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Abstract—In recent years, robot-assisted rehabilitation has 
gained momentum as a viable means for improving outcomes for 
therapeutic interventions. Such therapy experiences allow 
controlled and repeatable trials and quantitative evaluation of 
mobility metrics.  Typically though these robotic devices have 
been focused on rehabilitation within a clinical setting.  In these 
traditional robot-assisted rehabilitation studies, participants are 
required to perform goal-directed movements with the robot 
during a therapy session.  This requires physical contact between 
the participant and the robot to enable precise control of the 
task, as well as a means to collect relevant performance data. On 
the other hand, non-contact means of robot interaction can 
provide a safe methodology for extracting the control data 
needed for in-home rehabilitation. As such, in this paper we 
discuss a contact and non-contact based method for upper-arm 
rehabilitation exercises that enables quantification of upper-arm 
movements. We evaluate our methodology on upper-arm 
abduction/adduction movements and discuss the advantages and 
limitations of each approach as applied to an in-home 
rehabilitation scenario. 

Keywords—robotic rehabilitation, vision-based assessment, 
EMG measurements, therapeutic robotics 

I. INTRODUCTION 
Rehabilitation therapy can be a very practitioner intensive 

process. When patients enter into the process they are often 
required or asked to perform exercises at home in-between 
their clinical visits.  Proper compliance is strongly correlated 
with shorter time to recovery as well as reduction of pain in the 
long term (Wakiji, 1997).  During the time between therapy 
sessions there are many factors which affect patient 
compliance, including forgetfulness, lack of motivation, 
boredom, and lack of instant feedback.  To deal with these 
issues, researchers have shown the positive use of robots in 
assistive therapy applications ranging from stroke 
rehabilitation (Krebs et al, 1998; Volpe et al, 2000; Burgar et 
al, 2000; Lum et al, 2002; Hesse et al, 2003; Reinkensmeyer  et 
al, 1999; Loureiro et al, 2003; Patton and Mussa-Ivaldi, 2004)  
to motor  development  in children  (Galloway  et al, 2008).  In 
this venue, robotic systems for contact-based rehabilitation 
have generally been used to objectively assess the performance 
of a patient through repeatable and quantifiable metrics, as an 
effective means for rehabilitation (Colombo et al, 2005).  

For in-home rehabilitation however, exercise may not be 
performed as well or at the frequency necessary for optimizing 
the therapy intervention. As such, two key components 
necessary to promote adoption by both the clinicians and 
patients are the inclusion of technologies for 1) maintaining 
patient motivation outside of the clinical setting and 2) 
monitoring and measuring movements in the home 
environment (Eggleston et al, 2009). Using robotic systems 
that employ non-contact approaches can provide a mechanism 
for instituting safe in-home upper limb rehabilitation 
techniques that address these two needs.  However, in the 
rehabilitation domain, there are limited efforts that use robotic 
systems that employ non-contact approaches. Those systems 
that exist have typically focused on social interaction, whereas 
the objective is to maintain engagement with an exercise 
protocol through hands-off interaction strategies (Fasola and 
Mataric, 2012). Although these efforts show the effective use 
of a socially assistive robot to maintain motivation for exercise, 
such systems have not focused on the criteria needed for 
measuring information with respect to the clinical objectives, 
i.e. quantifying the movement characteristics necessary for 
objective performance assessment. 

As such, in this paper, we discuss both a contact and non-
contact based sensing method for extracting upper-arm 
movement characteristics through robot interaction. In Section 
2, we discuss a non-contact method that uses vision-based 
techniques to extract arm movement data whereas Section 3 
discusses the physical contact method, which utilizes EMG 
sensors coupled with a Hidden Markov Model (HMM) 
algorithm to extract movement parameters. We compare these 
two approaches in Section 4 using data extracted from 
subjects’ performance on three upper-arm exercise motions:  
shoulder flexion, elbow flexion, and arm extension. We then 
provide observations and concluding remarks in Section 5.  

