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Abstract—This paper develops a body-machine interface for 
the control of a powered wheelchair using upper-body motion. 
Our goal was to infer a cursor’s kinematics from the signals 
recorded from 4 Inertial Measurement Units placed on a 
subject’s shoulders. We specified a Kalman filter measurement 
model that assumes the Euler angles, angular velocities, and 
linear accelerations of the shoulders are a stochastic linear 
function of the position, velocity, and acceleration of the virtual 
cursor. This model learned a system that encodes cursor 
movement along with training data. Experimental results show 
that taking advantage of the redundancy of the signal improves 
performance during a center-out reaching task. The resulting 
algorithm provides a platform for people with high-tetraplegia to 
communicate their intended motor actions with the environment 
using specialized assistive devices.  

Keywords—Body-machine interface; inertial measurement 
units; Kalman filter; powered wheelchair control. 

I. INTRODUCTION 
 Injury to the cervical spinal cord causes devastating 
and long-lasting loss of mobility, impaired sensory function, 
and compromised movement coordination. Spinal cord injured 
individuals control assistive devices with their residual motor 
and sensory capacities in order to regain mobility and 
communicate with the environment. Current specialized 
interfaces like the sip-and-puff system and the head array are 
designed to match the residual abilities of the disabled users. 
However, once in place they have a fixed functionality and 
this places the burden of learning entirely on the user. The 
available interactions are strictly constrained and fail to 
promote learning through upper-body coordination, which is 
critical for people with high tetraplegia to avoid collateral 
effects of paralysis such as muscular atrophy, chronic pain, 
and to recover some of the lost mobility [1–3]. 
 We have developed a novel approach for a system 
that we call the "body-machine interface", which aims at 
enabling people with high-level paralysis to communicate 
intended motor actions using their individual motor capacities. 
Simultaneous recordings of shoulder motions were acquired 
from four Inertial Measurement Units (IMU) attached with 
Velcro to the subject's shoulders. In an experimental setup 
analogous to [4], unimpaired subjects viewed a computer 
monitor and were instructed to follow a smoothly moving 
cursor on the screen as if controlling it with their shoulder 

motions. Upper-body kinematics (Euler angles, angular 
velocities, and linear accelerations) from shoulder motions 
were simultaneously recorded and logged with the position, 
velocity, and acceleration of the moving cursor. These data 
were then used to train a Kalman filter that decoded body 
motion (observation) into the control of a virtual cursor (state) 
[5]. Our approach builds on previous work with brain-machine 
interfaces [6], [7]. In that case spike trains recorded from 
cortical neurons guided the motion of a cursor on a computer 
monitor. Here, we consider the application of the same 
concept to infer a desired smooth cursor motion from upper-
body kinematics. The rationale is to use a non-invasive 
approach to exploit the residual mobility that remains 
available to the paralyzed users of assistive devices. 
 Current brain-machine interfaces do poorly at helping 
subjects efficiently communicate with the environment 
because they are difficult to control [8–13]. Using an 
algorithm that exploits the abundance and redundancy of 
individuals’ residual body motion might address this problem. 
Such an algorithm would use as much information as possible 
to “learn” the mapping and estimate the state from the 
observation at each point in time. However, more information 
is not always better, i.e. adding more noisy data might actually 
degrade performance of the reconstruction of cursor motion. 
 Here, we analyze the role of redundancy on the 
control of the interface. We designed an experiment to test the 
effectiveness of adding more information in the observation 
vector of the decoding algorithm. We asked subjects in three 
different groups to perform a reaching task by controlling with 
shoulder movements a cursor on a computer monitor. For each 
group, the “learning” and “decoding” of the algorithm was 
performed using different information in the observation 
vector. Subjects in the first group (E) used only Euler angles 
from the four IMUs in order to control the cursor. Subjects in 
the second group (EV) used angles and angular velocities, and 
subjects in the third group (EVA) used Euler angles, angular 
velocities, and linear accelerations. We compared performance 
between the three groups during five epochs of a center-out 
reaching task. 
 Subjects in all groups were able to learn and perform 
the task throughout the whole experiment, but performance 
varied depending on the information included in the 
observation vector. Subjects in the EVA group generally 
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performed better than subjects in the other groups across all 
epochs. However, a learning trend was only apparent for 
subjects in groups E and EV. These results might suggest that 
subjects who are using all available body kinematics 
information may reach a ceiling in performance from the very 
first epochs. 
 This experiment provides us with the platform to 
transform residual motion into the control of a cursor. With 
appropriate training, the cursor characteristics can be 
transformed into the characteristics of a joystick that controls 
a wheelchair. The combination of customized interfacing and 
human motor learning might allow people with paralysis to 
improve their independence by enhancing their movement 
capabilities that survived the injury. 

