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Abstract— In this contribution, inertial and magnetic sensors
are considered for real-time strapdown orientation tracking of
human limb or robotic segment orientation. By using body sen-
sor network integrated triaxial gyrometer, accelerometer, and
magnetometer measurements, two orientation estimation filters
are presented and subsequently designed for bias insensitive
tracking of human gait. Both filters use quaternions for rotation
representation, where preprocessing accelerometer and magne-
tometer data is conducted with the quaternion based estimation
algorithm (QUEST) as a reference filter input. This results
in a significant reduction of the complexity and calculation
cost on the body sensor network. QUEST-based preprocessed
attitude data is used for the designed extended Kalman filter
(EKF) and a new complementary sliding mode observer. EKF-
QUEST and complementary sliding mode observer are designed
and tested in simulations and subsequently validated with a
reference motion tracking system in treadmill tests.

I. INTRODUCTION

Most recently, the results of the National Science Foun-
dation - World Technology Evaluation Center (NSF-WTEC)
European study emphasise the fundamental need for wear-
able miniaturised systems that enable the monitoring of for
example motor activity in order to automate and quantify
home rehabilitation [1]. The use of a wireless body sensor
network enables scalable and easy wearable sensor systems
and therefore is a key solution with possible application
to different scenarios. Besides personal home care use,
a rehabilitation robotics scenario is one of the promis-
ing areas to apply wireless body sensor networks, intro-
ducing inertial/magnetic sensor technologies. Miniaturised
inertial/magnetic sensors are a relatively new technology,
based on micro-electro-mechanical systems (MEMS). These
sensors can be used to provide a low-cost, low-energy
solution to orientation determination, while at the same time
guaranteeing good quality of estimation. Inertial/magnetic
sensors were successfully applied to attitude determination
problems in a range of areas, with applications in motion
capture, rehabilitation, and biomedical engineering. Consid-
ering rehabilitation engineering, for example [2] employs
a three-degrees-of-freedom (DOF) gyroscope and a 3DOF
accelerometer to detect gait characteristics for optimisation
of drop-foot stimulation. A similar approach using inertial
6DOF sensors for orientation estimation in gait detection of
stroke patients is reported by [3]. Based on the solution of the
gait phase detection algorithm, a closed-loop control strategy
for functional electrical stimulation (FES) was successfully
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implemented in simulations and experiments. Amongst other
applications are for example the application of biomecha-
tronic tools to measure and early diagnose the development
of neurological disorders [4] or the human back movement
estimation in patients with back pain [5].
Essentially two problems arise in attitude determination
problems with inertial or inertial/magnetic sensors. On the
one hand, a problem fundamental in attitude determination
and navigation using inertial systems is the offset on the
sensors, leading to drift when sensor outputs are integrated
over time [6]. On the other hand, and a special case for
rehabilitation applications, the body attached system of the
strap-down sensors may move over time relative to the
segment, depending for example on the strain applied to the
sensor system. While the problem of sensor drift is addressed
in this contribution, solutions for the displacement of strap-
down sensor systems can be solved by the introduction of a
body sensor network and kinematic joint constraints [7].
The problem of attitude determination with inertial/magnetic
MEMS sensors was successfully addressed by different
research groups, in recent years. [8] describes a portable
orientation estimation device with a wireless network that
uses measured gravity and geomagnetic field data with
Sigma-Point Kalman Filters. The stability of the orientation
estimation is thereby guaranteed in an accelerated environ-
ment. Other research groups propose extended Kalman Filter
(EKF) techniques to fuse inertial/magnetic sensor data with
quaternion rotation representation. A full EKF including
bias-estimation is presented by [9] and a full as well as a
reduced EKF based on the quaternion estimation algorithm
(QUEST), using accelerometer and magnetometer vector ob-
servations is described by [10]. Both algorithms were tested
using real-time experiments showing good performance.
A quaternion-based complementary sliding mode observer
(CSMO) is described by [11], which uses a multiplicative
quaternion correction technique and a Levenberg-Marquardt
algorithm to preprocess acceleration and magnetometer vec-
tor observations as an optimal attitude estimation problem.
The algorithm is robust and shows promising results when
tested in a bio-logging application to track animal movement.
In this contribution, two filters for a 9DOF inertial/magnetic
sensor module are developed for BSN-based strap-down
orientation estimation in human movement. The Integrated
Posture and Activity NEtwork by Medit Aachen (IPANEMA)
is a BSN of modular structure and allows for easy integration
of sensor modules [12]. To keep the real-time processing
calculation cost low, two filters are designed and tested in
simulations and with experimental data of treadmill walking.
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Fig. 1. Process model for the extended Kalman filter.

