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Abstract—Rehabilitation robots being developed nowadays
rely on force and/or impedance control. This is guided by
clinical evidence showing better performance if the patient is
left with the capacity to influence the robot trajectory. The
simplest, yet fundamental, mode of force control is when the
robot has to be transparent, i.e. to apply no forces/torques on the
patient. This mode is useful both in scenarios where the robot
has to apply pinpointed support during some training phases
and be transparent otherwise, and for any force controller in
general, to avoid the reference forces to be polluted by the robot
own dynamics. This contribution proposes a method to improve

transparency on a support robot for overground training. The
method consists in learning the patient’s movement by using
adaptive oscillators and then anticipate its future evolution in
order to synchronize the robot movement. In experiments with
human subjects walking in the gait support robot FLOAT, this
method can decrease the undesired oscillations of the support
force applied to the human user by up to 50%.

I. INTRODUCTION

In rehabilitation after neurological injury, robots are be-

coming more and more popular tools to improve the therapy

efficiency. Consequently, diverse robots have been developed,

both for the upper [1]–[5] and lower extremities [6]–[10].

Robots being used with patients allow to let them perform

several kinds of functional movements, with a high degree

of accuracy and repeatability. The use of robotic devices is

less tiresome for the therapist than a classical therapy. More-

over, robotic devices can perform quantitative and objective

measurements and assist the patient through different and

innovative control strategies. Several clinical studies tend to

show that robots can improve recovery after stroke [11]–[15].

In impedance and force controllers, a fundamental require-

ment is transparency: The robot’s intrinsic dynamics should

not lead to undesired interaction forces on the human. A

particular challenge is to mask a robot’s inertia [16]–[18].
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This contribution presents a new method to improve

transparency, based on the use of adaptive oscillators [19]–

[25]. An adaptive oscillator is a set of differential equations

which can synchronize to a periodic signal by learning this

signal’s features (i.e. frequency, amplitudes, phases) within

its state variables. As such, an adaptive oscillator not only

achieves adaptive synchronization to the input signal, but also

performs a kind of real-time Fourier decomposition of this

input through a sum of different harmonic signals.

Practically, this method was put to test on a real robot,

namely the ”FLOAT” being developed within the Spinal

Cord Injury Center at the Balgrist Hospital in Zurich [26],

[27]. This cable-based robot provides overground support

for gait rehabilitation in a large workspace. Transparency is

particularly relevant in this kind of robot, since we might

want to provide postural assistance only when a fall is

detected, or to provide a constant supporting force in the

vertical direction, while ”hiding” the natural oscillations

created by the robot own dynamics, both in the vertical and

horizontal directions. As an initial investigation, this paper

focuses only on the vertical direction, i.e. with the objective

to reduce the undesired oscillations along the z axis.

This paper is organised as follows. In Section II, we briefly

describe the FLOAT robot used to test the predictive method.

We describe the mechanical design and the controller prin-

ciple. In Section III, we introduce the concept of adaptive

oscillators and their implementation in the robot controller.

In particular, we propose a new method to achieve robust fre-

quency learning despite the intrinsic variability of the signal

during natural walking. In Section IV, we present methods

to compare the previous and the new controller, only in the

vertical direction and with healthy subjects. In Section V, we

present preliminary results with the previous and the new

controller. We clearly establish that the predictive controller

reduces the force oscillation around the expected constant

supportive force by up to 50%. In Section VI, we discuss the

perspective of extending the adaptive oscillators to improve

transparency also in the horizontal directions (both forward

and lateral), pending an appropriate coordinate change and

a velocity learning algorithm. Finally, Section VII concludes

the paper.

II. ROBOT CONCEPT

The FLOAT robot used to implement the prediction

method proposed in this paper has been developed by Vallery

et al. [27]. This robot is illustrated in Figure 1.

This robot can provide a vectorial (3D) force to support

a human during walking. This force is applied through four
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Fig. 1. FLOAT concept. More details can be found in [27].

cables connected to a single node, being in turn connected to

the human via a beam and a harness, such that no moments

are transmitted, only forces.

