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Abstract—In previous work we showed that some human
Voluntary Muscle Contractions (VMCs) of high interest to the
prosthetics community, namely finger flexions/extensions and
thumb rotation, can be effectively predicted using muscle ac-
tivation signals coming from surface electromyography (sEMG).
In this paper we study the effectiveness of various subsampling
strategies to limit the size of the training data set, with the
aim of extending the approach to an online VMC-prediction
system whose main application will be force-controlled hand
prostheses. We performed an experiment in which 10 able-
bodied participants flexed and extended their fingers according
to a visual stimulus, while muscle activations and VMCs (repre-
sented as synergistic fingertip forces) were gathered using sEMG
electrodes and a custom-built measurement device. A Support
Vector Machine (SVM) was trained on a fixed-sized subset of
the collected data, obtained using seven different subsampling
strategies. The SVM was then tested on subsequent new data. Our
experimental results show that two subsampling strategies attain
a prediction error as low as 6% to 12%, which is comparable to
the error values obtained in our previous work when the entire
data set was used and processed offline.

I. INTRODUCTION

Over the past 30 years surface electromyography (sEMG)

has received increased interest from the rehabilitation research

community as an input modality for controlling advanced hand

prostheses (see [1], and also the surveys in [2], [3]). Tradi-

tionally two sEMG electrodes were used to capture muscular

signals that triggered movements of a simple one degree-of-

freedom open/close type gripper when predefined thresholds

were exceeded. However, with the appearance of polyarticu-

lated prostheses such as, e.g., Otto Bock’s Michelangelo1 and

RSL Steeper’s BeBionic2 hands, more sophisticated control

solutions to actuate the single fingers are being investigated.

In particular, sEMG patterns are classified according to the

desired hand posture, leading to a more natural form of

open-loop control. This approach has, in turn, at least three

disadvantages: (a) it forces the user to select from a limited

set of predefined grip types; (b) the stability of the prosthesis

is starkly affected by the accuracy of the classifier; and (c) it

enforces no control over the force the prosthesis applies.

In order to circumvent these problems, we have recently

proposed [4] a radical shift: to use Voluntary Muscle Con-

1www.ottobock.com
2www.bebionic.com

tractions (VMCs), rather than hand position configurations, as

the target values of machine-learning-based prediction. VMCs

are defined as voluntary actions of muscle contraction which

produce measurable effects, in our case forces. Typically, when

a participant is asked to attain a specific finger force, for

example to voluntarily flex the index finger to 50% of its

maximum force, adjacent fingers will also change posture

and produce side-effect forces [5]. Using VMCs allows us to

isolate the finger of interest and associate synergistic muscle

activations with it.

VMCs can be quantitatively elicited from any participant us-

ing visual stimuli, which is a standard experimental paradigm

for this kind of investigation. Moreover, a set of VMCs of

interest can be selected according to the degrees of freedom af-

forded by a particular prosthesis, therefore simplifying the con-

trol task. Finally, VMCs provide a continuous representation

of the action space, independent of the participant’s anatomy

(the muscles and/or motor-units involved). This means that

their prediction enables force-based control over an infinite

manifold of configurations. We argue that this will maximize

the dexterity of control and in the future allow prosthetic

wearing amputees to perform a wider variety of activities

in their daily lives through enhanced control of prosthesis

hardware.

In this paper we build on the results obtained in our previous

work [4], extending the prediction to unseen data using a

training set that is strictly limited in size. In general cases, in

which the prediction model is trained online, a strategy to limit

the amount of training samples is normally required to reduce

the computational effort. Such models typically obtain much

worse results on unseen data, largely due to the well-known

issue of the sEMG signal drifting and changing over time [6],

[7]. Online processing of sEMG signals for classification has

yielded interesting but sub-optimal results in recent times, for

instance in [8] where an average classification accuracy of

79% on amputees was reported. This is far below the results

obtained for able-bodied participants in the offline setting.

In the experiment ten able-bodied participants were in-

structed to apply finger-force patterns associated with VMCs

of interest during a data-gathering phase, while wearing sEMG

electrodes around the forearm to capture muscle activations.

The obtained data sets were subsampled using a number of
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schemes and six Support Vector Machines (SVM) [9], [10]

were trained on the reduced data set. In the final phase,

VMCs were predicted (as synergistic fingertip forces) using

the obtained models. The best results are obtained by ignoring

samples which are too close (in force space) to previous

ones. The resulting prediction errors range between 6.39%
and 11.54% of the force ranges; these values are in line

with those we previously obtained in a similar, but offline,

experiment in [4]. We note that none of the strategies we

employed emerged as a clear winner, suggesting that there

exists some flexibility in choosing a subsampling strategy.

