
1

Determining Navigability of Terrain Using Point
Cloud Data

Stephanie Cockrell, Gregory Lee, Member IEEE, Wyatt Newman, Senior Member IEEE
Case Western Reserve University

Cleveland, Ohio, United States

 Abstract-- This paper presents an algorithm to identify
features of the navigation surface in front of a wheeled robot.
Recent advances in mobile robotics have brought about the
development of smart wheelchairs to assist disabled people,
allowing them to be more independent. These robots have a
human occupant and operate in real environments where they
must be able to detect hazards like holes, stairs, or obstacles.
Furthermore, to ensure safe navigation, wheelchairs often need
to locate and navigate on ramps. The algorithm is
implemented on data from a Kinect and can effectively identify
these features, increasing occupant safety and allowing for a
smoother ride.

Keywords—mobile robotics, obstacle detection, drivable
surfaces, Kinect

I. INTRODUCTION

 Previous work in robotics has been focused on finding
large obstacles blocking an assumed navigable path, but not
looking at the navigation surface itself. However, this
approach is not adequate to ensure the safety of a smart
wheelchair operator. This paper discusses an approach
based on taking gradients from depth data returned by a
Kinect, mounted on the front of the robot and pointed down
toward the floor.

 Many autonomous robots use image processing
techniques to identify the road surface, which is assumed to
be traversable. (Other sensors identify large obstacles, like
cars.) A camera is mounted on the robot, and the video feed
is analyzed to determine which part of the image represents
a drivable surface [1]. In the case of robotic cars, the lines
painted on the road are detected; the traffic lanes are located
and a “drivable surface” is defined to be a lane. However, a
smart wheelchair robot uses a very different definition of
“drivable surface.” Wheelchairs operate on surfaces not
specifically designed for wheeled vehicles. Drivability
cannot be determined by just looking for certain lines on the
ground. If a camera is to be used, additional object-
detection methods must be employed.

 One issue common with a single camera is a lack of
depth perception, which makes it hard to identify whether
differences in color or texture represent an obstacle or a
shadow. Some of the methods involve examining the image
histogram, coupled with feature detection [2] or Canny and
Hough transforms [3]. Progress has also been made using
image segmentation techniques and logical operations [4].
Additionally, there are techniques based on using a stereo
camera to get a 3D representation of the road surface, and

further processing that information along with the image
data [5].

 However, these methods are not sufficient for ensuring
the safety of the wheelchair operator. They can detect the
road surface itself, but are unable to identify large bumps in
the road, particularly if the bump is the same color and
texture as the rest of the road surface. Also, image
processing will not give information about the slope of the
road surface. The Kinect addresses this need by returning a
three-dimensional point cloud with depth information.

 In many cases where irregularities in the road surface
are a concern, autonomous vehicles use sensors that give
information about depth, rather than using a simple camera.
For example, time-of-flight cameras [6] and SICK Lidar
units are used. Typically the lidar is pointed down toward
the road at an angle, allowing it to see the road surface and
determine the location of a curb or other obstacles [7].
Furthermore, the height information can be subtracted in
order to find the gradients of the surrounding area [8] [9]
[10]. This is useful for identifying ramps or sloped surfaces
and distinguishing them from actual obstacles; this method
of calculating gradients will be expanded upon in this paper.

 The Kinect is a sensor which uses an infrared depth
camera to return an array of three-dimensional points,
representing the objects that are in front of the camera. The
Kinect itself is a comparatively cheap, ubiquitous sensor
which gives a large amount of reliable data whose potential
for use in robotics is being realized. In the field of mobile
robots specifically, the Kinect was found to be an effective
tool for target tracking and navigation [11] [12]. It was
even found to be useful for localization and mapping for a
robotic wheelchair [13].

 There are also several approaches which use point cloud
data similar to the data output by the Kinect, to find ramps
and irregularities in the ground surface. One example used
a time-of-flight camera to assist in seeing curbs and ramps
for a car backing up. A variation on the RANSAC
algorithm (an approach that is often used to fit planes to
data containing outliers) was used to fit planes to the point
cloud data and locate the road surface and any other
surfaces [14]. However, this approach would not be
adequate for the smart wheelchair; there may be some small
holes or bumps which present a risk to the wheelchair but
are too small or irregularly-shaped to be found using a plane
fitting.

