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 Abstract-- This paper presents an algorithm to identify 
features of the navigation surface in front of a wheeled robot.  
Recent advances in mobile robotics have brought about the 
development of smart wheelchairs to assist disabled people, 
allowing them to be more independent.  These robots have a 
human occupant and operate in real environments where they 
must be able to detect hazards like holes, stairs, or obstacles.  
Furthermore, to ensure safe navigation, wheelchairs often need 
to locate and navigate on ramps.  The algorithm is 
implemented on data from a Kinect and can effectively identify 
these features, increasing occupant safety and allowing for a 
smoother ride.  
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I. INTRODUCTION

 Previous work in robotics has been focused on finding 
large obstacles blocking an assumed navigable path, but not 
looking at the navigation surface itself.  However, this 
approach is not adequate to ensure the safety of a smart 
wheelchair operator.  This paper discusses an approach 
based on taking gradients from depth data returned by a 
Kinect, mounted on the front of the robot and pointed down 
toward the floor.   

 Many autonomous robots use image processing 
techniques to identify the road surface, which is assumed to 
be traversable.  (Other sensors identify large obstacles, like 
cars.)  A camera is mounted on the robot, and the video feed 
is analyzed to determine which part of the image represents 
a drivable surface [1].  In the case of robotic cars, the lines 
painted on the road are detected; the traffic lanes are located 
and a “drivable surface” is defined to be a lane.  However, a 
smart wheelchair robot uses a very different definition of 
“drivable surface.”  Wheelchairs operate on surfaces not 
specifically designed for wheeled vehicles.  Drivability 
cannot be determined by just looking for certain lines on the 
ground.  If a camera is to be used, additional object-
detection methods must be employed. 

 One issue common with a single camera is a lack of 
depth perception, which makes it hard to identify whether 
differences in color or texture represent an obstacle or a 
shadow.  Some of the methods involve examining the image 
histogram, coupled with feature detection [2] or Canny and 
Hough transforms [3].  Progress has also been made using 
image segmentation techniques and logical operations [4].  
Additionally, there are techniques based on using a stereo 
camera to get a 3D representation of the road surface, and 

further processing that information along with the image 
data [5].   

 However, these methods are not sufficient for ensuring 
the safety of the wheelchair operator.  They can detect the 
road surface itself, but are unable to identify large bumps in 
the road, particularly if the bump is the same color and 
texture as the rest of the road surface.  Also, image 
processing will not give information about the slope of the 
road surface.  The Kinect addresses this need by returning a 
three-dimensional point cloud with depth information. 

 In many cases where irregularities in the road surface 
are a concern, autonomous vehicles use sensors that give 
information about depth, rather than using a simple camera.  
For example, time-of-flight cameras [6] and SICK Lidar 
units are used.  Typically the lidar is pointed down toward 
the road at an angle, allowing it to see the road surface and 
determine the location of a curb or other obstacles [7].  
Furthermore, the height information can be subtracted in 
order to find the gradients of the surrounding area [8] [9] 
[10].  This is useful for identifying ramps or sloped surfaces 
and distinguishing them from actual obstacles; this method 
of calculating gradients will be expanded upon in this paper. 

 The Kinect is a sensor which uses an infrared depth 
camera to return an array of three-dimensional points, 
representing the objects that are in front of the camera.  The 
Kinect itself is a comparatively cheap, ubiquitous sensor 
which gives a large amount of reliable data whose potential 
for use in robotics is being realized.  In the field of mobile 
robots specifically, the Kinect was found to be an effective 
tool for target tracking and navigation [11] [12].  It was 
even found to be useful for localization and mapping for a 
robotic wheelchair  [13].   