II. NON-CONTACT METHOD FOR UPPER-LIMB MOVEMENT 
EXTRACTION 

In this section, we discuss a methodology to extract upper-
arm movement metrics based on a non-contact method that 
uses off-body camera data. In this approach, several image-
processing techniques are employed.  First, a recorded video 
sequence of the user’s exercise motions is translated into a 
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unified gray-scale image that captures the full time-sequence of 
exercise movements. This is accomplished via a process called 
Motion History Imaging (MHI).  Next, a contour extraction 
process is applied to the MHI image for providing a geometric 
representation of the movements. Finally, a method called 
Random Sample Consensus is applied to the representative 
contour, which enables the determination of straight-line 
segments used to calculate specific movement parameters, i.e. 
arm joint angle positions. 

A. Representing Exercise Movements in a Video Sequence  
The initial step in quantifying the subject’s movements is to 

segment a video sequence into a unified representation that 
contains pertinent information with respect to the overall 
movement sequence (Brooks and Howard, 2009).  To perform 
this operation, we utilize a methodology called Motion History 
Imaging (MHI), which computes a static image template where 
pixel intensity is a function of the recency of motion in a 
sequence (Bobick and Davis, 2001). A single image thus can 
be constructed that contains the necessary information for 
determining how a person has moved during an exercise 
sequence.  In an MHI, pixel intensity is a function of the 
motion history at that location, where brighter values 
correspond to more recent motion. We currently use a simple 
replacement and linear decay operator using the binary image 
difference frames (Equation 1). Examples of MHIs for an 
elbow flexion exercise are shown in Figure 1. 

  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
           

 
 

Figure 1.  Motion History Images of an elbow flexion exercise 
 
 

(1) 
 
 

where Hτ (x , y , t)  represents the MHI function, D is a 
binary image sequence indicating regions of motion, x and y 
are the horizontal and vertical directions in the image, 
respectively,  t is the current time step, and τ is the current 
intensity value.  

B. Creating a Geometric Representation of the Movement 
Once the patient’s movements have been captured, a 

contour representing the shape of the respective movements is 
computed in order to construct a geometric representation of 
the exercise. We first utilize a median filter to remove smaller, 
unwanted contours in the image typically caused by camera 
jitter or movement of body parts other than the desired limb.  
For our purposes, the median filter used is a sliding-window 
spatial filter that replaces the center pixel value in the window 
with the median of all the pixel values in the window (Figure 
2b). After filtering out smaller contours, a canny edge detection 
algorithm (Canny, 1986) is used to compute the edges of the 
contour and the convex hull of the edge-detected image is 
determined (Figure 2c).  By looking at three consecutive 
vertices of the convex hull, which can be represented by a 
polygon, the resulting angle between the three vertices is 
classified as concave or convex.  The output from this 
methodology provides an ideal geometric outline representing 
the time-sequence of movement during an exercise scenario 
(Figure 2d).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Example image processing sequence used to extract human exercise 
movements 
 

C. Computing Joint Angles Related to Exercise Movement 
Given the geometric representation of the exercise 

movement, we now determine relative joint angles associated 
with a moving body part.  Given that our contour (i.e. convex 
hull) as discussed previously represents a time-sequence of 
limb movements for an exercise, if we determine the relative 
angles between the upper and lower lines of the contour, we 
can compute the relative angle associated with the primary 
joint movement. For example, during a shoulder flexion 
motion, the arm rotates around the shoulder joint.  Our 
methodology would determine the range of motion (i.e. the 
relative joint angles) of the shoulder joint, which would be the 
primary joint contributing to this exercise. For calculating this 