2013 IEEE International Conference on Rehabilitation Robotics June 24-26, 2013 Seattle, Washington USA

978-1-4673-6024-1/13/$31.00 ©2013 IEEE

2

 Another plane-fitting approach uses a patch of data
points around the point being evaluated, and calculates the
slope and roughness of the best-fit plane for that patch.
Next, the values for slope and roughness are used to
determine traversability, and this process is repeated for
each data point in the point cloud [15]. However, this
algorithm is computationally intensive, and the “roughness”
calculation does not quite address the needs of the
wheelchair; the wheelchair robot needs to know whether the
floor is “rough” because of a large obstacle, small bump, or
just a bumpy texture on the floor itself.

 Other algorithms calculated the curvature of different
parts of the point cloud. The point cloud could be
segmented at the points where there was a change in the
curvature [16] [17]. However, a wheelchair robot must
identify the slope of a ramp, not a sudden change in
curvature.

 In another example involving point cloud data, the
points were connected into line segments if the vertical
distance between them was small enough. The line
segments were then joined into surfaces, and the surfaces
could then be classified as bare earth, detached objects (like
buildings and plants), and attached objects (like ramps and
bridges) [18]. However, this method is very
computationally intensive and does not address the needs of
a wheelchair. This algorithm would categorize a large
region as “bare earth” if all the points were connected, but
the wheelchair robot needs to know the slope in order to
decide whether it is safe to drive there.

 The previous work summarized here is effective for
certain tasks, but it does not adequately address the needs of
a smart wheelchair, particularly the need to detect drivable
surfaces.

II. SOFTWARE AND HARDWARE

 The research presented here builds on previous work
using ROS (Robot Operating System) for mobile robotics
[19] [20] [21] [12]. ROS is a robotics software framework,
useful for developing robotics applications. Additionally,
OpenNI, an open-source driver, was used to handle the data
received from the Kinect and publish it in a form that could
be used by ROS. The code for this project was written in
C++ and run on a Lenovo ThinkPad laptop with an Intel
T7300 processor and clock speed of 2GHz [22] [23].

 The Kinect was mounted on the front of a mobile robot,
approximately 1 meter above the ground, pointed toward the
floor at an angle of approximately 50 degrees from the
horizontal. This particular angle and height were chosen
based on information about the Kinect’s strengths and
limitations [23].

III. CLASSIFYING FEATURES OF THE FLOOR SURFACE

 The Kinect data is transformed into the robot’s reference
frame, and is used to segment the area in front of the robot
according to drivability. The algorithm presented here
classifies regions into the following five groups:

Level floor. The robot can drive on this without any
problems.

Ramps. It is often necessary to drive on ramps, but
they require more careful consideration first.
For example, the robot may need to slow
down, and may need to approach a ramp from
a particular angle.

Bumps. These are small objects on the floor, but they
are safe to run over. For example, power
cords or small cracks in the floor would be
classified as bumps.

Obstacles. These must be avoided; the robot cannot
safely run over them. (The specific
thresholds to distinguish obstacles and bumps
are dependent on the characteristics of the
individual robot. For example, the robot’s
wheel size directly relates to the size of
objects that can be safely run over.) This
category also includes dangerous holes in the
floor, and the edges of stairs- both going up
and going down.

Unknown. If a point cannot be seen by the Kinect, it will
be classified as unknown.

 This method creates a map of the area in front of the
robot, with each (x,y) location having a value to indicate
which of the five categories that point falls into.

A. Creating a height map

A two-dimensional array is created with each entry
corresponding to a specific (x,y) location in the robot’s
reference frame. Each point in the Kinect’s point cloud is
then transformed into the robot’s reference frame, and the
resulting height, z, is stored in the array at the
corresponding (x,y) index. It is often the case that multiple
points from the point cloud correspond to the same (x,y)
entry in the two-dimensional array; in this case, the average
height of all such points is stored in that entry of the array.
Any cells with no data are filled in with the average height
of the surrounding cells, if the surrounding cells contain
data.

B. Identifying bumps and obstacles

Bumps and obstacles are characterized by a sudden
change in height; they are the easiest features to find and are
detected first in this algorithm. (“Bumps” are small enough
to be run over, and “obstacles” are too large.) In order to
detect them, a second map is created, and populated with
values representing the gradient at each point. The
gradients are calculated as follows:

 (1)

, , , are defined to be the absolute changes in
height from the point (i,j) to the 4 points adjacent to it. In
other words, they are defined as follows:

 (2)

3

 (3)

 (4)

 (5)

An example of this gradient map is shown in Figure 1b.