 There are also several approaches which use point cloud 
data similar to the data output by the Kinect, to find ramps 
and irregularities in the ground surface.  One example used 
a time-of-flight camera to assist in seeing curbs and ramps 
for a car backing up.  A variation on the RANSAC 
algorithm (an approach that is often used to fit planes to 
data containing outliers) was used to fit planes to the point 
cloud data and locate the road surface and any other 
surfaces [14].  However, this approach would not be 
adequate for the smart wheelchair; there may be some small 
holes or bumps which present a risk to the wheelchair but 
are too small or irregularly-shaped to be found using a plane 
fitting.   
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 Another plane-fitting approach uses a patch of data 
points around the point being evaluated, and calculates the 
slope and roughness of the best-fit plane for that patch.  
Next, the values for slope and roughness are used to 
determine traversability, and this process is repeated for 
each data point in the point cloud [15].  However, this 
algorithm is computationally intensive, and the “roughness” 
calculation does not quite address the needs of the 
wheelchair; the wheelchair robot needs to know whether the 
floor is “rough” because of a large obstacle, small bump, or 
just a bumpy texture on the floor itself. 

 Other algorithms calculated the curvature of different 
parts of the point cloud.  The point cloud could be 
segmented at the points where there was a change in the 
curvature [16] [17].  However, a wheelchair robot must 
identify the slope of a ramp, not a sudden change in 
curvature. 

 In another example involving point cloud data, the 
points were connected into line segments if the vertical 
distance between them was small enough.  The line 
segments were then joined into surfaces, and the surfaces 
could then be classified as bare earth, detached objects (like 
buildings and plants), and attached objects (like ramps and 
bridges) [18].  However, this method is very 
computationally intensive and does not address the needs of 
a wheelchair.  This algorithm would categorize a large 
region as “bare earth” if all the points were connected, but 
the wheelchair robot needs to know the slope in order to 
decide whether it is safe to drive there.   

 The previous work summarized here is effective for 
certain tasks, but it does not adequately address the needs of 
a smart wheelchair, particularly the need to detect drivable 
surfaces.   

II. SOFTWARE AND HARDWARE

 The research presented here builds on previous work 
using ROS (Robot Operating System) for mobile robotics 
[19] [20] [21] [12].  ROS is a robotics software framework, 
useful for developing robotics applications.  Additionally, 
OpenNI, an open-source driver, was used to handle the data 
received from the Kinect and publish it in a form that could 
be used by ROS.  The code for this project was written in 
C++ and run on a Lenovo ThinkPad laptop with an Intel 
T7300 processor and clock speed of 2GHz [22] [23].  

 The Kinect was mounted on the front of a mobile robot, 
approximately 1 meter above the ground, pointed toward the 
floor at an angle of approximately 50 degrees from the 
horizontal.  This particular angle and height were chosen 
based on information about the Kinect’s strengths and 
limitations [23]. 

III. CLASSIFYING FEATURES OF THE FLOOR SURFACE

 The Kinect data is transformed into the robot’s reference 
frame, and is used to segment the area in front of the robot 
according to drivability.  The algorithm presented here 
classifies regions into the following five groups: 

Level floor.   The robot can drive on this without any 
problems. 

Ramps.   It is often necessary to drive on ramps, but 
they require more careful consideration first.  
For example, the robot may need to slow 
down, and may need to approach a ramp from 
a particular angle.   

Bumps.   These are small objects on the floor, but they 
are safe to run over.  For example, power 
cords or small cracks in the floor would be 
classified as bumps.   

Obstacles.   These must be avoided; the robot cannot 
safely run over them.  (The specific 
thresholds to distinguish obstacles and bumps 
are dependent on the characteristics of the 
individual robot.  For example, the robot’s 
wheel size directly relates to the size of 
objects that can be safely run over.)  This 
category also includes dangerous holes in the 
floor, and the edges of stairs- both going up 
and going down. 

Unknown.   If a point cannot be seen by the Kinect, it will 
be classified as unknown.   

 This method creates a map of the area in front of the 
robot, with each (x,y) location having a value to indicate 
which of the five categories that point falls into.   

A. Creating a height map 

A two-dimensional array is created with each entry 
corresponding to a specific (x,y) location in the robot’s 
reference frame.  Each point in the Kinect’s point cloud is 
then transformed into the robot’s reference frame, and the 
resulting height, z, is stored in the array at the 
corresponding (x,y) index.  It is often the case that multiple 
points from the point cloud correspond to the same (x,y) 
entry in the two-dimensional array; in this case, the average 
height of all such points is stored in that entry of the array.  
Any cells with no data are filled in with the average height 
of the surrounding cells, if the surrounding cells contain 
data. 

