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Abstract—Gait and balance training is an essential ingredi-
ent for locomotor rehabilitation of patients with neurological
impairments. Robotic overhead support systems may help these
patients train, for example by relieving them of part of their
body weight. However, there are only very few systems that
provide support during overground gait, and these suffer from
limited degrees of freedom and/or undesired interaction forces
due to uncompensated robot dynamics, namely inertia. Here, we
suggest a novel mechanical concept that is based on cable robot
technology and that allows three-dimensional gait training while
reducing apparent robot dynamics to a minimum. The solution
does not suffer from the conventional drawback of cable robots,
which is a limited workspace. Instead, displaceable deflection
units follow the human subject above a large walking area.
These deflection units are not actuated, instead they are implicitly
displaced by means of the forces in the cables they deflect. This
leads to an underactuated design, because the deflection units
cannot be moved arbitrarily. However, the design still allows
accurate control of a three-dimensional force vector acting on a
human subject during gait. We describe the mechanical concept,
the control concept, and we show first experimental results
obtained with the device, including the force control performance
during robot-supported overground gait of five human subjects
without motor impairments.

Keywords—Gait training, body weight support, cable robots,
series elastic actuation, underactuation.

I. I NTRODUCTION

A growing body of clinical studies suggests that effective
training in neurorehabilitation allows subjects to participate
actively and to perform unhindered movements. Therefore,
strategies like “Assist as Needed” [1] or the “challenge point”
concept [2] recommend tailor-made assistance or challenge
during training. For gait rehabilitation robots, this denotes a
change in paradigm, because currently available devices have
been designed to ensure accurate reproduction of physiological
kinematics. Such devices cannot fully “get out of the way”
when not needed, because their intrinsic dynamics generate
undesired interaction forces.

One step towards more cooperative training environments
was marked by the “KineAssist” robot [3], which is a moving
frame with attached harness that can gently catch the subject

in case of fall. However, the device cannot move fast due to
its heavy structure, so it is more suitable for use in standing
and stepping training, when the robot does not need to move.

We recently suggested a multidirectional overhead support
system for rats [4], which allows highly transparent gait
training. With this device, it was shown that treadmill training
does not necessarily promote voluntary gait [5], in contrast
to body-weight supported overground training. However, the
mechanical structure of this robot cannot simply be enlarged
to human scale.

Classical body weight support (BWS) systems for humans
are often realized by use of cable systems. Mostly the user
wears a harness, which is suspended by a single cable. The
cable is tensed by passive and/or active elements, resulting in
a 1-dimensional, uni-directional vertical force. Adding further
dimensions is often realized by repositioning the pulley guid-
ing the cable to the user. For example, the Zero-G [6] provides
support during overground walking by means of a trolley that
runs on a rail and contains a pulley mechanism. However,
this constrains subjects to walking along a given path, which
unfavorably influences balance tasks by generating horizontal
“pendulum” forces [7].

NASA’s ARGOS [8] or the NaviGAITor [9] are overhead
gantry systems that also allow lateral movements. However,
their massive structure leads to low bandwidth and restricts
dynamic movements of the subject.

Another approach for multi-directional support is repre-
sented by cable-driven robots [10], [11]: Spatially distributed
pulleys guide multiple cables, which are driven by motorized
drums, into the workspace. The free cable ends inside the
workspace are attached in parallel to one or multiple points.
Such cable robots, as parallel robots in general, usually have
one disadvantage: Their load capabilities vary strongly depend-
ing on the position of the end-effector inside the workspace.
This results from the increasingly inhomogeneous distribution
of cable force vectors when the end-effector is moved away
from its central position towards the outer workspace zones.
This disadvantage can be compensated by actively moving
the pulleys; however, this solution is costly due to its high
mechanical complexity [12].
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Here, we suggest a new concept for a cable robot for gait
and balance training that employs pulleys that are neither fixed
nor actuated. Instead, they are moved along guiding rails bythe
forces resulting through the deflection of the cables while being
directed to the human subject [13], [12]. This general concept
minimizes moving masses of the robot. This way, we achieve
minimal inertia, yet still a large workspace. As a consequence
of the passive deflection units, the device is underactuated[14].
However, appropriate control still allows exact control ofthe
forces that are exerted on the user.

