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Abstract—Technological advances have enabled clinical use 

of powered foot-ankle prostheses. Although the fundamental 

purposes of such devices are to restore natural gait and reduce 

energy expenditure by amputees during walking, these 

powered prostheses enable further restoration of ankle 

function through possible voluntary control of the powered 

joints. Such control would greatly assist amputees in daily tasks 

such as reaching, dressing, or simple limb repositioning for 

comfort. A myoelectric interface between an amputee and the 

powered foot-ankle prostheses may provide the required 

control signals for accurate control of multiple degrees of 

freedom of the ankle joint. Using a pattern recognition 

classifier we compared the error rates of predicting up to 7 

different ankle-joint movements using electromyographic 

(EMG) signals collected from below-knee, as well as below-

knee combined with above-knee muscles of 12 trans-tibial 

amputee and 5 control subjects. Our findings suggest very 

accurate (5.3±0.5%SE mean error) real-time control of a 1 

degree of freedom (DOF) of ankle joint can be achieved by 

amputees using EMG from as few as 4 below-knee muscles. 

Reliable control (9.8±0.7%SE mean error) of 3 DOFs can be 

achieved using EMG from 8 below-knee and above-knee 

muscles.  

 

I. INTRODUCTION 

There are over half a million people in the United States 
alone living with a major lower limb amputation [1]. In 
addition to traumatic incidents and recent military conflicts, 
dysvascular disease is the largest cause, accounting for 82% 
of lower limb loss discharges. Over 70% of those 
amputations are below the knee [2]. As this incidence rate is 
expected to nearly double by the year 2030 [1], there is a 
pressing need to provide the diverse population of trans-tibial 
amputees with accessible, affordable best care and functional 
outcomes.   

Over the past decade, foot-ankle prostheses have evolved 
beyond passive feet and energy storing devices to having 
actuated powered joints [3, 4]. Currently, powered foot-ankle 
prostheses have only one actuated joint that provides 
powered plantarflexion at the toe-off during walking [7-6]. 
This serves to restore natural gait and reduce metabolic costs 
associated with prosthesis use. Although restoration of 
natural gait and stability are the fundamental purposes of a 
foot-ankle prosthesis, there are additional functions of the 
foot that are integral to daily activities. Volitional 
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repositioning of the foot for comfort and aesthetic reasons, 
repositioning to assist with dressing, and powered 
plantarflexion to raise one while reaching up are just some 
examples. Functionality of the emerging powered foot-ankle 
prostheses could be extended to accommodate some of these 
additional actions. To do so successfully, however, requires a 
reliable neural interface between the amputee and the 
prosthesis. 

For upper limb prosthetics, surface EMG signals have 
proven to be a reliable means of achieving volitional control 
over multi-degree of freedom (DOF) prosthetic arms [8-10]. 
Recently, our group successfully demonstrated the 
effectiveness of using EMG signals from the residual leg 
musculature to control a powered knee prosthesis [11]. To 
date, however, the ability to control a multiple DOF foot-
ankle prosthesis by trans-tibial amputees has not been 
demonstrated. Instead, research into the control of powered 
foot-ankle prostheses has focused on reliable detection of 
ambulation modes [7,12,13]. Herr et. al. have utilized the 
EMG signals from below-the knee (BK) muscles of amputees 
to engage the “stair-descent” mode of the BiOM Powerfoot 
[14]. More recently, our group has evaluated the use of EMG 
signals in conjunction with mechanical sensor data of the 
prosthesis to detect 10 types of ambulation mode transitions 
with high accuracy (Manuscript detailing this work is 
currently in review).  As the integration of EMG signals into 
control strategies for powered foot-ankle prostheses 
continues, the feasibility of implementing EMG-based 
volitional control over these prostheses needs to be evaluated.  

The goal of this work was to determine if EMG from BK 
muscles of amputee’s residual limb can be used to accurately 
control foot flexion, rotation and in/eversion of a powered, 
multi DOF foot-ankle prosthesis. Although such devices are 
currently not in existence, findings of this work offer 
significant design considerations for the next generation of 
powered foot-ankle prostheses. 