B. Identifying bumps and obstacles 

Bumps and obstacles are characterized by a sudden 
change in height; they are the easiest features to find and are 
detected first in this algorithm.  (“Bumps” are small enough 
to be run over, and “obstacles” are too large.)  In order to 
detect them, a second map is created, and populated with 
values representing the gradient at each point.  The 
gradients are calculated as follows: 

 (1) 

, , ,  are defined to be the absolute changes in 
height from the point (i,j) to the 4 points adjacent to it.  In 
other words, they are defined as follows: 

 (2) 
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 (3) 

 (4) 

 (5) 

An example of this gradient map is shown in Figure 1b.

Two threshold values were applied to the gradient data, 
so that the cells could be divided into 3 categories: 
floor/ramp, bumps, and obstacles.  At this point in the 
process, all obstacles and bumps have been detected and 
categorized. 

C. Identifying level floors and ramps 

The data is further processed to distinguish the floor 
from a ramp.  Because of the noise, it is only possible to 
detect a ramp by calculating the slope over a long distance.  
Mathematically, this can also be accomplished by 
smoothing the data with a large averaging filter, and then 
calculating the height differences of adjacent cells.  For this 

application, an averaging filter was used because it could be 
modified to exclude points which were not part of a level 
floor or ramp. 

The output of this process is a smoothed height map, 
where each cell contains the average local height.  However, 
only the height data which represents a level floor or ramp 
is included in the average.  Any cells which have already 
been classified as obstacles, bumps, or unknown are 
ignored.  If height data from the bumps and obstacles were 
included in the averaging process, it would destroy any 
meaningful slope data for the floor area that is near the 
bumps or obstacles.   

The averaging filter used is a 30x30 square.  Initially, 
every entry in the filter is zero.  For each point that needs to 
be classified as either floor or ramp, the averaging filter is 
placed over it, so that point is at the approximate center.  
The corresponding entry in the averaging filter is set to 1.  
Next, the four cells adjacent to this one are examined.  If 
any of these represents a point containing level floor or 

Figure 1: The robot is on a level floor, looking at four objects.  The larger box and the orange barrel are obstacles, while the small box and power cord are 
bumps small enough to run over. The robot position is (0,0), the bottom of the image.  Units are meters.   (a) Image from robot’s RGB camera. (b) First
gradient map. Detects obstacles and bumps. Red represents high gradients and blue represents low gradients. (c) Second gradient map. Distinguishes ramps 
from level floor. Red represents high gradients and blue represents low gradients. (d) Final map. Dark blue is unknown space, light blue is level floor, yellow 
is ramps, orange is bumps, dark red is obstacles. 

(d)

(a) (b)

(c) 
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ramp, that entry in the array is set to 1.  The process 
continues, with each iteration setting the entries in the 
averaging filter to 1 if they are adjacent to a cell already set 
to 1 and they correspond to a point on the map containing 
level floor or ramp.  In this way, every point within the 
30x30 averaging filter is set to 1 if it contains level floor or 
ramp and it is not separated from the rest of the floor area 
by the boundary of an obstacle, bump, or unknown area. 

In practice, the averaging filter does not need to be 
regenerated every time.  The time required to run the code 
can be reduced by recognizing that the averaging filter stays 
largely the same for adjacent points in the map.  The values 
in the filter only need to be shifted, and the newly included 
points along the edge evaluated.  The filter only needs to be 
completely regenerated when the point at the center crosses 
over a point marked as a bump, obstacle, or unknown area. 

Figure 2 shows a simple example of the filtering process 
(with a smaller averaging mask than the one used in the 

algorithm described here).  The black cells represent the 
edge of an obstacle.  Therefore, only the height data from 
the cells marked in red will be averaged. 

The white cells in Figure 2 are either a level floor or 
ramp.  However, since they are separated from the others by 
the edge of an obstacle, it cannot be assumed that they are at 
the same height as the red cells, and therefore their data is 
not included in the average.  In this way, the averaging 
mask is used to smooth out the data from the floor surface 
and remove noise, without blurring the edges of objects on 
the floor. 

Next, a gradient map was calculated, using an equation 
similar to equation 1 described above, applied to the 
smoothed height data.  An example of this gradient map is 
shown in Figure 1c.  A threshold was used to separate the 
floor from ramps.  Thus the process is complete and each 
cell in the map has been classified into one of the five 
categories. 