In the following sections, we will first describe the hard-
ware and control concept, followed by an experimental evalu-
ation that identifies apparent robot dynamics and that assesses
force control performance in experiments with human subjects.

II. H ARDWARE CONCEPT

A. Mechanics

The robotic system FLOAT (Free Levitation for
Overground Active Training) is an overhead support
system that is designed to precisely control forces acting on
a human subject in vertical and in both horizontal directions
(Fig.1). The device capitalizes on cable robot technology.

The FLOAT allows the subjects to move in a large space
(approximately 8 m length by 1.5 m width by 2.8 m height
in our setup in Zürich, which is mainly limited by room
size), so that diverse activities can be trained and analyzed
in healthy subjects or in patients, such as level walking,
running, walking on uneven terrain, and even stair climbing.
During these activities, FLOAT needs to transparently follow
the subject while precisely controlling magnitude and direction
of the force vector acting on the human subject. To this end,
two parallel rails are arranged horizontally on the ceilingand
tilted by 45◦ towards the workspace along their longitudinal
axis. Each rail guides two deflection units: Each deflection
unit is composed of a ball-beared cart carrying an inclinable
pulley. The inclination axis of the pulley is parallel to therail.
A Dyneema cable with 2.5 mm diameter connects the two carts
on one rail, so that they form a “trolley”.

At each end of the two rails, a winch is positioned. From
each winch, a cable extends via the closest deflection unit
into the workspace. The design of the winches (Fig. 1, inset
right) is similar to the one proposed in [15]. AC motors (type
AKM54G from Kollmorgen) with 2.6 kW power, a continuous
torque of 14.3 Nm, and with an integrated brake are used. The
motor shaft is connected to the drum via a backlash-free shaft
coupling. The Polyamid drums have an effective diameter of
71 mm and a length of 245 mm. The entire drive train (i.e.
motor shaft with brake, coupling, shaft within the drum, drum)
has a moment of inertia of 0.00186kgm2. Each winch unit
is additionally equipped with a light-weight hollow pressure
roller, which maintains the contact pressure of the cable on
the drum in order to avoid derailing of the cable. The hollow
roller rotates passively and its contact pressure can be adjusted.
The cables are Dyneema ropes with 4 mm diameter.

Following the principle of Series Elastic Actuation [16],
[17], four elastic elements connect the cables to stainlesssteel
rings, which are arranged so that the four cables approximately
intersect in one point, which we define as the “node” (Fig. 2).

This virtual intersection of the cables is located in the center of
a steel ring. The elastic elements consist of spiral steel springs,
each with a parallel rubber cord inside. They exhibit a slightly
nonlinear force-length relationship, with a mean stiffness of
approximately 6.2 kN/m.

The human user wears a harness, which is attached to
a beam, which in turn is pivot-mounted to the lower end
of the node. Due to these decoupling joints, the steel ring
in the node always aligns in direction of the resultant force
vector that is generated by the four cables and acts on the
subject. The beam can rotate infinitely, allowing the subject to
take arbitrary turns. The beam further includes an emergency
release system, allowing the subject to be lowered manually
in case of electronic and/or mechanical failure of the robot.

In this setup, the force vector acting on the human can
theoretically assume any direction within the polygon thatis
defined by five vertices: the node and the four winches (or,
more precisely, extreme locations of the deflection units).This
polygon is much larger than the one spanned by the node
and any current location of the deflection units, which would
confine the force vector in case the pulleys were fixed.

