viscous field was applied 

in flexion. 

 
Fig. 6. Parameter adaptation for the second experiment with a viscous field 

applied in flexion. The solid lines are the directional specific adaptation and 

the dashed lines are the directional independent adaptation. 

  
Fig. 7. Parameter adaptation for the third experiment with 1   and a viscous 

field applied in extension. The solid lines are the direction specific model and 
the dashed lines are the single mass distribution.  



  

 
Fig. 8. Direction specific model parameter adaptation for the fourth 

experiment with a viscous field applied in flexion for the first 40 seconds. The 
solid lines are the damping coefficients and the dashed lines are the stiffness 

coefficients. 

IV. DISCUSSION AND CONCLUSIONS 

This paper describes an adaptive control algorithm for 

robotic assisted movement therapy that includes direction 

specific mass distributions for modeling neuro-muscular 

impairment. Previous work in impairment modeling lacks 

inertial terms or directional dependence which limits its ability 

to effectively assist with dynamic motions and direction 

specific impairment. By including direction specific mass 

distributions modeled with RBFs the proposed adaptive 

controller can tailor its assistance to individual patients. 

Combined with the assistance-as-needed force decay, this 

approach decreases control effort, which is important to 

promote participation and effort from the patient.  

The direction specific model was compared with the single 

mass distribution, performing with less error. Furthermore, in 

the presence of a superimposed asymmetric force field, the 

single mass distribution increased stiffness due to its inability 

to learn the direction specific behavior. However, with the 

proposed controller, which includes a direction specific 

model, the adapted stiffness did not exhibit this increase.  

Future efforts will focus on implementing the adaptive 

control approach on a multiple DOF system.  In addition, an 

expansion of the RBFs to consider the full state space 

(variable velocity rather than movement direction only) will 

also be implemented. Future experiments are also planned 

with impaired and unimpaired subjects to better understand 

how to model neuro-muscular impairment after stroke. Final 

validation will include therapeutic evaluation of the proposed 

approach with impaired subjects. 

REFERENCES 

[1] G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of Robot-Assisted 

Therapy on Upper Limb Recovery After Stroke: A Systematic Review,” 

Neurorehabil Neural Repair, vol. 22, no. 2, pp. 111–121, Mar. 2008. 
[2] G. B. Prange, M. J. A. Jannink, C. G. M. Groothuis-Oudshoorn, H. J. 

Hermens, and M. J. IJzerman, “Systematic review of the effect of robot-

aided therapy on recovery of the hemiparetic arm after stroke,” The 
Journal of Rehabilitation Research and Development, vol. 43, no. 2, p. 

171, 2006. 

[3] J. F. Israel, D. D. Campbell, J. H. Kahn, and T. G. Hornby, “Metabolic 

Costs and Muscle Activity Patterns During Robotic- and Therapist-
Assisted Treadmill Walking in Individuals With Incomplete Spinal 

Cord Injury,” PHYS THER, vol. 86, no. 11, pp. 1466–1478, Nov. 2006. 

[4] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow, 
“Optimizing Compliant, Model-Based Robotic Assistance to Promote 

Neurorehabilitation,” IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 16, no. 3, pp. 286 –297, Jun. 2008. 
[5] M. Lotze, C. Braun, N. Birbaumer, S. Anders, and L. G. Cohen, “Motor 

learning elicited by voluntary drive,” Brain, vol. 126, no. 4, pp. 866–

872, Apr. 2003. 
[6] A. Kaelin-Lang, L. Sawaki, and L. G. Cohen, “Role of Voluntary Drive 

in Encoding an Elementary Motor Memory,” J Neurophysiol, vol. 93, 

no. 2, pp. 1099–1103, Feb. 2005. 
[7] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control 

strategies for robotic movement training after neurologic injury,” 

Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 1, p. 20, 
Jun. 2009. 

[8] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided 

neurorehabilitation,” IEEE Transactions on Rehabilitation Engineering, 
vol. 6, no. 1, pp. 75 –87, Mar. 1998. 

[9] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der 

Loos, “Robot-assisted movement training compared with conventional 
therapy techniques for the rehabilitation of upper-limb motor function 

after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 83, 

no. 7, pp. 952–959, Jul. 2002. 
[10] T. Nef, M. Mihelj, and R. Riener, “ARMin: a robot for patient-

cooperative arm therapy,” Med Bio Eng Comput, vol. 45, no. 9, pp. 
887–900, Sep. 2007. 

[11] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Liang, J. W. Burdick, R. R. Roy, 

and V. R. Edgerton, “Implications of Assist-As-Needed Robotic Step 
Training after a Complete Spinal Cord Injury on Intrinsic Strategies of 

Motor Learning,” J. Neurosci., vol. 26, no. 41, pp. 10564–10568, Oct. 

2006. 
[12] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, 

and V. Dietz, “Patient-cooperative strategies for robot-aided treadmill 

training: first experimental results,” IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 380 –394, 

Sep. 2005. 

[13] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. 
Rannekleiv, B. T. Volpe, and N. Hogan, “Rehabilitation Robotics: 

Performance-Based Progressive Robot-Assisted Therapy,” Autonomous 

Robots, vol. 15, no. 1, pp. 7–20, Jul. 2003. 
[14] J. Slotine, Applied nonlinear control. NJ: Prentive Hall, 1991. 

[15] G. Rosati, J. E. Bobrow, and D. J. Reinkensmeyer, “Compliant control 

of post-stroke rehabilitation robots: using movement-specific models to 
improve controller performance,” in Proceedings of the ASME 

International Mechanical Engineering Congress & Exposition IMECE 

2008, Boston, MA, USA, 2008. 
[16] D. g. Kamper and W. z. Rymer, “Impairment of voluntary control of 

finger motion following stroke: Role of inappropriate muscle 

coactivation,” Muscle & Nerve, vol. 24, no. 5, pp. 673–681, 2001. 
[17] D. G. Kamper, H. C. Fischer, E. G. Cruz, and W. Z. Rymer, “Weakness 

Is the Primary Contributor to Finger Impairment in Chronic Stroke,” 

Archives of Physical Medicine and Rehabilitation, vol. 87, no. 9, pp. 
1262–1269, Sep. 2006. 

[18] M. O. Conrad and D. G. Kamper, “Isokinetic strength and power 

deficits in the hand following stroke,” Clinical Neurophysiology, vol. 
123, no. 6, pp. 1200–1206, Jun. 2012. 

[19] D. g. Kamper, R. l. Harvey, S. Suresh, and W. z. Rymer, “Relative 

contributions of neural mechanisms versus muscle mechanics in 
promoting finger extension deficits following stroke,” Muscle & Nerve, 

vol. 28, no. 3, pp. 309–318, 2003. 

[20] H. Taheri, J. Rowe, D. Gardner, V. Chan, K. Grey, C. Bower, D. J. 
Reinekensmeyer, and E. T. Wolbrecht, “Design and Preliminary 

Evaluation of the FINGER Rehabilitation Robot: Controlling Challenge 

and Quantifying Finger Individuation during Guitar Hero Game Play.” 
[21] E. T. Wolbrecht, D. J. Reinkensmeyer, and A. Perez-Gracia, “Single 

degree-of-freedom exoskeleton mechanism design for finger 
rehabilitation,” in 2011 IEEE International Conference on 
Rehabilitation Robotics (ICORR), 2011, pp. 1 –6. 




