Inducing Self-Selected Human Engagement in Robotic Locomotion Training

Steven H. Collins and Rachel W. Jackson Dept. Mechanical Engineering, Carnegie Mellon University, USA

- We describe a technique for shaping human gait using least-effort tendencies
- Adaptive assistance from a robotic
 orthosis alters the energy-cost landscape
- Subjects self-selected energetically optimal gait parameters
- Results show potential for improving active engagement in robotic therapy

- The role of pelvic rotations in human gait remains uncertain.
- During robotic design, decisions needed on which degrees of freedom (DoF) to permit and actuate, requiring an understanding of the role of each DoF.
- Role for pelvic obliquity in reducing lateral movement of the upper body proposed, hypothesis tested experimentally.
- Pelvic rotations reduced when walking in robotic orthosis.
- Trend for decreased lateral movement with increased pelvic obliquity.

Podium 4.2

Robotic-Locomotor Training as a Tool to Reduce Neuromuscular Abnormality in Spinal Cord Injury

The Application of System Identification and Advanced Longitudinal Modeling

Mehdi M. Mirbagheri, Matthew Kindig, Xun Niu, Deborah Varoqui, Petra Conaway, Northwestern University/Rehabilitation Institute of Chicago

- Robotic-locomotor training (LOKOMAT) were given to incomplete spinal cord injury subjects.
- Neuromuscular properties of ankle were characterized with system identification technique.
- Growth Mixture and Random Coefficient Regression analyses were used to identify recovery patterns of neuromuscular abnormalities associated with spasticity.
- Results demonstrated that LOKOMAT can effectively reduce neuromuscular abnormalities, with greater improvements for subjects with higher baseline abnormalities.

Podium 4.3

Development of an Energy Harvesting Backpack and Performance Evaluation

Michael Shepertycky, Jun-Tian Zhang, Yan-Fei Liu*, and Qingguo Li Department of Mechanical and Materials Engineering, Queen's University Department of Electrical and Computer Engineering, Queen's University* K7L 3N6, Kingston ON, Canada

- Developed a new energy harvesting backpack that integrates motion from both lower limbs into a single mechanical driven train.
- Evaluated the performance and metabolic consequences of this energy harvesting device.
- 5 healthy young adult subjects participated in seven treadmill walking activities conducted at 1.2m/s.
- Metabolic costs were measured in four walking activities: (1). Normal walking. (2). Weight-only. (3). Mechanical engagement. (4). Electrical engagement.
- Device generates 15W electricity during walking.

Energy Harvesting Backpack

Podium 4.4

Experimental Effective Shape Control of a Powered Transfemoral Prosthesis

R. Gregg¹, T. Lenzi^{2,3}, N. Fey^{2,3}, L. Hargrove^{2,3}, J. Sensinger^{2,3} ¹University of Texas at Dallas, ²Rehabilitation Institute of Chicago, ³Northwestern University

- The human leg conforms to an *effective* shape during walking
- The effective shape is a standard measure for gait analysis and prosthesis alignment
- Recent simulations suggest a novel effective shape control strategy could improve robustness and clinical viability of powered prosthetic legs
- We experimentally implement effective shape control on the Vanderbilt leg

Modulation of Anticipatory Postural Adjustments of Gait Using a Portable Powered Ankle-Foot Orthosis

M Petrucci, E Hsiao-Wecksler: University of Illinois Urbana-Champaign (UIUC) C MacKinnon: University of Minnesota (UMN)

- Pilot study was performed to determine the efficacy of using robotic assistance to facilitate gait initiation.
- Powered orthosis helps drive user through the proper sequence of postural adjustments prior to talking a step.
- Results suggest potential application in Parkinson's disease to help alleviate freezing of gait symptoms.