 

II. METHODS 

A. Experimental Setup 
Subjects wore an adjustable size motion vest with Velcro 

patches on the shoulder areas. Two MTi (Xsens) motion 
sensors were attached to the Velcro area for each of the 
subject’s shoulders. The motion sensors were able to capture 
shoulder elevation, depression, adduction, and abduction 
through the combination of 3-D of freedom accelerometers 
and gyroscopes. Data from the sensors were sampled in real-
time (Simulink, Mathworks, MA) at a rate of 50Hz.  

The 24-dimensional vector ([2-Euler (Roll, Pitch) + 
2-Gyroscope + 2-Accelerometer]*4 Sensors) of sensor values 
was mapped to the position of the cursor presented on a 
computer monitor via the Kalman filter approach [5] as 
applied by Wu et al [7].  
 

B. Kalman Filter Algorithm 
The main objective was to estimate the state of the 

cursor on the screen xk = [x, y, vx, vy, ax, ay]T
k representing x-

position, y-position, x-velocity, y-velocity, x-acceleration, and 
y-acceleration at every instant in time tk = k*dt, where dt = 
20ms for our experiments. The Kalman model assumes that 
the cursor’s states propagate in time according to the model 
 

xk+1 = Akxk + wk ,                                                     (1)                                                            
 

where k = 1,2,…, Ak Є R6x6
 is the coefficient matrix that 

linearly relates cursor kinematics (position, velocity, and 
acceleration) at time k to the next state at time k + 1. The body 
motion observations are assumed to be linearly related to the 
state via the stochastic linear function 
  

zk= Hkxk + qk ,                                                          (2)                                                                                             
 

where zk Є R24 is the 24 x 1 vector containing the motion 
sensor observations at each time step k. Hk Є RCx6 is the 
matrix that linearly relates the cursor’s state to the body 
motion. The random variable wk represents the process noise 
term which we assume has zero mean as is normally 
distributed, i.e. wk ~ N(0,Wk), Wk Є R6x6.  Additionally, qk is 

the noise term in the observations, i.e. qk ~ N(0,Qk), Qk Є 
R24x24. 
 

 
Fig. 1. Experimental setu for learning. The subject sits in front of a visual 
display wearing the four Inertial Measurement Units. A virtual cursor moves 
with known kinematics and the subject is instructed to move as if he was 
controlling it with his shoulders.  

In practice, Ak, Hk, Wk, and Qk might change with time 
step k. However, we will make the common simplifying 
assumptions that they are normally distributed and remain 
constant. Therefore, we can estimate them from training data 
using maximum likelihood (for details, see [7]). Different 
variables in the estimated parameters are mapped to different 
units (position, velocity, acceleration), so analysis for 
overfitting and redundancy of our parameters is a subject that 
needs to be dealt with carefully in a separate study. One way 
to limit the risk of overfitting is by utilizing sufficiently long 
sequence of kinematic data in the calibration procedure. A 
discussion of the order of the kinematic variables and 
overfitting in the use of Kalman decoding for brain-machine 
interfaces can be found in [14]. 