B. Sensing, Communication, and Safety

Winch positions, and thereby the amount of cable that has
been released from the winch, are measured by multi-turn
high-resolution encoders on the motor shafts.

The lengths of the elastic elements and thereby the force
acting on any single cable is measured by wire potentiometers
(Micro-Epsilon, Ortenburg) guided inside the spiral spring,
next to the rubber cord.

The position of each of the carts is measured by a laser
distance sensor, which is attached next to the respective winch.
The laser beams are collinear to the rails. As there are two
laser sensors per trolley (one for each cart), the measurement
is redundant and is used both to improve signal quality and to
serve for fault detection purposes.

These sensors already provide redundant information to
calculate the position of the node and the resultant force vector
on the subject by means of optimization, similar to [18].

Additionally, inside the steel ring in the node, an inertial
measurement unit (IMU) is located, which contains accelerom-
eters, gyroscopes, and a magnetometer (Fig. 2). This unit
measures accelerations, angular rates, and orientation ofthe
steel ring in the node in 3D. As the steel ring always aligns
with the resultant force acting on the user, the IMU unit senses
the direction of this force. The orientation is redundant to
the information from cable forces and geometry, so that it
allows improvement of signal quality as well as fault detection.
In addition, the IMU can be used to estimate speed and
acceleration of the node, which is beneficial for dynamic
control regimes. In the current state of development, however,
the IMU is not yet used in the control scheme.

Below the node, a rotary potentiometer is attached, which
measures the rotation of the harness beam around the vertical
axis, and thereby the current walking direction of the user.

The signals from the IMU and the five potentiometers are
transmitted the control unit via a spiral cable attached to an
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Fig. 1. Concept of the FLOAT training system, with enlarged views of a deflection unit and a winch unit.
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Fig. 2. Detailed view of elastic elements and node.

extension arm. The extension arm is mounted to a fifth cart,
which is driven by a dedicated motor via a belt. The position
of this cart is measured by an additional laser sensor, in order
to enable a position controller that keeps the distance to the
neighboring trolley constant.

Communication is realized with an updated and extended
version of the solution proposed in [19]: The real-time control
PC (Matlab xPC) and the motor drives communicate via an
EtherCat network. Also the signals of the laser sensor are
digitized by decentral EtherCat boxes (Beckhoff, Germany)
and transmitted over this network. The EtherCat cycle and the
control algorithms run at a frequency of 1 kHz. The signals that
are collected at the node (lengths of wire potentiometers, angle

of rotary potentiometers, and signals of the IMU) are digitized
(in case of the analog wire potentiometers) and transmittedvia
RS485 to the xPC (Fig. 3).

In addition to diverse software fault detection mechanisms,
a human operator can halt the FLOAT anytime by a wireless
emergency stop or two wall-mounted emergency stops. A
watchdog surveys the operational reliability of the xPC-target,
by verifying the correct generation of a pulsed check signal.
The signals from the watchdog, emergency switches, remote
control, motor drives, and the xPC-target are all surveyed by a
FLEXI soft safety control unit (SICK AG, Stans, Switzerland),
which enables/disables the motor drives and the main power
supply.

III. M ODELING AND CONTROL

A. Modeling

In the chosen right-handed Cartesian coordinate system,
z points upward andx points forward in the default gait
direction, parallel to the rails (Fig. 4). As the joints in the
node ensure that only a force vector is transmitted, the harness
can be represented by a single cable that connects the node
n = (nx ny nz)

T to a specific point on the human.