(a) Subject’s starting position            (b) Subject’s ending position 
 

   (c) MHI of sequence, full motion     (d) MHI of sequence, decay  
 

(c) Image obtained from Canny 
Edge Detection algorithm 

(d) Image obtained from the 
Convex Hull 

(a) Original image obtained 
from the MHI process 

(b) Image obtained from the 
Median Filter 



parameter, we utilize the RANdom SAmple Consensus  
(RANSAC) algorithm (Chum, 2005; Fischler and Bolles, 
1981) which determines the best possible line fit given a 
sample set of points by iteratively selecting a random subset of 
inlier points from the original input data set that is consistent 
with a line-model of unknown parameters.  The algorithm can 
be described mathematically as follows: Let P be the 
probability that a sample of size m is randomly selected from a 
set U of N data points 

       

(2) 

 

where ε is the fraction of inlier points ε = I /N . The number 
of inliers I is not known beforehand.  The system continuously 
finds sample sets of inlier points until the likelihood of finding 
a better model given a different set of inliers falls under a 
predefined threshold. The outcome of this process is a set of 
points that define the upper and lower bounding lines of the 
convex hull. 

Once the points that create the upper and lower lines 
are recognized, the slopes of each are used to calculate 
the angle between the two lines via simple geometry as 
shown in Equation 3 
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where  x and  y are  the coordinates  of points  on  each  
line segment,  m1   and  m2 are  the slopes  of each  line,  and  
Θ  and  ROM  are  the current  angle  in  radians and  degrees, 
respectively. The maximum angle found over the length of the 
video sequence gives the Range Of Motion (ROM) (i.e. 
maximum joint angle measurements) of the subject’s 
movements. The ROM correlates to the bounded movement of 
the primary joint involved in the exercise movement.  In 
Section 4, we will discuss results achieved from applying this 
non-contact methodology to extract joint angles associated 
with three upper-arm exercises performed by different human 
subjects. 

III. CONTACT-BASED METHOD FOR UPPER-LIMB 
MOVEMENT EXTRACTION 

One method for contact-based rehabilitation is the 
utilization of an upper extremity robotic orthosis. A common 
method used for orthosis control is to use bio-signals extracted 
from EMG signals. As such, for extracting upper-arm 
movement metrics in this work, we utilize a statistical 
modeling approach that incorporates EMG signals for 
recording of muscle activity level. In this method, a Hidden 
Markov Model (HMM) process is used to predict the hidden 
sequence of states (i.e. upper extremity motions) by only 
evaluating a set of observations (i.e. associated EMG activity). 
EMG signals, which represents the electrical activity that 

occurs when skeletal muscles expand and contract, have been 
shown to be essential in the myoelectric control of 
artificial/prosthetic limbs  (Asghari Oskoei and Hu, 2007, 
Kiguchi and Fukuda, 2004).  EMG signals provide pertinent 
information on the desired intent of muscle exertion as well as 
the types of motions the arm is commanded to perform.  By 
observing a sequence of EMG signals extracted from muscles 
involved during upper-arm reaching motions, the HMM 
process can predict the actual joint angles related to the 
movement being performed  (e.g., the joint angles of the elbow 
and shoulder).  The Range Of Motion (ROM) metric associated 
with the joint angles derived from the contact-based method 
correlates to the summation of the elbow plus shoulder angles 
involved in the movement.  In this research, the sequence of 
EMG signals correspond to observations the HMM will use as 
an input while the joint angle positions are the sequence of 
states the algorithm will output. 

A. Acquiring the EMG data signal 
To implement the HMM algorithm described in this work, 

a data acquisition system capable of simultaneously capturing a 
subjects EMG activity during upper-arm motions and the joint 
angle information associated with those motions is utilized. 
The Upper Extremity Motion Capture System (Figure 3) was 
used for this purpose (Nanda et al, 2009). The system consists 
of a platform for stability and an upper-arm brace that 
constrains the arm to three degrees of freedom. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Upper Extremity Motion Capture System 
 