 

II. METHODS 

A. Data Collection 

12 unilateral trans-tibial amputee subjects (6 male; 

Average age: 45±14 years; Amputated limb: 8 left) and 5 

able-bodied control subjects (2 male; Average age: 29±5 

years; Limb used: 2 left) participated in the study. All 

subjects were free of neuromuscular disorders and all 

amputations were due to trauma (Average time since 

amputation: 13±9 years). Northwestern University 

institutional review board approved the study protocol and 

informed consent was obtained from each subject prior to 

experimentation. 
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Amputee subjects were instructed to sit comfortably in a 

chair such that their residual limb rested freely, pointing 

toward the floor. The residual limb was free of any 

prosthesis or prosthetic equipment. Likewise, control 

subjects were asked to sit comfortably in a chair such that 

their feet were raised above the floor to provide full range of 

ankle flexion. While seated in this posture, both amputee 

and control subjects were asked to perform 7 different 

movement classes (MC): medial rotation of the foot (rotate 

in) and lateral rotation of the foot (rotate out) (or 

adduction/abduction), ankle dorsiflexion and ankle 

plantarflexion, ankle eversion and ankle inversion (or ankle 

pronation/supination), and a relaxed (or no motion) class 

(Fig 1A). 

Movement prompts were provided as photos with brief 

text descriptions on a video screen (Fig 1B). In response to 

these prompts, control subjects moved their intact foot while 

amputee subjects contracted their residual limb muscles to 

emulate movement of their missing limb. Each contraction 

lasted 3s and was repeated 8 times yielding 24 seconds of 

data for each movement class, including the no motion class. 

An additional set of data – no motion KFE - was collected in 

which only amputee subjects were asked to perform knee 

flexion and extension while keeping their below-knee (BK) 

muscles relaxed. This data was collected to be used as a 

proxy for the no motion movement class in offline 

classification analysis to evaluate classifier sensitivity to leg 

movement. 

Eight leg muscles – 4 (BK) and 4 above-knee (AK) - from 

either the amputated side or control subjects’ preferred side 

were targeted for electrode placement: Tibialis Anterior 

(TA), Peroneus Longus (PL), Gastrocnemius Lateralis (GL), 

Gastrocnemius Medialis (GM), Vastus Medialis (VM), 

Vastus Lateralis (VL), Rectus Femoris (RF) and Biceps 

Femoris (BF). Muscles were localized by palpation and 

Ag/AgCl self-adhesive surface EMG electrodes (Bio-

Medical Instruments) were used to acquire EMG signal.  

Prior to electrode placement, the skin at each recording site 

was cleaned with rubbing alcohol and conductive gel was 

applied. Inter-electrode distance was 20-30mm center to 

center. EMG signals were sampled using a custom 16-bit 

data acquisition system at 1kHz and high-pass filtered at 

20Hz to reduce motion artifact.  

 

B. Data Analysis 

Recorded EMG data was filtered offline using a 2nd order 

Butterworth band-pass filter (20Hz to 450Hz) and then  

segmented into 250ms windows with 50ms of overlap [15]. 

Time domain (TD) and autoregressive (AR) features were 

extracted from the EMG signal windows. The TD feature set 

included mean absolute value, zero crossings, slope sign 

changes, and waveform length. The AR feature set included 

the six coefficients of a 6th order AR model, which was 

selected based on previous related work [16]. The extracted 

features were used to train a pattern recognition classifier to 

evaluate the ability of subjects to control a virtual multiple 

DOF foot-ankle prosthesis. Linear discriminant analysis 

(LDA) was chosen for pattern recognition control because it 

is computationally efficient and its accuracy is comparable 

to other classification techniques [11,13,17].   

4 types of classifiers were trained: a 1-DOF classifier 

included no movement, dorsiflexion and plantarflexion 

movement classes, a 2-DOF classifier included the 1-DOF 

classifier movement classes as well as medial and lateral 

ankle rotation, and a 3-DOF classifier included all the 

movement classes that subjects performed in this study (Fig. 

1A). The fourth classifier – 3-DOF-Kn – was analogous to 

the 3-DOF classifier, with the exception that, the no 

movement motion class was comprised of equal amounts of 

no movement and no movement KFE motion data.   