An extended Kalman Filter with quaternions for rotation rep-
resentation and the QUEST algorithm to calculate a reference
from vector observations is implemented. As an alternative
approach, a modified complementary sliding mode observer
including the QUEST algorithm is designed as a novel
observer for robust orientation estimation. Both observers
operate on a reduced set of quaternion-based equations
therefore minimising the calculation cost on the BSN.
This paper is organised as follows. Chapter II describes the
system of human motion used for filter design. The design
of EKF-QUEST and CSMO are detailed in Chapter III,
followed by a description of the BSN and the experimental
setup in Chapter IV. Simulation and experimental results
are given in Chapter V. Finally, conclusions are drawn and
discussed in Chapter VI.

II. SYSTEM MODEL

The process is modelled with certain assumptions about
angular velocity, linear acceleration and magnetic field sen-
sors and the dynamics of the body motion undergoing normal
gait. For measured, biased, and misaligned sensor signals
angular velocity ω̃ , linear acceleration ã and magnetic field
strength m̃ given by

ω̃ = Kω ω
n +bω +vω

ã = Ka

[
Cb

n(q)(g
n +ba +an)

]
+va

m̃ = KmCb
n(q)h

n +bm +vm,

(1)

where ωn,an,mn are the truth angular rate, linear accelera-
tion and magnetic field strength, bω ,ba,bm are bias vectors,
Kω ,Ka,Km account for scale factors and misalignment, Cb

n is
the transformation matrix from inertial (navigation) to body
frame, gn is the gravity vector and vω ,va,vm are sensor white
noise processes, for which is assumed

E [v(t)] = 0 E
[
v(t)vT (t− τ)

]
= R(t)δ (t− τ). (2)

The process model for the extended Kalman filter follows
the idea that a certain frequency content is inherent to limb
movement and therefore orientation in normal walking. The
process model is given in Figure 1 and was adapted from
[10]. A first-order dynamics (low-pass) with time constant τ

corresponding to the bandwidth of limb movement, driven by
white noise w. The state-space equations including quater-

nion rotation dynamics are given byω̇1
ω̇2
ω̇3

=
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ẋ2
ẋ3
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0
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 ,
(3)

with ⊗ denoting the quaternion multiplication. With the
introduction of the short form and the measurement equation
the resulting nonlinear state-space model is given by

dx
dt

= f(x)+Bw(t)

z = x+v,
(4)

where x ∈ R7, w ∈ R3 and z =
[
ωT ,qT

]T ∈ R7 being the
bias, scale factor and misalignment corrected measurement
vector (1) in case of ω without noise vω . Note that the noise
vector applied to the quaternion vector vT = [vT

ω vT
q ] is due

to the propagated sensor noise from QUEST.
For the complementary sliding mode observer the nonlinear
state-space model of (4) is rearranged to the following form

dx
dt

= f(x̂)+Bw(t)

y = g(x)+v,
(5)

with the nonlinear state-equation being equivalent to (4),

except for x̂ =
[
ωT qT

‖q‖2

]T
. The system output equation

of (5) can thereby be rewritten as

y =

[
ω

q̂

]
+v =

[
ωT qT

‖q‖2

]T
+v. (6)

III. FILTER DESIGN

A. Quaternion estimation algorithm (QUEST)
Since two body-fixed vector observations are available

at a single time, it is possible to solve the problem of
determining the attitude in the inertial or reference frame.
This is usually referred to as Wahba’s problem, which is to
find the orthogonal matrix C with determinant +1 (rotation
matrix) that minimises the loss function [13]