In the next section we describe the experimental setup

and protocol in detail. In Sec. III we discuss the analysis

methods and tested subsampling strategies. Sec. IV presents

the experimental results, and finally in Sec. V we draw

conclusions and outline future work.

II. EXPERIMENT DESCRIPTION

The goal of the experiment was to predict VMCs as

synergistic combinations of fingertip forces. To this aim the

participants applied finger forces and their forearm muscle

activations and the forces produced by the fingertips were

recorded. The setup consisted of three main parts: the sEMG

electrodes, the finger force capturing sensor rig and visual

stimuli presented on a monitor [Fig. 1].

A. Surface electromyography

Ten OttoBock MyoBock 13E200 sEMG electrodes were

used to capture the muscle activations on the participant’s

forearm. These electrodes provide an amplified, bandpass

filtered and rectified signal. They were strapped around the

participant’s forearm, just below the elbow, using an adjustable

hook-and-loop band. Five electrodes were placed on the dorsal

side, and the other five were placed on the ventral side of the

forearm. All electrodes were evenly distributed without any

respect to intrinsic muscles (the region of the ulna was avoided

since no strong muscular signal is available there).

B. Fingertip forces

In general, a single VMC generates a simultaneous change

of flexion/extension force in several fingertips, making an

accurate synchronous gathering of forces from all fingers a

necessity. To this end we use our custom built Finger-Force

Linear Sensor (FFLS) [11]. The FFLS measures single finger

flexion and extension forces3 of the index, middle, ring and

little fingers, using an individually calibrated ±100N industrial

strain gauge based force sensor for each finger. Thumb rotation

and adduction/abduction forces are captured using a single

radial dual-axis calibrated strain gauge sensor with a similar

±100N range4. These sensors are characterized by their high

signal repeatability, minimal drift over time and almost perfect

3Finger flexion and extension refer to pushing the finger down and pulling
the finger up respectively.

4Thumb rotation is an intuitive description of the thumb rotational motion,
and thumb adduction/abduction refers to drawing the thumb closer or pushing
the thumb further away from the palm.

Fig. 1. The experimental setup. Visual stimuli, consisting of an array of
animated, colored bars (upper part of the picture) is shown to a participant.
The participant’s fingertips are attached to the finger force capturing device
(Finger-Force Linear Sensor (FFLS) [11]). The sEMG electrodes are clearly
visible on the forearm just below the elbow.

linearity and non-existent hysteresis with both parameters

guaranteed to deviate not more than 0.3%. Each strain gauge

force sensor is connected to a dedicated industrial strain gauge

amplifier, which converts the applied force into an analog

voltage.

All sensors are adjustable for various hand sizes and were

mounted rigidly after positional adjustments. The fingers are

tightened to the sensors using hook-and-loop bands with min-

imal slack. Custom made gypsum casts are used for backlash-



Fig. 2. The stimulus and typical data collected during the training phase. (top panel) The sequence of the stimuli, six single-finger VMCs and three multi-
finger VMCs. (center panel) The corresponding force data recorded by the FFLS — colors denote the force sensors and the force values are mostly negative
since we defined flexion as the negative direction of the sensor axes. The six single- and three multi-finger VMCs are clearly seen; for instance, flexion of the
index appears roughly between 140s and 180s as a series of five blue negative force peaks; the pinch grip (combination of index flexion and thumb adduction)
appears as a series of combined blue and yellow peaks between 290s and 330s. (bottom panel) Two typical sEMG signals (red denoting an electrode placed
on the dorsal side of the forearm, blue on the ventral side) corresponding to the elicited VMCs.

free (to ensure data is recorded for all movements) attachment

of the participant’s thumbs to the dual-axis sensor. Both the

sEMG electrodes and the FFLS are connected to a 12-bit

resolution multichannel digital acquisition card that gathers

data with a sampling frequency of 25Hz. This relatively low

sampling rate was sufficient because the stimulated individual

actions lasted for 5 to 10 seconds each and the sEMG

electrodes provided a filtered signal.

C. Visual stimulus

A graphical user interface was displayed on a large monitor

in front of the participant. The application was programmed to

be used intuitively without prior training, and makes extensive

use of wizards that led the participants’ through the different

phases of the experiment, namely calibration, data gathering

and prediction. The requested VMC was graphically presented

using six red colored bars, one for each considered finger

movement direction (flexion of the index, middle, ring and

little fingers, plus thumb rotation and adduction). The height

of the bars denotes the intensity of the targeted finger force.