The geometric configuration is fully described by the length
of cables that have been released from each winch, subsumed
in the vectorsW ∈ R

4, with sW = (sa sb sc sd)
T
, and

by the positions of the trolleys, subsumed in the vectorxT =
(xT,ab xT,cd)

T
. This means that a twelve-dimensional vector

(containingsW , xT , ṡW , and ẋT ) suffices to describe the
current state of the robot.
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Cable forces are subsumed in the vectorF r ∈ R
4
+ with

F r = (Fa Fb Fc Fd)
T , and the Cartesian force vector

F n ∈ R
3 acting on the subject isF n = (Fnx Fny Fnz)

T .
Force equilibrium on the node maps cable forces to node
forces:

F n = J(xT ,n)F r. (1)

The JacobianJ can be computed in an efficient way by first
summing up the cable forces within the two planes spanned by
the cables, via the matrixR, to obtain the componentFn,x and
the componentsFab andFcd (Fig. 4, right), and then converting
these to Cartesian space via the matrixS:

J =

(

1 0

0 S

)

R, (2)

with

S =

(

− cosϕab cosϕcd

sinϕab sinϕcd

)

, (3)

R =

(

cosϕa − cosϕb cosϕc − cosϕd

sinϕa sinϕb 0 0
0 0 sinϕc sinϕd

)

. (4)

Current trolley positionsxT and the node positionn define
the angles in these matrices (Fig. 4).

Trolley movement is governed by the equations of motion:

mT ẍT = TF r, (5)

with

T =

(

cosϕa − 1 1− cosϕb 0 0
0 0 cosϕc − 1 1− cosϕd

)

(6)

The equations of motion for the winches are given by:

mW s̈W = F r − FW , (7)

with the winch actuator forcesFW . This means that in static
conditions or when the winches rotate at a constant speed,
cable forces are equal to winch forces.

B. Control Design

An ideal controller would command actuator torques in
such a way that the force vectorF n that acts on the subject
matches the reference force vectorF n,ref regardless of the
movement of the subject.

We implement a force controller in Cartesian space, which
commands a Cartesian force vectorC

F fc that is to be realized
by the winches. This force is calculated by PI control and feed-
forward of the reference:

C
F fc = F n,ref +

(

KP +
KI

s

)

(F n,ref − F n), (8)

with s being the Laplace operator,KP being a positive definite
matrix of proportional gains, andKI being a positive definite
matrix of integral gains.

Cartesian forces need to be mapped to winch forcesFw,
which is the inverse problem of (1). Given that there are four
winch forces and only three node force components, there
are multiple solutions to (1) with a given node force. If the
trolleys were not movable, quadratic programming could be
used to find the minimal cable forces that fulfill the constraints.
However, in the current system, the cable forces do not only
influence the output force vector, but they also influence the
movement of the trolleys, according to (5). In turn, the position
of the trolleys defines the polygon of applicable forces.

Therefore, instead of minimizing cable forces, we take
trolley dynamics into account to solve the rank deficiency in
the inverse mapping of (1). The idea is to generate cable forces
that force the trolleys to stay together, leading to a polygon
with rectangular base. This behavior is enforced by the law:

mT (ẍT,ab − ẍT,cd)
!
= −kT (xT,ab − xT,cd) (9)

with the positive constantkT .

With (5) and (6), this gives

r
T
F r

!
= kT (xT,ab − xT,cd), (10)

whereby

r
T = (1− cosϕa cosϕb − 1 cosϕc − 1 1− cosϕd) .

(11)

Using this additional control goal, the control law maps
reference forces in Cartesian space to winch forces:

Fw = R
′−1





(

1 0

0 S
−1

)

C
F fc

kT (xT,ab − xT,cd)



 (12)

with the reference force in Cartesian spaceF n,ref and the
modified mapping matrix

R
′ =

(

R

r
T

)

. (13)

The winch forces are realized via underlying control loops,
which also realize substantial artificial damping based on the
winch velocity, similar to [20].
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IV. EVALUATION PROTOCOL

A. Identification of Apparent Dynamics

In a first experiment, we aimed to identify apparent robot
dynamics by exciting the node in all three directions. For
each direction individually, we modeled the robot as a linear
mass-damper system, whose uncompensated dynamics can be
captured by a simple linear model:

∆F̂i = mn̈i + dṅi , with i ∈ {x, y, z}. (14)

The parametersm and d are the model’s mass and damping
factor, and∆F̂i is the predicted difference between reference
and actual force (as this is only the difference, gravitational
components do not occur in the equation).