 

C. Protocol 
Eighteen healthy subjects (8 men, 10 female, 18-43 

years) each gave their informed, signed consent to participate 
in this experiment, which was approved by Northwestern 
University’s Institutional Review Board. Subjects were 
divided into three groups (six subjects each), a group with 
only Euler angles in the observation vector (E), a group with 
Euler angles and angular velocities (EV), and a group with 
angles, angular velocities, and linear accelerations (EVA). 
 

1) Calibration: Subjects sat in front of a computer monitor 
while wearing the motion vest (Fig. 1). They were instructed 
to follow a moving cursor on an 18x18cm screen as if they 
were controlling it with their shoulders. The cursor made 
center-out movements to the east, north, west, and south 
directions, so they were instructed to “control” north and south 
by moving their right shoulder up and down (elevation and 
depression) respectively, and to “control” east and west by 
moving their left shoulder up and down respectively. 
 Each center-out movement had a cosine velocity 
profile so that the cursor’s position history while moving east 
followed the function: 
 

 



Xt = 5*sin(π/4*t)                                                                    (3) 
Yt = 0                                                                                      (4) 
 
where t = 0:0.02:4 so that the cursor moved from the origin to 
the east and then back to the origin. The cursor had a diameter 
of 1 cm and the movement range was enclosed by a 6x6cm 
box so that the subjects knew when the cursor would stop and 
start returning to the origin and they could plan to move their 
shoulder accordingly. Each of the four directions was reached 
a total of 6 times for a total training time of 96 seconds. 
Position, velocity, and acceleration of the cursor were 
recorded every 20ms along with the motion trackers’ Euler 
angles, angular velocity, and linear accelerations. These data 
were taken as the Kalman filter’s state and observation vectors 
respectively and they were used to estimate the model’s 
parameters so that the cursor kinematics and body motion 
were now encoded by equations (1) and (2) respectively.  
 

2) Practice: After subjects were assigned to a group and 
the parameters were estimated based on their group, they were 
now able to control a cursor on a screen by using only their 
body motions. Every subject had one minute to try their 
mapping by controlling a cursor on the screen. There was no 
specific task or goal, but they were suggested to try moving 
north and south repeatedly, then east and west, and finally 
make sure that they could reach all corners and edges of the 
screen. 
 Subjects had to move through their entire range of 
motion during the filter training phase. However, performing 
these types of movements during the whole length of the 
experiment might become strenuous, so we amplified their 
movements by 300% for the rest of the experiment. This 
means that subjects would have to move 33% of their shoulder 
motion range in order to reach a target located 5cm from the 
origin. 
 In order to improve stability and introduce a bias 
towards the origin like in a real joystick, the cursor was 
modeled as a joystick where the x and y outputs of the Kalman 
filter were modeled as forces acting on a mass spring damper 
system represented by the equation of motion: 
 
s’’ + c/m*s’ + k/m*s = 0                                                        (5) 
 
where s = [x’, y’]T

k represents the cursor’s filtered new 
position coordinates. Values for the mass, spring, and damper 
coefficients were tuned so that the system had a resulting 
damping ration of  
 
ζ = c/2*sqrt(m*k) = 0.1                                                          (6) 
 

3) Reaching Task: Subjects performed center-out reaching 
movements to four different targets that appeared in random 
order on a 36x27 screen. Once the subject remained for 200ms 
on the origin, a 4 cm diameter yellow target appeared on the 
screen. The subjects were instructed to reach as quickly and 
accurately as possible and hold the cursor within the target for 
1 second. The target turned green while the cursor was inside 

it and it turned red at a 5-second “deadline”, where the trial 
was logged as a failed attempt and the target returned to the 
origin. Again, the subject had to move 33% of their shoulder 
motion range in order to reach the target 5cm from the origin. 
 Subjects performed 24 movements per epoch with 
random target order comprised of exactly six reaches in each 
direction. The experiment consisted on 5 epochs and there was 
a 30-60 resting period between them. This protocol allows us 
to chart an explicit learning curve of different performance 
measures with constant visual feedback. 
 