Cables are tensed by four winches which are the four

controllable degrees of freedom. These cables are connected

from the node to the winches through pulleys which are

mounted on four carts. Each pair of carts are connected by

a cable to form one trolley, both running independently on

two parallel rails.

The cables are further connected to the node through

springs which are used to measure the force in each cable

with potentiometers. The node force is estimated from these

measurements by using a geometric model. Laser sensors

measure the position of each trolley and each winch has an

absolute encoder to measure the cable length. More details

on the robot design can be found in a companion paper,

accepted for publication to the same conference [27].

The robot controls force on the node in Cartesian space

by means of a proportional-integral force controller. Mapping

from the resulting three Cartesian force components to the

four winch torques is not unique and therefore allows for

additional control action to influence trolley dynamics: An

asymptotically stable relative movement of the trolleys is

enforced, such that the four pulleys form the corners of a

rectangle above the subject.

In the current implementation, force control performance

in vertical direction needs to be improved, because there can

be peak undesired interaction forces of up to 40 N acting on

the subject (Figure 2, bottom). As these undesired forces

occur in response to human movement, which is almost

periodic in Z direction (Figure 2, top), the use of an oscillator

concept seems promising [19], [20].

III. ESTIMATOR : ADAPTIVE OSCILLATOR

In order to improve transparency, we anticipate movement

of the node (caused by movement of the subject), and we let

the winches facilitate this movement, by adding predictive

terms to the existing force controller. Since the signals being

considered in this paper are quasi-periodic, we use adaptive

oscillators [19], [20] to perform this anticipation.

A. Integration in the existing controller

The method proposed here to increase the robot trans-

parency requires to add predictive components to the existing
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Fig. 2. Vertical position and force of the node during a representative
walking task (30 seconds, corresponding to about 5 crossings of the robot
workspace). The desired assistive force was set to 30kg, such that the
expected measured vertical force should be constant and around 300N.

PI force controller. The calculation of these predictive terms

is separated into three different layers.

a) The predictive layer: predicts the future position of

the node with an estimator (i.e. an adaptive oscillator).

b) The equilibrium layer: calculates the winch posi-

tions required to apply the reference force on the node,

considering a static equilibrium for a given position (i.e. no

dynamic effect taken into account).

c) The position control layer: is a proportional-gain

position controller giving reference forces to reach the winch

positions calculated in the second layer.

Without the prediction layer, the equilibrium layer would

calculate the winch position needed to reach static equilib-

rium with respect to the current node position and reference

node force. Due to computational delays, the mechanical

response of the robot, and the controller limited bandwidth,

the control signal sent to the motors would thus be delayed

compared to the actual node position.

Therefore, the idea developed in this paper is to feed this

layer with an estimation of the future node position, in order

to compute the winch position to reach static equilibrium a

few milliseconds forward in time. If this time anticipation

corresponds to the accumulated delay, better transparency

should be observed since the controller should bring the

winches and trolleys to their static equilibrium positions with

more accuracy.

B. Principle of an adaptive oscillator

An adaptive oscillator is used as an efficient estimator of

the node future position. More precisely, it is a dynamical

system having the capacity to synchronize to a quasi-periodic

input by learning its features in state variables. The adaptive

oscillator used in this paper is similar to the one presented

in [21] and achieves the learning of a quasi-periodic signal

θ(t) in an estimator θ̂(t). This estimator performs a kind of
real-time Fourier decomposition of the input signal, keeping

K harmonics (Figure 3):

θ̂(t) =

K
∑

i=0

αi sin(φi) =

K
∑

i=0

αi sin(iωt+ ϕi) (1)

where φi, iω and αi are the phase, frequency and amplitude

of the harmonics. Those parameters are the state variables



of the dynamical system actually representing the adaptive

oscillator:

φ̇i(t) = iω(t) + νφ
F (t)

∑

i
αi(t)

cosφi(t)

ω̇(t) = νω
F (t)

∑

i
αi(t)

cosφ1(t)

α̇i(t) = ηF (t) sinφi(t)

(2)

where νφ, νω and η are the learning gains determining

respectively the speed of phase, frequency and amplitude

synchronization to the error signal F (t) = θ(t)− θ̂(t). Note
that, assuming φ0 = π/2, the 0-th oscillator (i=0) is a simple
integrator learning the signal offset α0(t).