In order to identify the two parameters, harmonic move-
ments at different frequencies were manually applied to the
node, separately for each direction. During these experiments,
the robot tracked a reference force in vertical direction of
200 N, to maintain cable tension.

For the individual data sets for each direction, we found
m andd by minimizing the linear-quadratic cost function

J = |(Fref,i − Fn,i)−∆F̂i|
2 , i ∈ {x, y, z}. (15)

Values for velocity and acceleration of the node were calcu-
lated via offline differentiation of the low-pass-filtered node
position (non-causal 4th-order Butterworth with cutoff fre-
quency 10 Hz).

As the elastic elements measure the force that acts on the
node, not directly on the user, the identified mass has to be
augmented by the mass of the beam and harness structure,
which is approximately 5 kg. This mass is mainly caused by
the emergency release system.

To validate the model, we recorded an additional data set
where all directions were excited simultaneously, to assess
cross-talk effects. To compare this data with the model pre-
dictions, we calculated the coefficient of determinationR2.

B. Force Control Performance during Walking

In a second experiment, we aimed to quantify force control
performance in realistic conditions. Five subjects (2m/3f, aged
25-30y, weight 50-85kg) with no known movement disorders
participated. Subjects were asked to walk back and forth while
attached to the robot and receiving constant body weight
support for a duration of 30 s.

The controller described in Sec. III-B was used to track a
constant reference force in vertical direction, and zero forces
in horizontal directions, as long as the subject remained within
virtual workspace limits. At the workspace extremities, an
additional spring-like force was applied to limit the workspace
before reaching the actual mechanical limits. Subjects were
allowed to use the haptic information from these “virtual
walls”, especially inx direction, to know when to stop and
turn around. The experiment was done with two different BWS
values inz-direction: 10 kg and 25 kg. As the beam and harness
have an additional mass of 5 kg, the reference force inz-
direction was increased by an equivalent amount.

Off-line, the acquired force data was smoothed with a
4th-order phaseless Butterworth low-pass filter with a cut-off
frequency of 50 Hz. Force tracking performance was evaluated
with the root mean square (RMS) error between the reference
and the actual force:

RMSi =

√

√

√

√

1

N

N
∑

k=1

[Fn,i(k)− Fref,i]2 , i ∈ {x, y, z}. (16)

whereN is the number of registered samples.

To assess the impact of these forces on human gait, we also
recorded the displacement of the node in the three directions,
which approximately reflects the movement of the subject’s
center of mass. From this data, we also calculated the node
speed in walking direction, by numerical differentiation with
a 10 Hz, non-causal 4th-order Butterworth low-pass filter.



V. RESULTS

A. Apparent Dynamics

The identified values for the apparent massm were
0.00 kg in x-direction, 1.04 kg iny-direction, and 1.02 kg in
z-direction, and the values for dampingd were 9.7 Ns/m,
67.4 Ns/m, and 61.6 Ns/m forx, y, and z, respectively. The
model matched the multidimensional evaluation data with a
coefficient of determinationR2 of 0.68 for x, 0.94 for y,
and 0.91 forz. An excerpt of the evaluation data and the
model predictions is depicted in (Fig. 5). In all directions,
the additional (uncompensable) mass of the bar and harness
construction further adds to the apparent mass (with 5 kg).
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Fig. 5. Measured and predicted forces for multi-directional excitation.

B. Force Control Performance during Walking

Fig. 6, Fig. 7, and Fig. 8 show a concatenation of ten-
second excerpts from each subject with 10 kg BWS.
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Fig. 6. Concatenated data excerpts from the 5 subjects inx-direction.
Top: Reference force (dotted red) and measured force (solidblue). Bottom:
Associated node movement inx-direction, with virtual walls (dotted green).