L(C) =
1
2 ∑

i
ai |bi−Cri|2 (7)

where ai are nonnegative weights, bi are body-fixed frame
unit vector observations, and ri are corresponding unit vec-
tors in the inertial frame. Eq. (7) can be rearranged to

L(C) = ∑
i

ai− tr(CBT) (8)



with

B = ∑
i

aibirT
i . (9)

With the assumption of a unit quaternion and subsequent
parametrisation of the attitude matrix [13], it follows with

tr(CBT) = qT Kq, (10)

which is to be maximised in order to minimise (8), where

K =

[
tr(B) zT

z S− tr(B)I3

]
(11)

with

S = B+BT, z =

b23−b32
b31−b13
b12−b21

 . (12)

Maximising (10) leads to the optimal attitude estimation and
is clearly achieved by finding the maximum eigenvalue λ̄ (K)
with the corresponding optimal quaternion according to the
eigenvalue problem

Kqopt = λ̄qopt . (13)

Partitioning and rearranging of (13) according to the optimal
unit quaternion

qopt =
1√

q̂2
1 +‖ê‖2

[
q̂1
ê

]
(14)

leads to

q̂1 = α (λmax + tr(B))−det(S)
ê =

(
αI3×3 +(λmax− tr(B))S+S2)z

(15)

with

α = λ̄
2− (tr(B))2 + tr(adj(S)) (16)

and concludes the quaternion estimation algorithm.

B. Extended Kalman Filter with QUEST

The extended Kalman filter uses a first-order Taylor ap-
proximated linearisation of the nonlinear process model (4)

d∆x
dt

=
∂ f(x)

∂x

∣∣∣∣
x=x̂

∆x+Bw, (17)

where ∆x = x− x̂. Since measurement data is sampled at
equidistant time intervals ∆t, the corresponding linearised
difference equation is given by

∆xk+1 = Φk∆xk +Bkwk, (18)

with sampling instances k and the discrete state-transition
matrix Φk, which is derived from the matrix exponential
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Fig. 2. Block diagram of the extended Kalman filter with the quaternion
estimation algorithm (QUEST).
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(19)
The discretised measurement model for the EKF is given by

zk = xk +vk, (20)

in which in a similar way to (4) the discrete noise process
entries corresponding to quaternions are accelerometer and
magnetometer measurement noise propagated through the
QUEST. Covariance matrices for process and measurement
noise are Qk = E

[
wkwT

k

]
and Rk = E

[
vkvT

k

]
. The standard

equations of the time-varying extended Kalman filter are
implemented [10], where the QUEST reference quaternion
vector and measured angular rates are used as the measure-
ment vector (20). Figure 2 shows a block diagram of the
EKF-QUEST structure.

C. Complementary sliding mode observer

The complementary sliding mode observer is based on the
process model given in equation (6), for which the output is
rewritten as

q̂ =

[
ω

q̂

]
+v =

ω
T [q1 q2 q3 q4]√

q2
1 +q2

2 +q2
3 +q2

4

T

+v. (21)

The linearised system at the operating point q̄, ω̄ can be
obtained from (21) with ∆q = q̂− q̄ and ∆ω = ω̂− ω̄ with
∆xT = [∆ωT ∆qT ] as

d∆x
dt
≈ ∂ f(x̂)

∂ x̂

∣∣∣∣
x̂=x̄

∆x+Bw

∆ŷ≈ ∂g(x̂)
∂ x̂

∣∣∣∣
x̂=x̄

∆x+v.
(22)

Note that for the partial derivatives of higher order than one
are neglected in the Taylor-approximation and that the output
equations are limited to first-order derivatives. In addition,
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Fig. 3. Block diagram of the complementary sliding mode observer with QUEST.

the 2-norm quaternion normalisation has to be regarded in
the state-linearisation. The lower-right block of the resulting
linearised system matrix is skew-symmetric in ACSMO ∈
R4×4, which means that the eigenvalues always come in
imaginary-axis pairs. This corresponds to the critically stable
case and a continuous rotation for non-zero angular rates.
The proposed sliding mode observer block-diagram is shown
in Figure 3. The error for the measured and model rates is
thereby