Two threshold values were applied to the gradient data,
so that the cells could be divided into 3 categories:
floor/ramp, bumps, and obstacles. At this point in the
process, all obstacles and bumps have been detected and
categorized.

C. Identifying level floors and ramps

The data is further processed to distinguish the floor
from a ramp. Because of the noise, it is only possible to
detect a ramp by calculating the slope over a long distance.
Mathematically, this can also be accomplished by
smoothing the data with a large averaging filter, and then
calculating the height differences of adjacent cells. For this

application, an averaging filter was used because it could be
modified to exclude points which were not part of a level
floor or ramp.

The output of this process is a smoothed height map,
where each cell contains the average local height. However,
only the height data which represents a level floor or ramp
is included in the average. Any cells which have already
been classified as obstacles, bumps, or unknown are
ignored. If height data from the bumps and obstacles were
included in the averaging process, it would destroy any
meaningful slope data for the floor area that is near the
bumps or obstacles.

The averaging filter used is a 30x30 square. Initially,
every entry in the filter is zero. For each point that needs to
be classified as either floor or ramp, the averaging filter is
placed over it, so that point is at the approximate center.
The corresponding entry in the averaging filter is set to 1.
Next, the four cells adjacent to this one are examined. If
any of these represents a point containing level floor or

Figure 1: The robot is on a level floor, looking at four objects. The larger box and the orange barrel are obstacles, while the small box and power cord are
bumps small enough to run over. The robot position is (0,0), the bottom of the image. Units are meters. (a) Image from robot’s RGB camera. (b) First
gradient map. Detects obstacles and bumps. Red represents high gradients and blue represents low gradients. (c) Second gradient map. Distinguishes ramps
from level floor. Red represents high gradients and blue represents low gradients. (d) Final map. Dark blue is unknown space, light blue is level floor, yellow
is ramps, orange is bumps, dark red is obstacles.

(d)

(a) (b)

(c)

4

ramp, that entry in the array is set to 1. The process
continues, with each iteration setting the entries in the
averaging filter to 1 if they are adjacent to a cell already set
to 1 and they correspond to a point on the map containing
level floor or ramp. In this way, every point within the
30x30 averaging filter is set to 1 if it contains level floor or
ramp and it is not separated from the rest of the floor area
by the boundary of an obstacle, bump, or unknown area.

In practice, the averaging filter does not need to be
regenerated every time. The time required to run the code
can be reduced by recognizing that the averaging filter stays
largely the same for adjacent points in the map. The values
in the filter only need to be shifted, and the newly included
points along the edge evaluated. The filter only needs to be
completely regenerated when the point at the center crosses
over a point marked as a bump, obstacle, or unknown area.

Figure 2 shows a simple example of the filtering process
(with a smaller averaging mask than the one used in the

algorithm described here). The black cells represent the
edge of an obstacle. Therefore, only the height data from
the cells marked in red will be averaged.

The white cells in Figure 2 are either a level floor or
ramp. However, since they are separated from the others by
the edge of an obstacle, it cannot be assumed that they are at
the same height as the red cells, and therefore their data is
not included in the average. In this way, the averaging
mask is used to smooth out the data from the floor surface
and remove noise, without blurring the edges of objects on
the floor.

Next, a gradient map was calculated, using an equation
similar to equation 1 described above, applied to the
smoothed height data. An example of this gradient map is
shown in Figure 1c. A threshold was used to separate the
floor from ramps. Thus the process is complete and each
cell in the map has been classified into one of the five
categories.

IV. RESULTS

Figure 1d and Figure 3b show the two instances of the
results of this algorithm. These images show that the
algorithm is able to detect both small and large objects on
the floor in front of the robot, as well as distinguishing
between a ramp and a level floor.

In Figure 1d, the small box is correctly identified as a
traversable object, but the large box is identified as not
traversable (based on parameters that define the size of
object the robot can safely traverse). The small box has a
height of approximately 3 cm; while a wheelchair may be
capable of traversing the object, path planning could
intervene and use the information to plan a new path which
avoids the small box, for a smoother ride. Furthermore, the
floor was correctly identified (it was colored light blue).

Figure 3b shows the resulting map when the robot is
looking at a ramp sloping upward. The algorithm correctly
distinguishes between the level floor (colored light blue)

Figure 3: The robot is on a level floor, looking at a ramp that slopes upward. (a) Image from robot’s RGB camera. (b) Final map. Dark blue is unknown space,
light blue is level floor, yellow is ramps, orange is bumps, dark red is obstacles

(a) (b)

Figure 2: Averaging mask. Only the height data from the red cells is
used in the averaging process for the point at the center of the filter. The
black cells indicate the edge of an obstacle.