Fig. 3. Coupled adaptive oscillators, learning the harmonics of the input
signal θ(t).

As an illustration, Figure 4 shows the learning of a signal

containing an offset and four harmonics with different phase

lag. In this example, the adaptive oscillator (2) was initialized

with a zero offset, a frequency equal to ω = 2π rad/s, the
first harmonic amplitude α1 equal to 0.05, and the other

amplitudes αi equal to zero.

As shown in the Figure, the signal features are learned

after about three seconds. At the end of this learning phase,

the oscillator output is sync with the input. To observe this

very reactive behavior, the oscillator gains were set to νφ =
17.6, νω = 12.8 and η = 2, respectively (see [21] for some
synthesis rules for these gains).

C. Adaptive oscillators to learn the vertical node position

The actual vertical position signal of a human walking in

the FLOAT is not perfectly periodic, each step being similar

but never identical to the previous one. As a consequence,

the oscillator features never converge to a steady-state value.

To avoid parasitic influences between the learning of the

different features, and to make this learning as robust as

possible, we decided to decouple the frequency learning from

the learning of the other features, and to design a dedicated

frequency learning block, being robust to signal variations.

More particularly, we focus on the frequency learning of

the node position along the z axis, since this signal is the

most sinusoidal of the position signals along the three axis.

The method to learn the frequency is described in Section IV-

A.

Once the frequency is properly learned, the other features

of the actual signal can be learned. Again, this paper focuses
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Fig. 4. Signal learning by an adaptive oscillator containing 8 harmonics.
After 3 seconds, the state variables have converged to the actual features
of the input signal. As expected, only 4 amplitudes converged to non-zero
values, since the input signal contained only 4 harmonics (+ offset).

only on the vertical direction, i.e. the position signal along

the z-axis. This was done with an adaptive oscillator similar
to (2), but receiving the learned frequency ω from the

”frequency learning” block rather than estimating it itself.

The next step was to use these learned features to make a

prediction of the signal evolution.

The signal was considered to be learned when the error

signal F (t) was lower than a tolerance threshold (i.e. 5mm).
When the signal was learned, a prediction was computed, by

using similar equations as (1), but with a time lead δl:

θ̂δl(t) =

K
∑

i=0

αi sin(φi + iωδl) (3)

where θ̂δl denotes the predicted position, with a time lead

equal to δl. To achieve smooth transitions of the z signal

being injected in the ”static equilibrium” block between

the periods where the signal was learned or not, the signal

actually fed to this block was a blend of the actual z(t) and
anticipated ẑ(t) signal:

zblend(t) = αẑ(t) + (1− α)z(t) (4)

where α varied between 0 and 1. We linearly blended from

predicted to current position within 1 s. It increased when

the learning was considered as being converged (from the

tolerance threshold) and it decreased otherwise. With this

method, the output signal staid continuous and the transitions

were smooth. Figure 5 shows the result for a prediction of

50ms. At the beginning, the signal was not learned yet such

that the output was equal to the input. When the error went

below the threshold, the output smoothly started to anticipate

the input.

IV. EXPERIMENTAL PROTOCOL

Some experiments were done to validate if the prediction

with an adaptive oscillator decreased the force oscillations
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Fig. 5. Smooth blending between current and predicted signal.

in the Z direction. The first experiment consisted in learning

the gait frequency independently of other features. The

second experiment consisted in registering force oscillations

when some healthy subjects were walking with the robot

while receiving some body weight support and varying the

prediction time δl to test its influence on the level of the

oscillations.