Next to the stimulus, blue colored bars show the measured

fingertip forces and thus provide the participant with real-time

visual feedback. During the prediction phase, the predicted

finger forces are shown in an additional, third bar, colored in

green.

D. Experimental protocol

The experiment consists of the calibration, data gathering

and prediction phases. In the calibration phase, the idle and the

maximum forces of each finger are recorded and averaged over

a period of two seconds each. During the phases following the

calibration, the requested force is limited to a fixed fraction of

the captured maximum force. The top panel of Fig. 2 shows

the nine requested VMCs during the data gathering phase.

Six single-finger and three multi-finger VMCs were requested,

the latter ones representing common grasp postures used in

everyday life and resembling common grip patterns [12]. We

concentrated on a pinch grip, an index finger pointing gesture

and a power grasp. With the pinch grip (simultaneous thumb

adduction and index flexion) small objects like a pen can be

picked up. The index pointing gesture (flexion of the middle,

ring and little finger) is used for pressing buttons and switches.

Big objects, for example a bottle, are typically held using

a power grasp, which is performed by flexing all fingers

simultaneously.

During the data gathering phase, the stimulus increased from

0 to 80% of the participant’s maximum achievable force from

the calibration phase for the single-finger VMCs and from 0

to 60% for the multi-finger VMCs, and then decreased back

to 0 in a total of six seconds. Two seconds of rest were

provided between VMCs in order to avoid muscle fatigue.

Each VMC was repeated five times, which resulted in a total of

45 VMCs and a data gathering phase duration of ≈7 minutes

[Fig. 2]. The data gathering phase was followed by a prediction

phase, during which all VMCs were repeated two times

(total duration, 2.8 minutes). The total experiment duration

lasted ≈15 minutes, including the positional adjustment of all



sensors, the calibration, data gathering and prediction phases.

The system was tested with 10 able-bodied participants (all

right-handed; 9 male, 1 female; aged 27.40 ± 4.41 years, min:

23, max: 29). The participants sat on an office chair, which was

adjusted for maximum comfort, but ensuring that the armrest

was kept at the same height as the FFLS. By slightly reclining

the chair, we made it difficult for participants to use their

body weight to generate extra force. They were also explicitly

instructed not to try this. No fatigue was reported for the

single-finger VMCs. However, it is interesting to note that all

participants reported that it was more difficult to follow the

stimulus for the multi-finger VMCs, even though the required

forces were reduced to only 60% of the maximum single

finger force value. Indeed, some participants did not even

manage to reach the requested 60% force level simultaneously

with multiple fingers. Nevertheless, it is important to note that

ground truth is always available in terms of fingertip forces

synchronized to the sEMG, therefore avoiding the need for

the participant to exactly match the stimuli (which would be

essentially impossible).

III. DATA ANALYSIS

The maps from sEMG to the six forces representing the

VMCs were built using six Support Vector Machines (SVM,

[9], [13]) with Radial-Basis-Function kernels in ε-regression

mode [14]. The sEMG signals, one for each electrode, define

the R
10 input space, while the six force values representing the

six VMCs define the R
6 output space. The data collected dur-

ing the data gathering phase was pre-processed, subsampled

and then used to train the six SVMs. Subsequently, the SVMs

were used to predict in real-time (at 25Hz) the force applied by

the participants during the prediction phase. The optimal SVM

hyperparameters C and γ were determined through cross-

validation and grid-search of one recorded dataset in an initial

round of experiments (optimal values: C = 10, γ = 0.1; ε
was set at one tenth of the force signal’s standard deviation).

The training data was normalized by subtracting the means

and dividing by the standard deviations. Normalization of the

testing set during the prediction phase was performed in the

same way using the statistics of the training set.

A. Preprocessing

The force data was preprocessed using a 1st order Butter-

worth low-pass filter with a 2Hz cutoff frequency, which is

similar to our previous work [4]. For the sEMG data, a cutoff

frequency of 1Hz was chosen. The selected filter frequencies

were determined through visual inspection of the spectral

contents to ensure that all important information was retained.

With a sampling rate of 25Hz, this resulted in ≈10,500

sEMG/force pairs for the training phase.

B. Subsampling Strategies

Several subsampling strategies were employed to build

training data sets out of the data collected during the data

gathering phase. Subsampling ensures that the computational

requirements needed by an online system are not exceeded,

i.e., it keeps the training set at a fixed size even though in an

online setting the input data set could be extremely large. The

main idea behind the subsampling strategies we compared is

that of distance between pairs of samples, a choice justified as

follows: a map from sEMG to forces represents a relationship

between two physiological events (muscle activation and the

force exerted at the fingertips); therefore, it is reasonable

to assume, according to the literature [15] and using our

intuition, that the relationship is a smooth one. According

to this argument, samples which are too close to previously

recorded ones can be neglected. For our approach, closeness

is represented as an inter-sample distance in either force or

sEMG space.