5

and the ramp (colored yellow).

The algorithm also gave accurate results at several other
locations, including locations at the top and bottom of a
stairwell [23].

A. Speed

The algorithm was run 10 times to test its speed. The
results are shown in Table 1.

As Table 1 shows, the average time to run the algorithm
was 1.99 seconds. On average, 1.63 seconds is required to
transform the data into the correct reference frame, and 0.36
seconds are required for the algorithm itself. The transform
is outside the scope of this project; however, in the future
the slowness of the transform should be addressed, to
improve the performance of the algorithm.

The algorithm produces a map that extends 2 m in front
of the robot. This means that theoretically, it could be used
on a robot traveling at approximately 1 m/s. In practical
sense, however, it would be unsafe to travel at that speed,
because the time required to stop the robot’s motion must be
taken into account. A typical speed for a motorized
wheelchair is 0.5 m/s. At this speed, the algorithm
presented here is able to identify navigable terrain before
the smart wheelchair reaches it.

V. CONCLUSION

 Obstacle detection has always been an important aspect
of mobile robotics. In the case of a smart wheelchair robot,
it is necessary to identify obstacles and terrain
characteristics of the navigation surface itself in order to
ensure the safety of the user. It is also essential to identify
ramps that the wheelchair will be able to access. Previous
systems for obstacle detection often focused on large
obstacles in the environment, rather than looking down at
the floor itself; for example, they would not notice when the
robot is at the top of a flight of stairs. This is not acceptable
for a wheelchair robot navigating a typical indoor
environment.

 The Kinect is a low-cost sensor that provides reliable
three-dimensional depth data of indoor environments, which

is useful for robotics. This paper presents an algorithm to
use data from the Kinect to classify the floor surface in front
of the robot into five categories to indicate drivability: level
floor, ramps, bumps, obstacles, and unknown.

 In future work, the algorithm could be integrated with
localization and path-planning code. The algorithm would
run continuously and provide terrain information which
could be used in a world terrain map, which is updated
every 2 seconds.

Furthermore, the robot’s path planner would need to
take into account the different features that were classified
by this algorithm. A very simple path planner would only
avoid obstacles, and treat level floors, ramps, and bumps all
as equally drivable. A more complex path planner would
evaluate ramps to determine the best speed and angle of
approach, and take into account the exact location of the
robot’s wheels when driving over bumps. Path-planning is
outside the scope of this paper, but by classifying areas
according to drivability, this algorithm outputs the
information a path planner needs to calculate a safe route
from one point to another.

In summary, the algorithm presented here allows the
robot to identify and avoid nontraversable terrain and
provide useful information for later use in path planning.

VI. ACKNOWLEDGEMENT

We would like to thank Eric Perko, Chad Rockey, Jesse
Fish, Toby Waite, Ed Venator, and Bill Kulp for their
assistance with the hardware and software for this project.
Also, we would like to thank the Joseph P. and Nancy F.
Keithley Fellowship Endowment Fund for funding.

VII. REFERENCES

[1] J.-W. Kim, T.-H. Kim and K.-H. Jo, "Traffic road line
detection based on the vanishing point and contour
information," in Proceedings of SICE Annual
Conference, 2011.

 Initialize
maps

Transform
Kinect data,
populate height
map

Fill in small
gaps in
height map

Calculate 1st

gradient map,
threshold to
find bumps/
obstacles

Use averaging
mask to
smooth height
map

Calculate 2nd

gradient map,
threshold to
find level
floor/ ramps

Total

 0.01 1.53 0.01 0.00 0.31 0.00 1.86
 0.01 1.61 0.01 0.00 0.29 0.00 1.92
 0.00 1.46 0.01 0.00 0.36 0.01 1.84
 0.00 1.67 0.00 0.01 0.36 0.00 2.04
 0.01 1.78 0.01 0.01 0.35 0.00 2.16
 0.00 1.61 0.01 0.00 0.37 0.00 1.99
 0.01 1.67 0.01 0.00 0.34 0.00 2.03
 0.00 1.58 0.00 0.00 0.37 0.00 1.95
 0.01 1.77 0.00 0.00 0.34 0.00 2.12
 0.01 1.63 0.00 0.00 0.33 0.00 1.97

Mean 0.006 1.63 0.006 0.002 0.34 0.001 1.99
Std dev 0.005 0.09 0.005 0.004 0.02 0.003 0.10

Table 1: Time (in seconds) required to run each of the 6 parts of the algorithm. The time was recorded for 10 runs and the average was 1.99 seconds, with a
standard deviation of 0.10 seconds.