A. Frequency learning

To extract the frequency information from the z-axis signal
in a robust manner, we applied several filters to it, in order

to extract its main harmonic as much as possible. First, the

signal was filtered with a second-order bandpass filter to

eliminate some high-frequency noise and remove the signal

offset. The bandpass limit frequencies were chosen at 0 and

1Hz, such that a simple continuous-time representation of

this filter can be obtained as:

H(s) =
s

(s+ 1)
2 (5)

Then the signal was saturated by a nonlinear block that

outputs 0.05 if the input is positive and -0.05 if negative,

the transitions being governed by finite slopes. This second

filter was used in order to normalize the signal amplitude

and generate a quasi-square signal at the frequency of the z-
axis oscillations. Figure 6 shows the three steps of the signal

processing. Importantly, note that filtering and triggering the

signal introduced a delay in the square signal with respect

to the actual z trajectory. However, this delay did not impact
on the learning process, since the signal frequency is not

sensitive to it. Various trials and errors let us conclude that

the combination of these two filters conducted to the fastest

and most robust frequency learning performances.

Thereafter, the frequency of this unbiased square signal

was learned with a single adaptive oscillator, i.e. with K = 1
and no offset learning in (2).

B. Experiments with human subjects

The goal of the experiment was to establish the positive

effect of the prediction during real walking trials. In this

case, the natural variability of walking caused the learned

frequency to fluctuate. The aim of this experiment was thus

to test if the expected decrease in oscillations was observed

despite this fluctuation.
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Fig. 6. Z-position oscillations - square signal processing.

Five subjects (two males and three females) with no

movement disorder were chosen for the experiment. They

age ranged between 25 and 30 years and their weight

ranged between 50 and 85 kg. Subjects were asked to walk

straight back and forth while attached to the robot. Every 30

seconds, the prediction time of the oscillator was changed.

The different tested prediction time values δl were 0, 50, 75,
100, 125, 150, 175 and 200ms. Moreover, the experiment

was done with two different virtual body weight supports,

i.e. 15 kg and 30 kg.

Oscillations in the force signal were evaluated with the

root mean square (RMS) around the reference value of the

force. This RMS value was calculated with Equation (6)

where n is the number of registered samples:

RMS =

√

∑n

i=1(F (i)− Fref )2

n
(6)

V. RESULTS

A. Frequency learning

The convergence of the oscillator by learning the fre-

quency of real walking data is illustrated in Figure 7. After

the subject started walking, the frequency converged in about

5 seconds.
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Fig. 7. Frequency learning with 1 harmonic and zero offset.

Importantly, when the subject reached the limit of the

robot workspace, he/she had to turn around. During this

period, the z signal was no longer periodic and the learning



had thus to be interrupted. Of critical importance is to restart

the learning without discontinuity in the signal. To achieve

this, learning was stopped during a falling edge of the square

signal, after the subject had reached the limit threshold in x
direction. The learning resumed when the first falling edge

appeared after the subject returned inside the x limit range

of the robot. With this method, the oscillator resumed the

learning with the expected initial conditions after a U-turn

and the features convergence was not compromised.

B. Experiments with human subjects

The result with a representative subject are shown in

Figure 8.
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Fig. 8. RMS of the force oscillations along the z-axis recorded during the
second experiment, with a representative subject.

As expected, predicting the vertical component of the

position signal did decrease the oscillations of the vertical

force. The best value for the prediction time (i.e. minimizing

the force RMS) was around 100ms with 15 kg BWS and

125ms with 30 kg BWS. With these values, oscillations RMS

decreased by about 50% in both cases.

Figure 9 shows the same results for the other four subjects.

Interestingly, the RMS decrease was not visible for each

subject and/or BWS. The data revealed that the reduction

in force error RMS was the most effective when the walking

was the most periodic, i.e. when the oscillator achieved the

best learning of the features. On top of that, the method

worked better with 15 kg BWS than for 30 kg BWS.
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Fig. 9. RMS of the force oscillations along the z-axis recorded during the
second experiment, with the other four subjects.