15 fold cross validation was used to evaluate offline 

classification error yielding n=180 classification results for 

the 12 amputee subjects and n=75 classification results for 

the 5 control subjects. For each fold, 18s of data per 

movement class, for all considered classes was used to train 

the classifier. Classifier was tested on the remaining 6s of 

data per movement class for all considered classes. Offline 

classification was done using data either from BK muscles 

only or from both BK and AK muscles. Classification 

results from each fold were pooled across all folds and 

across all subjects, per subject group. Outliers were removed 

from pooled data and were defined as mean±2.5SD.  

Statistical tests were done using either a 1 or 2-way 

ANOVA (Bonferroni correction a=0.001) where 

appropriate. 

 

III. RESULTS 

A. Offline classification accuracies 

 Lowest mean classification errors were achieved when 

using all EMG muscles sites with a 1-DOF classifier for 

both control and amputee subjects (0.2±0.1% SE and 

4.7±0.5% SE, respectively). Highest classification errors 

resulted from using BK EMG only with a 3-DOF classifier 

for both control and amputee subjects (6.1±0.6% SE and 

15.6±0.8% SE, respectively). Classification error 

significantly increased with the complexity of the classifier 

across both amputee and control subjects (p<0.001, f=0.86  

 
Fig.1 Subjects were prompted to complete 3 classes of ankle movements: 

ankle rotation, flexion and in/eversion (A). Experimental setup showing an 

amputee subjected seated in front of a video prompt (B). EMG data was 

recorded during execution of each motion. 

 



  

and f=0.07 respectively, 2-way ANOVA excluding 

comparison of 3-DOF-Kn) (Fig. 2).   

 With respect to muscle sites used (BK EMG vs. All 

EMG), classification error was not significantly affected 

when using a 1-DOF classifier for both amputee and control 

subjects (p=0.49 and p=0.39, respectively, 1-way ANOVA).  

However, in amputee subjects, using all EMG sites instead 

of just the BK EMG sites yielded significantly lower 

classification errors for the 2-DOF and 3-DOF classifiers 

(p<0.001, f=0.2, 2-way ANOVA) for both classifier types) 

(Fig. 2B).  For control subjects, using all EMG sites instead 

of only BK EMG sites resulted in significantly lower 

classification errors only for the 3-DOF classifier and not for 

the 2-DOF classifier (p<0.001 and p=0.21, respectively, 1-

way ANOVA) (Fig. 2A).  

 Classification errors of the 3-DOF-Kn classifier closely 

resembled those of the 3-DOF classifier. Statistically, there 

was no difference in the mean classification errors for the 

two types of classifiers for both the BK EMG and all EMG 

conditions (p=0.78, f=0.98, 2-way ANOVA). For both the 

3-DOF and the 3-DOF-Kn classifiers, however, using all 

EMG muscle sites instead of only BK EMG sites resulted in 

significantly lower classification errors (p<0.001 f=0.98, 2-

way ANOVA). The majority of misclassifications were 

similar between the 3-DOF and the 3-DOF-Kn classifiers as 

well (Fig. 3). In\Eversion were misclassified most frequently 

as Dorsi\Plantarflexion (and vice versa) for both types of 

classifiers when all EMG muscles sites were used. When 

using BK EMG data, frequency of misclassifications of the 

remaining motion classes increased. Notably: plantarflexion 

was misclassified as inward rotation 7.5% of the time and 

dorsiflexion was misclassified as inversion 10.5% of the 

time, on average. 