ωe = ω̂− ω̃. (23)

Considering the estimated quaternion output, calculated from
(21), the orientation error between QUEST optimal orienta-
tion qopt and q̂ is given by

qe = q̂⊗ q̃−1. (24)

The estimation error quaternion is again rotated to obtain
negative feedback gain error unit quaternion q̄e = q−1

e . For
the observer feedback measurement errors of ωe and q̄e are
rearranged to the error vector yT

e = [ωT
e q̄T

e ]. The complemen-
tary sliding mode observer consists of a linear Luenberger
feedback gain L and a switching function

ν =

{
K ye
‖ye‖2

ye 6= 0
0 otherwise

(25)

where K = diag(kT
ω ,kT

q ) is the discontinuous sliding mode
observer (SMO) gain matrix with kω the gain applied to the
ωe and kq applied to the q̄e vector. The CSMO feedback
correction terms are added based on the assumption that
small attitude changes occur over a sampling time interval.
Therefore, the action of the CSMO on the observer model

is given by

dq
dt

= ν⊕Lȳe⊕ f(x̂)⊕Bw

ŷ =
[
ω̂

T qT

‖q‖2

]T
.

(26)

with ⊕, the quaternion addition and ω , the measured and cor-
rected angular rates. Note that the Luenberger-type observer
feedback gain matrix is parametrised as L = diag(lTω , lTq ),
where parameters for L and for K were determined for
the linearised model in simulations and experiments in a
heuristic way. Although the sliding mode observer guarantees
a robust sliding motion in face of uncertainties corresponding
to nonlinearities and unknown dynamics/parameter variation,
the stability of the CSMO was formally not proven, but
verified in simulations and experiments.

IV. BODY SENSOR NETWORK AND EXPERIMENTAL SETUP

The IPANEMA body sensor network uses a 433 MHz
industrial, scientific and medical (ISM) band transceiver
(CC1101 Texas Instruments Inc., USA), which is less prone
to electromagnetic shadowing effects by the human body,
although a lower data rate can be achieved [12]. The
IPANEMA BSN is able to deliver a data rate of 250
kbps which is not critical for most biomedical applications.
Both hardware and software is designed in a modular way,
allowing for the adaption and extension with different sensors
and actuators. The IPANEMA used for the measurements
is in generation 2.5 and can be easily attached to dif-
ferent segments of the human body. Besides the wireless
transceiver, the main functional units of the BSN master and
slave nodes are the microcontroller (MSP430F1611, Texas
Instruments Inc., USA), the power management (LTC3558,
Linear Technology, USA) and two extension ports (CLP160-
02-X-D, Samtec, USA). To measure the segment orientation
with the IPANEMA BSN, a 9DOF inertial/magnetic sensor
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board (ADIS16400, Analog Devices, USA) was designed.
Mounted on the body segment, the slave BSN node sends
the inertial/magnetic data to the BSN master node, which in
turn is connected to a host computer for data recording.
Measurements of human locomotion were conducted on a
treadmill (Ergo Run Medical 8, Daum Electronic GmbH,
Germany) employing the IPANEMA BSN. The test person
was fitted with three BSN nodes, mounted on foot ankle, at
the thigh and at the hip. Data was recorded over 2.5 minutes
of walking at different speeds (2-6 km/h). At the same time,
reference trajectory data was recorded with a motion capture
system with six infrared cameras (Vicon Bonita, Vicon,
USA). Figure 4 shows an overview of the test setup. The six
motion capture cameras track markers, attached to the BSN
nodes and are connected to a host computer for recording
(Vicon Software, Vicon, USA). Collected data from the BSN
nodes is stored on another computer. At the start of each
measurement day, random movements were recorded with
each node and the reference system, to be used for sensor
calibration. The sensor calibration is a two step procedure,
using the motion capturing tracked BSN node in a first step
at rest and in a second step under random movements.