The FLOAT acts like mass/damper system on the user.

The parameters identification of this system is explained

in [27]. In short, the vertical force felt by the subject

was modelled as combining an acceleration-dependent, and

velocity-dependent term:

F (t) = m̂z̈(t) + d̂ż(t) = m̂(z̈(t) + ζ̂ ż(t)) (7)

where m̂ denotes the estimated mass, and d̂ and ζ̂ the

absolute and relative damping coefficient. With the original

controller, the identified parameters values were equal to

m̂ = 6.02 kg and d̂ = 61.6 Ns
m
. This means that the reflected

mass of the robot structure before the force sensor is only

1.02 kg, and the main inertia is caused by the mass of the

bar and harness construction (weighting about 5 kg), which

cannot be compensated with a feedback controller as the

original one. This model was also fit to the data with the

adaptive oscillator in the loop and with a prediction time

equal to 100ms. The relative damping factor ζ̂ was kept as

identified above, and only the mass m̂ was re-identified. The

best fit was found to be equal to m̂ = 1.71 kg, confirming
that the reflected inertia of the robot was decreased by a

factor 3.5.

VI. DISCUSSION

We identified at least three possible reasons for explaining

why some a similar decrease in force oscillations was not

observed for all subjects and/or BWS. First, the learning

convergence depended on the periodicity of walking, the

more periodic the walking, the faster and more robust the

learning. Second, the method worked better with 15 kg BWS

than for 30 kg BWS, likely because some subjects were too

light to accommodate 30kg of BWS. It was indeed difficult

for them to walk in this condition, such that their gait was

highly variable. Accordingly, future experiments should be

realized by providing BWS being proportional to the subject

own weight. Finally, the weight of the subject can modify

the resonance frequency of the whole system, such that the

optimal prediction time would be different from one subject

to another. This last point would require more investigations,

for example by better identifying the coupled dynamics of

the subject and device.

These encouraging results for the Z direction motivate

further extension of the concept also to the two other (X
and Y ) directions. Moreover, the learned frequency should

be usable for the three directions, since body oscillations are

similar in all three directions. However, this poses additional

challenges, mainly because movement is less periodic in

these directions. In the X direction, large position slopes are

due to the back and forth movements of the subject and thus

occlude the oscillations. A similar problem appears in the Y
direction, except if the subject walks in a straight line parallel

to the x-axis. Although some of our healthy participants

managed to do so, this requirement is likely unrealistic in

a clinical context. A solution could be to apply a coordinate

change, i.e. a rotation to constantly align the x-axis with the
walking direction. With this new coordinate system, the Y
offset would stay equal to zero, while the x-axis signal would
again combine small oscillations and large slopes caused by

the forward and backward movements. This axis rotation is



possible by equipping the device with a sensor that monitors

the current walking direction with respect to the lab frame.

With such a mapping, the same method as the one used for

the vertical direction can be used for the y-axis. The same
frequency as the one learned in the Z direction can be used

in the predictor block, although it has to be divided by two.

Indeed, lateral oscillations during walking are twice slower

than the oscillations in the vertical axis [28].

Cancelling the oscillations along the x-axis would require
a more complex predictive block, since the movement slopes

would have to be filtered out.

VII. CONCLUSION

This paper presented a new method to decrease the dynam-

ical effects of a rehabilitation robot felt by the user, and thus

increase the robot transparency. The method used to achieve

this improvement relied on a trajectory estimator based on

an adaptive oscillator. The principle was to add a block in

parallel to the robot controller to predict and anticipate the

user’s movement. When the movement features were learned

by the oscillator, it had the capacity to accurately predict

the future signal. This prediction, which thus corresponded

to the robot position in the near future, can thus be used

to anticipate the dynamical effects. Concretely, the method

presented here allowed to decrease the force oscillations in

the vertical direction by up to 50%, at least when walking

was sufficiently stationary, and for reasonable body weight

supports. This result was further validated by an identifica-

tion process, showing a decrease of the robot equivalent mass

by a factor two as well. Future experiments will test the same

approach with pathological gaits. Likely, this will require to

adapt the method, e.g. to accommodate to the discontinuous

gait of patients (e.g. with frequent starts and stops).