IV.  DISCUSSION 

This study demonstrated that it is possible to achieve 

accurate control of as many as 3 DOFs of the ankle joint for 

trans-tibial amputee patients using an EMG-based neural 

interface. Higher classification errors were observed when 

decoding 3 DOF movements for both the amputee, and the 

control subjects. The 3-DOF classifier differed from the 1-

DOF and the 2-DOF classifiers in that it included the foot 

eversion and inversion movement classes. These two 

motions are complex tri-planar movements and their 

biomechanics include abduction/adduction and 

dorsiflexion/plantarflexion [18]. As such, this compound 

motion may prove difficult for the classifier to separate 

because muscles used by other motion classes are also active 

(Tibialis anterior and peroneus longus). Consistent with this 

notion, we observed that the more common motion 

misclassifications were between plantarflexion and eversion, 

dorsiflexion and eversion, and dorsiflexion and inversion 

(Fig. 3). Eversion/inversion movements of the ankle serve 

primarily to provide stability during the stance phase of the 

gait cycle by stiffening the foot as well as contouring to the 

walking terrain. These functions may be adequately 

compensated by the rigidity of the prosthesis during walking 

and therefore powered eversion/inversion of the prosthesis 

may not be a priority for device design. 

The overall higher classification errors of the amputee 

subject group as compared to the control subject group are 

likely due to such physiological differences as lack of 

proprioceptive feedback, reduced residual musculature and 

altered motor command strategies as a consequence of limb 

loss [19].  None of the subjects have trained or practiced the 

 

Fig.2 Mean offline classification errors of 4 classifiers for 5 control 

subjects (A) and 12 amputee subjects (B). Classification errors of 

classifiers trained on data from BK muscles (white bars) and on data 

from both BK and AK muscles (black bars). Error bars represent 1 

standard error. Asterisks and horizontal brackets indicate statistically 

significant differences between the means of the highlighted groups.  

 

Fig.3 Percentages of accurate motion predictions per prompted motion 

class shown as confusion matrices for the 3-DOF and the 3-DOF-Kn 

classifiers. Darker squares indicate higher accuracy prediction rates, 

whereas lighter squares represent lower accuracy prediction rates. 



  

motions they were asked to perform as part of the study. It is 

reasonable to consider that, with additional training, 

classification errors would decrease. Future work will 

evaluate this hypothesis. 

For the amputee subjects, aside from the 1 DOF control, 

lower classification errors were achieved when combined 

data from both the BK muscles and AK muscles was used. 

This phenomenon was also observed for the control 

subjects, but only with the 3-DOF classifier. A possible 

explanation for this observation may have to do with the 

postural control of one’s limb in a non-weight bearing 

posture. In/Eversion of the foot transmits forces up the 

kinetic chain of the limb and causes medial/lateral 

translation of the knee [18]. It is possible that AK muscles 

co-contract to stabilize the subject’s limb. As in/eversion 

rely on BK muscles that are used for other motions as well, 

the additional activation of the AK muscles may lead to 

more accurate segregation of motion classes by the 

classifier. In amputee subjects, accurate classification of 

ankle rotation (2-DOF classifier) also benefits from the 

combined use of BK and AK muscles. In this instance, the 

lack of foot fails to counterbalance the residual motion of 

the amputee’s limb as the result of contractile effort to 

produce ankle rotation and amputees may also be relying on 

AK muscle activation to stabilize their limb. Additionally, 

recent findings by our group have also shown that AK 

muscles contribute to ankle movements in amputees [11]. 

Future work should further examine contribution of AK 

muscles to ankle control in trans-tibial patients. 

A key finding of this study is that overall leg motion, 

which is not related to ankle motions studied, did not 

degrade classifier performance. This finding is demonstrated 

by the fact that classification errors of the 3-DOF-Kn 

classifier were statistically indifferent from those of the 3-

DOF classifier for amputee subjects (Fig. 2B). This finding 

implies that AK muscle activity due to limb repositioning 

would not affect the accuracy of ankle motion control. Other 

variables such as changes in socket pressure due to limb 

repositioning should also be evaluated. 

Currently, there is only 1 powered foot-ankle prosthesis 

that is available on the market: BiOM Powerfoot (iWalk, 

Bedford, MA). This device has 1 actuated DOF – 

dorsi/plantarflexion. Whether additional DOFs will be 

incorporated into future designs of this and other powered 

foot-ankle prostheses remains to be seen and the potential 

added complexity and increased cost of the device needs to 

be considered to avoid limiting patient access to this 

treatment. As of now, our control strategy can accurately 

predict volitional dorsiflexion and plantarflexion using just 

the BK muscles.  
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