IV. RESULTS

Figure 1d and Figure 3b show the two instances of the 
results of this algorithm.  These images show that the 
algorithm is able to detect both small and large objects on 
the floor in front of the robot, as well as distinguishing 
between a ramp and a level floor.   

In Figure 1d, the small box is correctly identified as a 
traversable object, but the large box is identified as not 
traversable (based on parameters that define the size of 
object the robot can safely traverse).  The small box has a 
height of approximately 3 cm; while a wheelchair may be 
capable of traversing the object, path planning could 
intervene and use the information to plan a new path which 
avoids the small box, for a smoother ride.  Furthermore, the 
floor was correctly identified (it was colored light blue). 

Figure 3b shows the resulting map when the robot is 
looking at a ramp sloping upward.  The algorithm correctly 
distinguishes between the level floor (colored light blue) 

Figure 3: The robot is on a level floor, looking at a ramp that slopes upward.  (a) Image from robot’s RGB camera.  (b) Final map.  Dark blue is unknown space, 
light blue is level floor, yellow is ramps, orange is bumps, dark red is obstacles 

(a) (b)

Figure 2:  Averaging mask.  Only the height data from the red cells is
used in the averaging process for the point at the center of the filter.  The
black cells indicate the edge of an obstacle.   
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and the ramp (colored yellow). 

The algorithm also gave accurate results at several other 
locations, including locations at the top and bottom of a 
stairwell [23]. 

A. Speed 

The algorithm was run 10 times to test its speed.  The 
results are shown in Table 1. 

As Table 1 shows, the average time to run the algorithm 
was 1.99 seconds.  On average, 1.63 seconds is required to 
transform the data into the correct reference frame, and 0.36 
seconds are required for the algorithm itself.  The transform 
is outside the scope of this project; however, in the future 
the slowness of the transform should be addressed, to 
improve the performance of the algorithm. 

The algorithm produces a map that extends 2 m in front 
of the robot.  This means that theoretically, it could be used 
on a robot traveling at approximately 1 m/s.  In practical 
sense, however, it would be unsafe to travel at that speed, 
because the time required to stop the robot’s motion must be 
taken into account.  A typical speed for a motorized 
wheelchair is 0.5 m/s.  At this speed, the algorithm 
presented here is able to identify navigable terrain before 
the smart wheelchair reaches it. 

V. CONCLUSION

 Obstacle detection has always been an important aspect 
of mobile robotics.  In the case of a smart wheelchair robot, 
it is necessary to identify obstacles and terrain 
characteristics of the navigation surface itself in order to 
ensure the safety of the user.  It is also essential to identify 
ramps that the wheelchair will be able to access.  Previous 
systems for obstacle detection often focused on large 
obstacles in the environment, rather than looking down at 
the floor itself; for example, they would not notice when the 
robot is at the top of a flight of stairs.  This is not acceptable 
for a wheelchair robot navigating a typical indoor 
environment. 

 The Kinect is a low-cost sensor that provides reliable 
three-dimensional depth data of indoor environments, which 

is useful for robotics.  This paper presents an algorithm to 
use data from the Kinect to classify the floor surface in front 
of the robot into five categories to indicate drivability: level 
floor, ramps, bumps, obstacles, and unknown.   

 In future work, the algorithm could be integrated with 
localization and path-planning code.  The algorithm would 
run continuously and provide terrain information which 
could be used in a world terrain map, which is updated 
every 2 seconds.   

Furthermore, the robot’s path planner would need to 
take into account the different features that were classified 
by this algorithm.  A very simple path planner would only 
avoid obstacles, and treat level floors, ramps, and bumps all 
as equally drivable.  A more complex path planner would 
evaluate ramps to determine the best speed and angle of 
approach, and take into account the exact location of the 
robot’s wheels when driving over bumps.  Path-planning is 
outside the scope of this paper, but by classifying areas 
according to drivability, this algorithm outputs the 
information a path planner needs to calculate a safe route 
from one point to another. 

In summary, the algorithm presented here allows the 
robot to identify and avoid nontraversable terrain and 
provide useful information for later use in path planning. 
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