REFERENCES

[1] B. Dehez, J. Sapin, ”ShouldeRO, an alignment-free two-DOF rehabil-
itation robot for the shoulder complex,” 12th International Conference
on Rehabilitation Robotics (ICORR), 2011

[2] T. Nef, M. Guidali, and R. Riener, ”Armin iii-arm therapy exoskeleton
with an ergonomic shoulder actuation,” Applied Bionics and Biome-
chanics, vol. 6, no. 2, pp. 127-142, 2009.

[3] R. Sanchez Jr, E. Wolbrecht, R. Smith, J. Liu, S. Rao, S. Cramer, T.
Rahman, J. Bobrow, and D. Reinkensmeyer, ”A pneumatic robot for
re-training arm movement after stroke: Rationale and mechanical de-
sign,” in Rehabilitation Robotics, 2005. ICORR 2005. 9th International
Conference on. IEEE, 2005, pp. 500-504.

[4] A. Stienen, E. Hekman, H. ter Braak, A. Aalsma, F. van der Helm,
and H. van der Kooij, ”Design of a rotational hydroelastic actuator
for a powered exoskeleton for upper limb rehabilitation,” Biomedical
Engineering, IEEE Transactions on, vol. 57, no. 3, pp. 728-735, 2010.

[5] H. Park, Y. Ren, and L. Zhang, ”Intelliarm: An exoskeleton for
diagnosis and treatment of patients with neurological impairments,” in
Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd
IEEE RAS & EMBS International Conference on. IEEE, 2008, pp. 109-
114.

[6] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. van der Helm, and H.
van der Kooij, ”A Series Elastic- and Bowden-Cable-Based Actuation
System for Use as Torque Actuator in Exoskeleton-Type Robots,” Int
J Rob Res, 25(3):261-281, 2006.

[7] J. Pratt, B. Krupp, C. Morse, and S. Collins, ”The RoboKnee: An
exoskeleton for enhancing strength and endurance during walking,” In
Proc IEEE Int Conf Rob Aut (ICRA), pp. 2430-2435. 2004.

[8] G. Colombo, M. Joerg, R. Schreier, and V. Dietz, ”Treadmill training of
paraplegic patients using a robotic orthosis,” Journal of Rehabilitation
Research and Development, 37(6):693-700, 2000.

[9] S. Banala, S. Agrawal, and J. Scholz, ”Active Leg Exoskeleton (ALEX)
for Gait Rehabilitation of Motor-Impaired Patients,” In Proc IEEE Int
Conf Rehab Rob (ICORR), pp. 401-407, 2007.

[10] D. Aoyagi, W. E. Ichinose, S. J. Harkema, D. J. Reinkensmeyer, and
J. E. Bobrow, ”A robot and control algorithm that can synchronously
assist in naturalistic motion during body-weight-supported gait training
following neurologic injury,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 15(3):387-400, 2007.

[11] G. Kwakkel, B. Kollen, and H. Krebs, ”Effects of robot-assisted
therapy on upper limb recovery after stroke: a systematic review,”
Neurorehabilitation and neural repair, vol. 22, no. 2, p. 111, 2008.

[12] G. Prange, M. Jannink, C. Groothuis-Oudshoorn, H. Hermens, and M.
IJzerman, ”Systematic review of the effect of robot-aided therapy on
recovery of the hemiparetic arm after stroke,” Journal of rehabilitation
research and development, vol. 43, no. 2, p. 171, 2006.