More formally, let S be the set of sEMG/force samples

collected during the data gathering phase. A subset S′ ⊂ S
was built according to one of the following subsampling

strategies:

1) samples were randomly picked from S (random subsam-
pling);

2) samples were randomly picked from S, but this time

they were only selected if the forces were above 75%
of the sampled maximum force during the data gathering

phase (random subsampling with preselection);

3) samples picked from S such that ||si−sj || > d, si, sj ∈
S′, for any i, j = 1, · · · , |S|, where d is a threshold that

represents the minimum inter-sample distance allowed

(Euclidean distance subsampling of sEMG data);

4) same as above, but the distance test is done in the output

space on the force data (Euclidean distance subsampling
of force data);

5) same as item 3 but the Mahalanobis distance is used

instead of the Euclidean distance, i.e., given two sam-

ples s1, s2, MD(s1, s2) =
√

(s1 − s2)TC−1(s1 − s2)
where C−1 is the inverse covariance matrix of S (Ma-
halanobis distance subsampling of sEMG data);

6) same as item 4 but the Mahalanobis distance is used

(Mahalanobis distance subsampling of force data);

7) sEMG samples which yield no hash collision when

entered into a standard hash table of predefined size.

Hashing was done using 20 equidistal bins in sEMG

space (hashing).

Of course for each strategy one needs to decide the size

of the resulting set, |S′|; in the case of random subsampling

(strategies 1 and 2 above), this can be directly chosen, while in

the other cases d must be chosen each time in order for |S′| to

be close to the desired size. In both cases, in order to check the

effectiveness of each strategy, we let |S′| range over several

values between 300 and 1500 (this upper value was limited by

the CPU speed of the testing machine), in each case checking

the attained error rate on the set S − S′ [Fig. 3]. As an error

measure, we chose the Root-Mean-Square error, normalized

over the range of the observed force values (NRMSE).

The best results were achieved using random subsampling
with preselection and Mahalanobis distance subsampling of
force data (strategies 2 and 6). Fig. 4 shows the detailed



Fig. 3. Error rates for each subsampling strategy as |S′| increases.

comparison of these two strategies. For random subsampling
with preselection, the test was repeated 50 times and the error

was averaged (in the figure, one standard deviation is shown).

The comparison of these strategies reveals no clear winner for

the three VMCs shown, and this was also the case for the

remaining VMCs (not depicted). In order to build the sEMG-

to-VMC maps for the prediction phase of our experiment, we

chose Mahalanobis distance subsampling of force data, mainly

due to its non-random nature; given the same S, this strategy

will always yield the same S′.

IV. RESULTS

NRMSE was used as a measure to evaluate the performance

of the models obtained from S′ on the data collected during the

prediction phase. Table I shows the results for all participants

and all tested finger movements. This means that the statistics

shown for each finger movement (e.g., Index) include both

single and multiple VMCs.

The best accuracy was obtained by Participant #7, with

error values ranging between 3.03% and 9.76%, and the worst

accuracy was obtained by Participant #8, with error values

ranging between 8.23% and 16.27%. The finger movement

that was best predicted was flexion of the ring finger, with

Fig. 4. Error rates of the two best strategies: random subsampling with
preselection and Mahalanobis distance subsampling of force data, for three
typical VMCs (flexion of the index and little fingers and thumb adduction).

error values from 3.03% to 11.79%, whereas the thumb

adduction prediction performed worst, with values from 4.60%
to 16.27%. The fact that the thumb adduction was the hardest

finger movement to predict is not surprising, given that mus-

cles devoted to its movement lie mainly within the hand and

are far from the sEMG gathering sensors. It is on the other

hand comforting to see that the thumb rotation, an extremely

important VMC, can be predicted with similar accuracy to the

other finger VMCs (8.90%± 0.93%).

Fig. 5 displays a typical comparison between measured and

predicted force values for the data from Participant #3. As

can be seen, the prediction errors for single- and multi-finger

VMCs are comparable. In some cases the prediction for the

multi-finger VMCs (the peaks starting from 120 second mark)

is even slightly better than for the single finger movements.

This is probably due to the fact that it is impossible to

simultaneously apply equal force with many fingers [5], which

results in a large Mahalanobis distance through variances in the

force patterns. Therefore, during the training phase, a higher

percentage of data associated with multiple VMCs could be

favored for selection into S′ to train the SVM models.