D. Analysis/Statistics 

a) Error rate: was defined the average number of failed 
attempts per trial.  

b) Movement time: was computed as the total time it 
took for the subject to successfully complete the reaching task.  

c) Movement error: was the average distance from the 
sample points to the task axis, irrespective of whether the 
points were above or below the axis.  

d) Maximum error: was calculated as the maximum 
absolute deviation of the points from the task axis.  

e) Movement variability: measured the extent to which 
the sample points lie in a straight line along an axis parallel to 
the task axis and was calculated by the standard deviation.  

f) Path length: was computed as the sum of the 
Euclidian distance between time-consecutive points along the 
reach.  

All performance measures were averaged over all 
movements by epoch. This produced a total of five values per 
performance measure for each subject for the whole 
experiment. Together, these performance measures allow us to 
elicit differences in the cursor’s path and control between the 
three different groups. The standard error between subjects in 
each group was calculated for the error bars shown in Fig. 3. 
 A two-factor, mixed-model analysis of variance 
(ANOVA) for repeated measures with each performance 
measure as the dependent repeated measure, and group and 
epoch as the two independent factors, was used to test the 
null-hypothesis that the mean between groups at each epoch 
was the same. This test was repeated for each performance 
measure and allows us to reject the null-hypothesis at each 
epoch at p<0.05.  

A two-way mixed model analysis of variance 
(ANOVA) was performed on each performance measure with 
EPOCH (1, 2, 3, 4, 5) as the within-participant factor and 
GROUP (E EV, and EVA) as the between-participant factor. 
Corrected violations of sphericity were performed using the 
Greenhouse-Geisser correction. Post-hoc comparisons using a 
Bonferroni correction were performed to test the null-
hypotheses that the mean between groups at each epoch was 
the same, and that the mean for the first and last epochs within 
the same group was the same. These tests were repeated for 
each performance measure and allowed us to reject the null-
hypothesis at each epoch at p<0.05. 



III. RESULTS 
 As subjects practiced controlling a cursor on the 
screen by shoulder motions, their movements became more 
accurate. Fig. 2 illustrates a general increase in task 
performance and movement linearity in sample trajectories 
from a typical subject in each group. The left and right panels  
show reaching trajectories at the first and last epochs of the 
experiment. Reaches to each direction are represented by a 
different color. Prior to training, controlling the cursor was 
extremely difficult for subjects in groups E, and EV, as shown 
by erratic looking trajectories and high errors in panels a and c 
of Fig 2. Control before training was not as complicated for 
subjects in group EVA, as illustrated in panel e. After training, 
subjects in all groups exhibit well-established and quasi-linear 
movements of the cursor. This is consistent with evidence 
suggesting that linear trajectories will dominate the control 
strategy of subjects in reaching movements where visual 
feedback is available [15–18]. 

a) The data indicate that final error rate after five 
epochs was reduced to approximately 70% (p = 1.00), of the 

initial error rate for subjects in the E group and 24% (p = 0.04) 
and 83% (p = 1.00) for groups EV and EVA respectively. 
These final levels or performance correspond to 0.229+/-0.004 
failed trials/trials, 0.073+/-0.003 failed trials/trials, and 
0.059+/-0.002 failed trials/trials for subjects in groups E, EV, 
and EVA respectively (values are means +/- 95% confidence). 
The E and EV groups reduced error rate faster than the EVA 
group but groups EV and EVA ultimately seemed to converge 
to the same level of final performance ( Fig 3-a).  

b) The movement time that subjects took to complete the 
each reaching movement was also demonstrated, and the 
subjects in groups E, EV, and EVA reduced their movement 
times to 86% (p = 0.67), 71% (p = 0.01), and 91% (p = 1.00) 
of their initial times by the fifth epoch respectively. This 
corresponds to average final movement times of 3.31+/-0.02 
sec, 2.63+/-0.01 sec, and 2.34+/-0.02 sec for groups E, EV, 
and EVA respectively (Fig 3-b). 