The node forces that were measured are shown in the
top plots of the figures. The reference force in thex and y
directions was mostly zero, unless the subjects hit the virtual
workspace boundaries. This mostly happened inx-direction.
In the z-direction, the boundaries were not reached because
no large vertical movements were performed in this direction.

Periodic force fluctuations in response to human move-
ments are observed in all three directions (the ones inx are less
visible, due to a scaling effect). Across all data sets with the
full 30 seconds for each subject, the RMS error was calculated:
For 10 kg BWS, the RMS error in force was 6.6 N, 4.6 N, and
7.2 N inx,y, andz direction, respectively. For 25 kg BWS, the
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Fig. 7. Concatenated data excerpts from the 5 subjects iny-direction.
Top: Reference force (dotted red) and measured force (solidblue). Bottom:
Associated node movement iny-direction, with virtual walls (dotted green).
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Fig. 8. Concatenated data excerpts from the 5 subjects inz-direction.
Top: Reference force (dotted red) and measured force (solidblue). Bottom:
Associated node movement inz-direction.

RMS error in force was 9.7 N, 5.7 N, and 9.6 N inx,y, andz
direction, respectively.

In the bottom plots of the figures, it can be seen that the
movements in thez-direction contain small periodic move-
ments of 1-2 cm amplitude. The position along they-axis
varies more, although it also contains a frequency component
with an amplitude of 2-3 cm. In thex-direction, periodic
movements are also present, but they are hidden by the large
slopes corresponding to the forward and backward movements.
The self-selected walking speed for all subjects was between
1 m/s and 1.5 m/s in steady state, without visible influence of
the unloading force. Speed oscillations inx-directions were in
the range of about 0.1 m/s to 0.2 m/s in amplitude.

VI. D ISCUSSION

The achieved force control performance enables highly
transparent interaction with walking subjects. This is partic-
ularly true for the walking (x)-direction, where the passive
degrees of freedom, represented by the trolleys, take the
function of hiding virtually all inertia of the actuation units.

As a consequence of this transparency, subjects exhibited
rhythmic movements in all three directions that were similar
in amplitude to what has been reported in literature for free
overground gait. However, there are still undesired forcesin
response to these movements. In the future, we expect this
behavior to be further improved once the IMU is integrated in
the control scheme. Furthermore, we have already developed



a non-causal extension to the controller (also presented atthis
conference [21]), which is based on synchronizing oscillators.

The current controller only applied vertical forces on the
subjects, no dedicated assistance in lateral direction wasgiven
(besides virtual walls at the workspace limits). For specialized
therapy, further algorithms may support subjects in balance
tasks, possibly based on the approach we proposed in [22].
The question remains how humans might alter their balance
reactions when additional help is provided. The FLOAT offers
a research platform to address this question, as well as more
general questions on human balance control and falls: In
contrast to existing experimental techniques, which induce
sudden translations at the feet [23] via perturbation platforms
or treadmills, the FLOAT enables perturbations on the upper
body during overground locomotion.

VII. C ONCLUSION

In this contribution, we presented the overhead support
robot FLOAT, which can apply forces in three directions on
the upper body of a human subject. We outlined the control
concept and showed first results on force control performance,
which demonstrate device transparency. Our next steps are to
iteratively evaluate and improve control algorithms in experi-
ments with non-impaired subjects and patients.

In the long run, we aim to make the FLOAT available for
diverse therapeutic and research applications: As a therapeutic
device, FLOAT can not only support the weight of a user
during voluntary movements, but it can also help to initiate
movements and to track a 3D reference trajectory for the
body’s center of mass. Recorded data can also serve diagnostic
and prognostic purposes. As a research platform, FLOAT can
emulate reduced gravity conditions, but it can also apply
horizontal force components on the upper body, for example
to laterally perturb or assist the upper body during gait.
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