V. CONCLUSIONS AND FUTURE WORK

The existence of a stable relationship between sEMG and

some VMCs of interest, namely finger flexions and extensions

and thumb rotation, has already been shown in [4]. The

VMCs were chosen to match the degrees of freedom of

modern, polyarticulated hand prostheses. In this paper, we



TABLE I
NORMALIZED ROOT-MEAN-SQUARE ERROR (NRMSE) FOR ALL PARTICIPANTS AND FINGERS TESTED, PLUS RELATED STATISTICS.

NRMSE [%]
Participant# Index Middle Ring Little Th.rot. Th.add. mean ± std.

1 9.94 9.22 9.14 6.56 10.15 15.91 10.15 ± 3.10
2 6.95 9.27 8.72 9.18 8.72 4.97 7.97 ± 1.69
3 9.29 10.80 7.58 4.74 7.36 4.60 7.40 ± 2.45
4 11.16 7.04 6.51 7.41 8.43 11.86 8.74 ± 2.25
5 9.40 8.80 5.20 6.22 9.06 14.71 8.90 ± 3.31
6 10.32 7.79 6.05 6.19 8.59 13.87 8.80 ± 2.95
7 9.76 5.61 3.03 3.96 9.23 6.73 6.39 ± 2.73
8 13.07 11.21 8.23 9.79 10.74 16.27 11.54 ± 2.81
9 11.90 12.08 5.15 7.39 8.74 6.03 8.55 ± 2.93

10 7.77 9.70 11.79 6.42 8.01 6.25 8.32 ± 2.11
mean ± std. 9.96 ± 1.72 9.15 ± 1.87 7.14 ± 2.36 6.79 ± 1.69 8.90 ± 0.93 10.12 ± 4.58

Fig. 5. Recorded and predicted force values of all considered VMCs during one representative trial. All VMCs performed in the training phase are repeated
two more times for testing. The data from 0 to 120 seconds refers to force values gathered during single-finger VMCs phases, and the data after 120 seconds
refers to the force values captured while participants’ were performing multi-finger VMCs.

extend our previous work towards having online training of

SVM models using limited-sized training datasets. In the

described experiment, 10 able-bodied participants were asked

to apply graded VMCs according to a visual stimulus. Several

subsampling strategies were applied to the obtained datasets,

and models obtained from these subsets were used to predict

the same VMCs obtained during a further session. Our results

demonstrate that subsampling strategies can be used to obtain

error rates similar to those obtained on the entire dataset [4]

with values ranging from 6% to 12%. Whether this accuracy

is usable in practice is still the subject of future research, but

our approach is promising.

A number of factors had to be considered. Firstly, the usage

of a strategy for subsampling is just one (and probably the

simplest) of the possible ways to bound a training set of a

machine learning method in an online setting. New data is

always available, and no method can afford to work on an

ever-growing dataset. This is the main motivation behind this

research. Secondly, the selection of a particular subsampling

strategy proved to be not as critical as we had expected.

This finding needs further investigation; for example, it is

not entirely clear which strategy scales up to much larger

datasets, collected over hours and days. Random strategies, on

the other hand, would almost certainly prove sensitive to the

frequency content of the stimulus. Nonetheless, our approach

is promising, revealing that online training and prediction with

a limited training dataset is viable.

As far as timing is concerned, any method supposed to work

online needs to enforce fast prediction, at least matching the

capability of the target control system (i.e., a prosthesis) or

cases in which a simulated model is given as visual output

to a participant, should achieve an update rate in excess of

≈25 Hz. In our case, the prediction takes roughly 100μs with

2000 support vectors on a current typical desktop computer,

which results in more than an adequate performance. We note

however that the training phase, even with the reduced dataset,

may take up to 10s.

A practical application of this system should take into

account the limited capabilities of amputees to apply graded

forces with the residual muscles of the missing limb. To this

aim we are studying the possibility of training on only null and

maximum forces and without using any force sensor; initial



results reveal that this strategy is promising. Generalization of

single-finger VMC to multi-finger ones is still an open issue

and is being investigated as well.

We note that our choice of the NRMSE as a measure of

error might not be optimal and that some alternative form of

locally-weighted error (see, e.g., [15]) could be more suited

to the problem. However, the final benchmark should be a

physiological one, such as, e.g., the success rate of human

participants engaged in a box-and-block task [16] while using

a prosthetic device controlled by various algorithms. There-

fore, work is underway to test our approach using a 3D hand

model in order to check whether amputees can perform the

exercise with the same level of performance as was achieved

by able-bodied participants during this experiment. Based on

previous results, e.g., [17], we are confident of success. Finally,

there are plans to test the stability of our system with a robotic

hand.
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