c) Movement error was reduced to 73% (p = 0.14), 64% 
(p = 0.03), and 98% (p = 1.00) of the initial performance of 
subjects in groups E, EV, and EVA respectively. The average 
final movement error for subjects in groups E, EV, and EVA 
was of 0.94+/-0.007 cm, 0.80+/-0.005 cm and 0.66+/-005 cm 
(Fig 3-c). 

d) Maximum error on the fifth epoch was 71% (p = 
0.15) of the error on the initial epoch for group E and 65% (p 
= 0.07) and 97% (p = 1.00) for groups EV and EVA 
respectively. The final maximum error corresponds to 2.31+/-
0.02 cm, 1.93+/-0.02 cm, and 1.47+/-0.01 cm for subjects in 
groups E, EV, and EVA respectively, (Fig 3-d).  

e) Movement variability of subject’s reaches decreased 
as they became more familiar with the control of the cursor 
using their shoulders. After the five epochs, subjects in groups 
E, EV, and PA reduced their variability to approximately 73% 
(p = 0.10), 70% (p = 0.11) and 96% (p = 1.00) of their 
variability in the first epoch. These values correspond to a 
variability of 0.90+/-0.006 cm, 0.76+/-0.006 cm, and 0.55+-
/0.005 cm for groups E, EV, and EVA respectively (Fig 3-e).  

f) Path length showed a similar improvement in 
performance with subjects in groups E, EV, and EVA 
reducing their path lengths to 74% (p = 0.16), 67% (p = 0.08) 
and 93% (p = 1.00) of their initial performances by the fifth 
epoch. These path lengths correspond to 13.84+/-0.14 cm, 
11.08+/-0.04 cm, and 9.34+/-0.08cm for subjects in groups E, 
EV, and EVA respectively, (Fig 3-f).  
 Between-groups comparison at each epoch failed to 
show statistical significance for the most part (Table 1). 
Significant differences were only apparent in some epochs 
between groups E and EVA (p-values in bold on the table), 
which are the groups with the least and the most information 
in the observation vector respectively. 
 
 
 
 

Fig. 2. Reaching paths for the first and last epochs for representative 
subjects in each group. Each reaching direction is depicted in a different 
color. The task was very challenging during the first epoch for subjects in 
groups E and EV, but not so much for subjects on group EVA.  Reaching 
error and variability reduced after training for all groups. 



IV. CONCLUSION 
We investigated whether a discrete linear Kalman 

filter algorithm based on upper-body motion could help 
subjects learn to operate a virtual cursor. Our goal was 
extending to body-machine interfaces an approach to decoding 
that has been first proposed for brain-machine interfaces [7]. 
In our experiment, Euler angles, angular velocities, and linear 
accelerations of the shoulders served as the algorithm’s 
observation and were linearly mapped to the virtual cursor’s 
kinematics, or the model’s state. This approach has a well-
understood theory [5] and its rigorous probabilistic method of 
on-line recursive estimation provides a computationally 
efficient filter algorithm.  
 Subjects in the EVA group achieved a better 
performance with less training than subjects in the other two 
groups. However, subjects in the EV group ultimately reached 
the same level of performance as subjects in EVA after 
extended training. Interestingly, subjects in the EVA group 
failed to improve their performance after prolonged training. 
This might indicate that subjects in this group reached a 
ceiling in performance early in the experiment. Increasing the 
level of challenge during the reaching task i.e. reaching in 
directions that require combinations of movements, might 
elicit a more explicit improvement in proficiency for this 