Joint angle measurements are taken through the use of three 
rotary potentiometers that are integrated in the brace: two at the 
shoulder joint, and one at the elbow joint.  Each potentiometer 
has a voltage range of +/- 2 volts, corresponding to joint angles 
between 0° - 360°.  The top shoulder joint is configured to 
collect data from 0° - 140° in the transverse plane, while the 
side shoulder joint collects data in the sagittal plane within the 
same range.  The elbow joint can measure between 17° - 180° 
in the sagittal plane.  EMG data is recorded through the use of 
dual EMG electrodes with two snaps and two gel sites 
separated by 1 cm.  Both EMG and angle measurements are 
sent to the BioRadio™, a lightweight, commercial 
bioinstrumentation system with 12 configurable channels from 
Cleveland Medical Devices (Cleveland Medical Devices, 
2008). Data from this system can be acquired at a frequency of 
960Hz with 12 bits data rate. The first two channels of the 
BioRadio are configured to accept  the potentiometers data 



whereas the next  four channels  are  set  to collect  EMG  
signals  from  the deltoid,  the biceps  brachii,  the triceps  
brachii,  and  the brachioradialis.  

B. Hidden Markov Model 
Since EMG data tends to be large and usually contains 

redundant information, the data is first transformed into a 
representative set of features to reduce the amount of data 
under analysis without compromising the information it 
contains.  Since EMG signals are continuous, the data also 
needs to be quantized in order to be processed as a discrete 
signal.  Hence, a feature extraction approach is performed on 
the raw EMG data, followed by a vector quantization method, 
before it is used as input into the HMM process.  As suggested 
by Oskoei (Asghari Oskoei and Hu, 2007), the EMG signal is 
decomposed into segments of 100 data points. Features are 
then extracted using a fourth order autoregressive model, 
which collects the first four coefficients from each channel and 
then feeds the extracted features into a vector quantization 
process using the K-means algorithm.  These features, which 
represent the contact-based input signals, are then parsed into a 
Hidden Markov Model.  

A Hidden Markov Model (HMM) is defined by the number 
of states M, the number of observations N, the transition matrix 
A which signifies the probability of the transition from one 
state to another, the emission matrix B which corresponds to 
the probability of an observation occurring given a state, and 
the initial state distribution, π. These parameters are 
represented by a compact notation, λ (Chan and Englehart, 
2005): 

λ = (π, A, B|M, N )       (4) 
 

In order to define all the necessary parameters of our 
HMM, three basic tasks need to be performed.  The first task, 
evaluation, is to calculate the probability of the sequence of 
observations corresponding to the specific HMM parameters. 
The second task involves the discovery of the sequence of 
states that generated the corresponding observations. This is 
referred to as the decoding stage, and the Viterbi algorithm is 
used to perform this task. Lastly, the third task is to adjust the 
model parameter, λ, in order to maximize the probability of a 
sequence of observations fitting a model. This stage is called 
the learning stage (Rabiner, 1989). For our application, 
observations are associated with the quantized EMG signal and 
the state represents joint angle measurements. This approach is 
an extension of previous work shown in (Nanda et al, 2009). 
Through this process, given a sequence of EMG signals, which 
are directly correlated with muscle exertion during an arm 
exercise motion, we can extract the corresponding arm joint 
angles of the user. 

IV. EXPERIMENTAL PROTOCOL 
In this section we compare the two approaches for 

extracting arm movement data based on an experimental 
protocol that recruited five human subjects.  Subjects ranged in 
age from 17 to 24, and consisted of three males and two 
females. Subjects were required to perform three different 
motions:  shoulder flexion, elbow flexion, and arm extension 

(Figure 4). Shoulder flexion consists of keeping the entire arm 
straight and rotating it about the shoulder joint in the sagittal 
plane.  Elbow flexion corresponds to the flexion or the curling 
of the arm at the elbow joint.  Arm extension is a combination 
of shoulder and elbow flexion performed in the sagittal plane. 
Subjects begin this motion starting from the 90º elbow joint 
angle and then reaching forward in the sagittal plane.   