[13] M. Van der Loos, ”Robot-assisted movement training compared with
conventional therapy techniques for the rehabilitation of upper-limb
motor function after stroke,” Arch Phys Med Rehabil, vol. 83, 2002.

[14] P. Lum, C. Burgar, P. Shor, M. Majmundar, and M. Van der Loos,
”Robot-assisted movement training compared with conventional therapy
techniques for the rehabilitation of upper-limb motor function after
stroke,” Arch Phys Med Rehabil, vol. 83, 2002.

[15] P. Lum, C. Burgar, and P. Shor, ”Evidence for improved muscle
activation patterns after retraining of reaching movements with the
MIME robotic system in subjects with post-stroke hemiparesis,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol.
12, no. 2, pp. 186-194, 2004.

[16] E. Colgate, and N. Hogan, ”An analysis of contact instability in terms
of passive physical equivalents,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 404-409, 1989.

[17] H. Vallery, A. Duschau-Wicke, and R. Riener, ”Optimized Passive Dy-
namics Improve Transparency of Haptic Devices,” IEEE International
Conference on Robotics and Automation, pp. 301-306, 2009

[18] H. Vallery, A. Duschau-Wicke, and R. Riener, ”Generalized Elasticities
Improve Patient-Cooperative Control of Rehabilitation Robots,” IEEE
11th International Conference on Rehabilitation Robotics, pp. 535-541,
2009

[19] L. Righetti, J. Buchli, and A. J. Ijspeert, ”Dynamic hebbian learning
in adaptive frequency oscillators,” Physica D, vol. 216, pp. 269-281,
2006.

[20] J. Buchli, L. Righetti, and A. J. Ijspeert, ”Frequency analysis with
coupled nonlinear oscillators,” Physica D, vol. 237, pp. 1705-1718,
2008.

[21] R. Ronsse, S. M. M. De Rossi, N. Vitiello, T. Lenzi, M. C. Carrozza
and A. J. Ijspeert, ”Real-time estimate of velocity and acceleration of
quasi-periodic signals using adaptive oscillators,” IEEE Transactions on
Robotics, in press.

[22] W. Van Dijk, B. Koopman, R. Ronsse, H. Van Der Kooij,
”Feed-forward support of human walking,” Biomedical Robotics and
Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International
Conference on, p. 1955-1960, 2012.

[23] R. Ronsse, S.M.M. De Rossi, N. Vitiello, T. Lenzi, B. Koopman, H.
van der Kooij, M.C. Carrozza, A.J. Ijspeert, ”Real-time estimate of
period derivatives using adaptive oscillators: Application to impedance-
based walking assistance,” Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, p. 3362-3368, 2012.

[24] R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M.C. Car-
rozza,A.J. Ijspeert, ”Human-robot synchrony: flexible assistance using
adaptive oscillators,” IEEE transactions on bio-medical engineering,
Vol. 58, no. 4, p. 1001-12, 2011.

[25] R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. van Asseldonk,
S.M.M. De Rossi, J. van den Kieboom, H. van der Kooij, M.C.
Carrozza, A.J. Ijspeert, ”Oscillator-based assistance of cyclical move-
ments: model-based and model-free approaches,” Medical & Biological
Engineering & Computing, Vol. 49, no. 10, p. 1173-1185, 2011.

[26] H. Vallery, and P. Lutz, ”Apparatus for unloading a user’s body weight
during a physical activity of said user, particularly for gait training of
said user,” European Patent Application EP12154778.0, 2012.

[27] H. Vallery, P. Lutz, J. von Zitzewitz, G. Rauter, M. Fritschi, Ch.
Everarts, R. Ronsse, A. Curt, and M. Bolliger, ”Transparent Support
for Overground Gait Training,” accepted for publication to the 13th
International Conference on Rehabilitation Robotics (ICORR), 2013

[28] F. Massaad, T.M. Lejeune, C. Detrembleur, ”The up and down bobbing
of human walking: a compromise between muscle work and efficiency,”
J Physiol, pp. 789-99, 2007.