6

[2] Y. Guo, V. Gerasimov and G. Poulton, "Vision-Based
Drivable Surface Detection in Autonomous Ground
Vehicles," in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[3] U. Rasheed, M. Ahmed, S. Ali, J. Afridi and F.
Kunwar, "Generic vision based algorithm for driving
space detection in diverse indoor and outdoor
environments," in International Conference on
Mechatronics and Automation (ICMA), 2010.

[4] S. Mostafavi, A. Samadi, H. Pourghassem and J.
Haddadnia, "Road boundary extraction under
nonuniform light condition using coordinate logic
filters," in IEEE International Conference on
Computational Intelligence and Computing Research
(ICCIC), 2010.

[5] T.-C. Dong-Si, D. Guo, C. H. Yan and S. H. Ong,
"Extraction of shady roads using intrinsic colors on
stereo camera," in IEEE International Conference on
Systems, Man and Cybernetics, 2008.

[6] T. Schamm, M. Strand, T. Gumpp, R. Kohlhaas, J.
Zollner and R. Dillmann, "Vision and ToF-based
driving assistance for a personal transporter," in
International Conference on Advanced Robotics, 2009.

[7] Y. Shin, C. Jung and W. Chung, "Drivable road region
detection using a single laser range finder for outdoor
patrol robots," in IEEE Intelligent Vehicles Symposium
(IV), 2010.

[8] C. Guo, W. Sato, L. Han, S. Mita and D. McAllester,
"Graph-based 2D road representation of 3D point
clouds for intelligent vehicles," in IEEE Intelligent
Vehicles Symposium (IV), 2011.

[9] C. Ye, "Polar Traversability Index: A Measure of
terrain traversal property for mobile robot navigation in
urban environments," in IEEE International
Conference on Systems, Man and Cybernetics, 2007.

[10] M. Asada, "Building a 3D world model for mobile
robot from sensory data," in IEEE International
Conference on Robotics and Automation, 1988.

[11] P. Benavidez and M. Jamshidi, "Mobile robot
navigation and target tracking system," in 2011 6th
International Conference on System of Systems
Engineering (SoSE), 2011.

[12] W. Kulp, "Robotic Person-following in Cluttered
Environments," Case Western Reserve University,
EECS Dept. Masters Thesis, 2012.

[13] M. Fallon, H. Johannsson and J. Leonard, "Efficient
scene simulation for robust monte carlo localization
using an RGB-D camera," in IEEE International
Conference on Robotics and Automation (ICRA), 2012.

[14] O. Gallo, R. Manduchi and A. Rafii, "Robust curb and
ramp detection for safe parking using the Canesta TOF
camera," in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops,
2008.

[15] C. Ye and J. Borenstein, "A method for mobile robot
navigation on rough terrain," in IEEE International
Conference on Robotics and Automation, 2004.

[16] M. Hebert, "Outdoor scene analysis using range data,"
in IEEE International Conference on Robotics and
Automation, 1986.

[17] D. Goldgof, T. Huang and H. Lee, "A curvature-based
approach to terrain recognition," IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 11, no.
11, pp. 1213-1217, 1989.

[18] G. Sithole and G. Vosselman, "Automatic structure
detection in a point-cloud of an urban landscape," in
2nd GRSS/ISPRS Joint Workshop on Remote Sensing
and Data Fusion over Urban Areas, 2003.

[19] E. Perko, "Precision Navigation for Indoor Mobile
Robotics," Case Western Reserve University, EECS
Department Masters Thesis, 2013.

[20] C. Rockey, "Low-Cost Sensor Package for Smart
Wheelchair Obstacle Avoidance," Case Western
Reserve University, EECS Dept. Masters Thesis, 2012.

[21] J. Fish, "Robotic Tour Guide Platform," Case Western
Reserve University, EECS Dept. Masters Thesis, 2012.

[22] S. Cockrell, "kinect_final," GitHub, 12 Dec 2012.
[Online]. Available:
https://github.com/scockrell/kinect_final. [Accessed 8
Feb 2013].

[23] S. Cockrell, "Using the Xbox Kinect to Detect Features
of the Floor Surface," Case Western Reserve
University, EECS Dept. Masters Thesis, 2012.