 
 
 
 

 
(a) (b) 

  
 
 
 
 
 

(c) 
Figure 4.  Upper-Arm Exercise Motions: (a) Shoulder Flexion, (b) Elbow 
Flexion, (c) Arm Extension 
 

For the non-contact based method, a Logitech webcam with 
a 15 frame per second (fps) frame rate was used to capture the 
motion of each subject.  For the contact-based protocol, the 
Upper Extremity Motion Capture system with a data 
acquisition rate of 960Hz with 12 bits data rate was used in 
conjunction with the CaptureLite software from Cleveland 
Medical Devices to extract the data associated with the 
exercise movement. 

For each motion, subjects were asked to perform three trials 
of thirty-second long repetitive and continuous arm actions.  
The results from each algorithmic approach  (non-contact 
versus contact) were plotted against the actual joint angle 
measurements to evaluate its accuracy.  Figure 5 highlights an 
example result from the contact-based approach derived from a 
shoulder flexion exercise of one subject whereas Figure 6 
highlights an example result for the non-contact based 
approach derived from an arm extension motion. 

 

 

 
 
 
 

 
 

 
 
Figure 5.  Extracting movement data from a shoulder flexion exercise using 
the contact-based approach 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
Figure 6.  Extracting movement data from an arm extension exercise using the 
non-contact based approach   

 

To evaluate each algorithm, the average error between the 
predicted and actual angle measurements for the primary joint 
of motion was calculated (Figure 7). With overall mean errors 
of 14° and 13° for the contact-based and non-contact based 
algorithms respectively, both options seem viable for 
calculating subject movements during robot-assisted 
rehabilitation.  As a comparison, the work presented by Au and 
Kirsch  (Au and Kirsch, 2000) yielded an error less that 20°. 
The largest error in both the contact-based approach (as well as 
the work by Au and Kirsch) was found during elbow flexion 
motions.  Whereas, the largest error for the non-contact based 
approach was found during the arm extension motion. 

 

 
 

  
 
 
 
 
 
 
 

Figure 7.  Error Analysis for Range of Motion (ROM) associated with 
Exercise Movements from the five human subjects. 
 

V. DISCUSSION AND FUTURE WORK 
Given that both methods perform reasonably well, in this 

section, we discuss the pros and cons of each method for 
developing a set of criteria that can be used for determining 
which to employ in a rehabilitation scenario. The main issue in 
the development of a contact-based approach is the 
requirement for a calibration routine. In the case of the HMM 
method, this required access to EMG sensors that could be 
used for learning of system parameters. For the non-contact 
based approach, there is a need to have movement be in-line of 
site of the camera viewpoint. In other words, if the camera 
cannot image the full motion of a joint, an invalid angular 
value will be derived. In general, the contact-based approach 
provides a more robust model for generalizing the tracking of 
joint angles since by utilizing multiple EMG sensors, detailed 
information about the patient’s muscular activity can be 
extracted and utilized for tracking more complicated 
movements without requiring a change in the algorithm itself. 
For the non-contact based approach, a new model would need 
to be created for more complicated motions in which multiple 

joints move simultaneously in different planes (e.g. sagittal 
versus transverse plane). However, for simple motions, which 
require only one joint to move significantly, the vision-based 
approach allows for quick and reliable calculations with 
minimal cost. In terms of the feasibility for patients being able 
to obtain each device for personal use though, the non-contact 
based approach seems to provide a more viable option. The 
contact-based approach, although more robust, requires an 
integrated hardware system that would be challenging to 
integrate safely for in-home use. However, it is ideal for 
rehabilitative facilities requiring such devices.  In contrast, the 
non-contact based approach is a cost efficient method for in-
home rehabilitation. With the availability of a simple camera, a 
patient could perform rehabilitative exercises at home and have 
the results sent to his or her physical therapist for analysis. 

As such, the future objective of this work is to robustly 
quantify physical rehabilitative metrics for patients during in-
home therapeutic sessions with an assistive robotic device 
providing guidance. In the immediate future, we will look at 
other mobility metrics, such as velocity and jerkiness, in order 
to obtain a more detailed assessment of patient movement 
history. Acceleration would be of particular importance 
because it can be used to measure the spasticity of certain 
patients, such as those diagnosed with cerebral palsy.  
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