V. SIMULATION AND EXPERIMENTAL RESULTS

Before conducting treadmill locomotion experiments with
the real system, a simulative study was conducted to test
stationary and dynamic convergence of the filter. Stationary
and sinusoidal data were corrupted by noise and used as
available sensor measurements in the simulations. Figure 5
shows the results of two exemplary simulations. It can be
clearly seen that both filters converge fast, with the SMO
having the larger initial error. The difference in the errors is
due initial preference of the QUEST-solution over the initial
state of the filter in the EKF-Quest algorithm and not because
of a different initial state. For a sinusoidal movement in body
roll direction with an amplitude of π

4 rad and a frequency of
2 Hz, the absolute quaternion errors of both filters remain
below 2.5◦. Similar results were obtained at different walking
speeds with the movement taking place in different axes.
Under experimental conditions and after successful calibra-
tion of sensor data, the transformation matrices between
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Fig. 5. EKF-QUEST and SMO filter convergence for stationary and sinu-
soidal tests (upper: stationary test, lower: sinusoidal movement).

motion tracking and BSN reference frames were obtained in
a first step. Sensor data was continuously recorded with the
BSN and saved on a computer at a sampling rate of 75 Hz.
As an initial experiment, the BSN was tracked in stationary
conditions (not moving) and the orientation was determined
with the EKF-QUEST and the SMO-QUEST. Figure 6 shows
the result of an experimental convergence test. It can be
seen that the EKF-QUEST is converging slightly faster
that the SMO-QUEST, with both filters showing a good
response. Note however, that the difference in the remaining
offset of 4◦, is due to a remaining error between reference
frames of motion tracking and BSN. The lower initial error
of the QUEST-EKF is due to a preferred initial QUEST-
solution over the initial state of the filter in the EKF-QUEST
algorithm. Dynamic measurements of human locomotion
were conducted at different walking speeds on the treadmill,
while tracking the BSN. Figure 7 shows an exemplary result
of the tracking with a subject walking at 3 km/h with the
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sensor located at the hip. It can be seen that the absolute
orientation error between motion tracking and BSN results
in peak values of about 8◦ for the EKF-QUEST and 10-12◦

for the SMO-QUEST. The peaks can be attributed to the
QUEST algorithm, where the vector observations degrade
due to accelerations at foot impact. However, the root mean
squared error is quite good with 5.4◦ for the EKF-QUEST
and 8.3◦ for the SMO-QUEST, bearing in mind that the
convergence error in stationary tests was still 4◦. Tests with
the system at different walking speeds lead to similar results.
Both filters were stable in all of the conducted test runs
(ranging from 2-6 km/h).

VI. CONCLUSIONS AND DISCUSSION

Two attitude estimation filters to be used in a strapdown
BSN application were designed and tested in simulations and
experiments. Both filters use quaternions as a representation
for rotation between the body fixed and an inertial reference
frame, leading to a reduced set of equations/complexity and
the associated advantage in calculation cost on the BSN. The
IPANEMA BSN with a 433 MHz ISM band was reliably
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Fig. 7. EKF-QUEST and SMO-QUEST filter in a human walking experi-
ment (upper: absolute error, lower: Euler angles).

employed during the tests and transmitted data of up to
three 9DOF nodes (number of available nodes). The well-
known extended Kalman filter was compared to a novel
complementary sliding mode observer. Both filters employ
the quaternion estimation algorithm. The performance of
the EKF-QUEST is slightly superior to the SMO-QUEST.
However, bearing in mind the exceeding complexity of the
EKF-QUEST, this is a most promising result. A number of
experiments were conducted at different walking speeds and
at different joint positions leading to good results measured
in terms of absolute and RMS errors between the BSN and a
motion capturing reference system. Furthermore, the param-
eters of the CSMO switching and Luenberger typer observer
feedback matrices were designed in a heuristic approach,
with suggested suboptimal results. Therefore, future work
will consider the implementation of the filters on the body
sensor network processor and the systematic, adaptive design
of the CSMO observer feedback matrices.
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