group.  
 This study investigated the importance of exploiting 
the abundance and redundancy of body motions for the 
effective control of a cursor’s kinematics. In order to remove 
variability caused by individual’s control choices, we 
standardized the “control” strategy that subjects used so that 
they all moved the cursor north and south with their right 
shoulder and east and west with their left shoulder. Every type  
of injury to the cervical spinal cord is distinct, and subjects 
with high tetraplegia will have unique residual motion and 
upper-body coordination, therefore we can’t expect all of them 
to have equal abilities and preferences in performing upper-
body motions. Future experiments will let subjects make their 
own choices of control strategies to move the cursor north, 
south, east, and west. 
 Different methods have been proposed for people 
with high tetraplegia to control their powered wheelchairs. 
Inertial Measurement Units were mounted at the back of a 
user’s head while orientation values were converted into 
adequate, steering commands [19]. This method provides an 
intuitive, easy to implement, and computationally efficient 
control of a wheelchair. However, interaction with the 
interface is constrained to the head only and therefore fails to 
promote upper-body coordination, when the users may still 
have significant residual motion capability. 

 

Fig. 3. Performance averages for each epoch with each group represented on a different color. Subjects in all groups improved their performance after five 
epochs of training. Groups E and EV (blue and green respectively) improved faster and more dramatically than group EVA. The error bars represent the 
standard error for each group 

Error Rate 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.25 - 0.64 0.07 - 0.87 0.04 - 0.05 0.02 - 0.23 0.17 
AV - - 0.36 - - 0.71 - - 0.30 - - 1.00 - - 1.00 

Movement Time 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.09 - 0.67 0.02 - 0.69 0.01 - 0.08 0.03 - 0.40 0.11 
AV - - 0.16 - - 0.26 - - 0.16 - - 1.00 - - 1.00 

Movement Error 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.10 - 1.00 0.09 - 1.00 0.08 - 0.09 0.02 - 0.90 0.16 
AV - - 0.15 - - 0.34 - - 0.18 - - 1.00 - - 0.98 

Maximum Error 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.07 - 1.00 0.07 - 1.00 0.05 - 0.14 0.02 - 1.00 0.22 
AV - - 0.14 - - 0.27 - - 0.08 - - 1.00 - - 0.91 

Movement Variability 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.05 - 0.83 0.05 - 1.00 0.04 - 0.17 0.03 - 1.00 0.10 
AV - - 0.17 - - 0.41 - - 0.06 - - 1.00 - - 0.55 

Path Length 
Epoch 1 2 3 4 5 

Group A AV AVA A AV AVA A AV AVA A AV AVA A AV AVA 
A - 1.00 0.10 - 0.86 0.05 - 1.00 0.06 - 0.14 0.53 - 0.75 0.21 
AV - - 0.30 - - 0.39 - - 0.16 - - 1.00 - - 1.00  

Table 1. The p-value for the between-groups comparison at each epoch is shown in each performance measure’s table. The error rate p-value for the 
comparison between groups E and EVA during the third epoch was 0.04. 



Electroencephalography (EEG) methods for the control of a 
powered wheelchair have also been investigated by different 
groups [20], [21]. However, these methods are more 
computationally expensive and require a high concentration 
and long familiarization phase from the user. Additionally, 
users have to rely on external cues and the wheelchair follows 
a predetermined path [20]. 
 Our goal is to develop a non-invasive body machine 
interface that will adapt to each user’s unique residual 
shoulder motion. To develop this interface, we performed 
preliminary experiments on unimpaired subjects. One should 
not assume that these findings can be extrapolated to people 
with paralysis. We have begun to test the system on spinal 
cord injured participants and we plan to publish the findings as 
they will become available. The future direction of our work is 
to develop customized interfaces so that subjects can use their 
mapped virtual cursor to communicate with a keyboard, a 
joystick and a keypad. This will allow subjects to practice and 
improve their control while browsing the internet, writing e-
mails, playing video games, performing increasingly 
challenging reaching tasks, and practice the control of a 
wheelchair inside a safe and controlled virtual reality 
environment. Enough training and continued use of upper-
body coordination might help people who suffered an injury to 
the cervical spinal cord to avoid or minimize comorbidities of 
paralysis and recover some of the lost mobility.  
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