
 
 

 

  
Abstract— This paper reports a study that estimated visitor 

positions, visiting patterns, and inter-human relationships at a 
science museum using information from RFID readers. In the 
science museum, we exhibited humanoid robots. Visitors were 
invited to wear RFID tags to interact with the robots. Visitor 
behavior was simultaneously observed using 20 RFID readers, 
distributed throughout the entire floor, that roughly measured 
the distances of nearby tags. We integrated the outputs from 
all RFID readers to estimate visitor trajectories that were used 
to analyze three perspectives: space, visiting patterns, and 
relationships. Regarding space, we identified crowded and 
uncrowded areas. We found several typical visiting patterns, 
such as visited at every exhibit and directly going to robot area. 
We also identified atypical visiting behavior. Regarding rela-
tionships, for example, we estimated 68% coverage of 
group-member relationships with 91% reliability. 

I. INTRODUCTION 
ECENT developments in ubiquitous computing and 
robotics enable us to integrate these fields to produce an 

idealized human-computer interface called the “network robot 
system.” In this context humanoid robots serve an informative 
role with support from ubiquitous sensors. There are several 
previous research works in this area, such as projects that used 
RFID tags to identify interacting children to further promote 
interactions with robots [1,2]. However, what a single robot 
can recognize is limited, even if many RFID tags are distrib-
uted throughout the environment on the people within it. A 
strong need exists to acquire a greater understanding of hu-
man activities through the use of ubiquitous sensors. 

Several research efforts have also been conducted into 
recognizing human positions and trajectories using ubiqui-
tous sensors [3-6]. Ubiquitous computing technology is 
gradually being used to analyze people’s activities. For 
example, Eagle and Pentland developed a Bluetooth-based 
device attached to a mobile phone that enables us to recog-
nize such routine activities as being at home, in an office, or 
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elsewhere [7]. Liao et al. also used locations obtained via 
GPS with a relational Markov model to discriminate loca-
tion-based activities [8]. Choudhury and Pentland developed 
a wearable device called a “sociometer” to visualize people’s 
peer relationships based on vocal communication activity [9].  

Scant previous research, however, has revealed to what 
extent we can identify people’s behavior by studying their 
trajectories. Although Sparacino classified visitors into three 
pre-defined types based on trajectories obtained through 
wearable sensors [10], the user types were defined in advance, 
such as ‘busy,’ ‘selective,’ and ‘greedy’, and have been de-
veloped in museological study with time-consuming obser-
vation by researchers [11]. 

We are particularly interested in exploring in an exhibition 
environment such as a museum, where many people remain in 
an environment over an extended period of time and walk and 
look around. In such an environment, we believe that people’s 
trajectories provide information that can be used to promote 
activities in the environment. For example, we expect that 
people will move around to see what they are interested in; 
thus, the amount of time a person remains at a certain position 
may reflect his/her interest in a particular exhibit. 

This paper addresses to what extent we can estimate peo-
ple’s activities in a museum space from their trajectories 
observed by ubiquitous sensors. We conducted a 25-day 
field trial in a science museum involving humanoid robots, 
whose presence offered considerable temptation to visitors 
to participate in the field trial. During the 25 days, 8,091 
visitors participated in the field trial by wearing RFID tags and 
interacting with the robots. We chose RFID as a positioning 
device since RFID tags are easy to carry and we can observe a 
number of tags at the same time. Analysis of participant tra-
jectories revealed conclusions from three different perspec-
tives: space, visiting patterns, and relationships. 

II. DATA COLLECTION 

A. Field trial at a science museum 
The study was conducted in conjunction with a field trial 

with humanoid robots at the Osaka Science Museum in 
Japan. This subsection briefly explains the field trial (See [2] 
for details). Figure 1 shows a floor plan of the museum space 
that was used. It is approximately 84 x 42 m. Visitors entered 
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using the elevator shown at the bottom left of the plan, and at 
the reception desk they were invited to participate in the field 
trial. Participants were asked to wear RFID tags. If a visitor 
decided to participate, he/she completed a registration form 
whose information was stored in a database server. Visitors 
were free to look around the museum as they wished. For this 
purpose, 400 RFID tags were prepared; at most 172 RFID 
tags were simultaneously active (worn by visitors).  

Four humanoid robots, Robovie–II and Robovie–M, were 
placed in the environment at positions R and M shown in 
Figure 1. The robots had three roles. One Robovie–II guided 
people to museum exhibits while it is moving around, where 
its position is revised by infrared sensor attached to the robot 
and ceiling. This robot can engage in such behavior as 
handshaking, hugging, and the rock-paper-scissors game, as 
shown in the left of Figure 2. It can also guide people to four 
kinds of exhibits, as shown in Figure 2 on the right. When 
bringing visitors to the telescope, the robot says, “I am tak-
ing you to an exhibit, please follow me!” It then approaches 
the telescope and explains it. 

Robovie-II is equipped with an RFID reader (the detail of 
which are explained in section 2.2). When it detects an RFID 
tag worn by a participant, it uses the registered information 
stored in the database to promote interaction with visitors, 
such as greeting them by name. Robovie-II also used the 
amount of time that visitors spent near particular exhibits to 
judge whether visitors had used the exhibits. For example, 
when an RFID-tagged visitor had lingered around the “mag-
netic power” exhibit more than a predefined time, the system 

would assume that the visitor had tried it. The robot might say, 
“Yamada-san, thank you for trying ‘magnetic power.’ What 
did you think of it?” Participants enjoyed such interaction 
with robots, particularly when personally greeted by name. 
Visitors not wearing RFID tags were also free to interact with 
the robots outside of experiencing such greeting behavior. 

The other Robovie-II and one of the Robovie-M explained 
about exhibits behaved as if they were talking (Figure 3, left). 

The remaining Robovie–M did not provide guidance but 
instead interacted with visitors by using their names from 
visitor tags and registered information, saying “good–bye,” 
and asking visitors to return their tags (Figure 3, right). The 
other Robovie-II was also equipped with an RFID reader and 
the remaining Robovie-M utilized a nearby RFID reader 
embedded in the environment. In the figure, the boy is show-
ing his RFID tag to the robot so that the robot will call his 
name. This behavior was frequently observed during the field 
trial. Finally, participants returned RFID tags at the exit desk 
near the entrance and completed a questionnaire about their 
impressions of the robots (Details were explained in [12], a 
field survey about impressions and anxieties). 

B. RFID tags and readers 
Active-type RFID tags and readers were used (Figure 4). 

We installed 18 RFID readers in the floor (Figure 5). RFID 
tags were embedded in a nameplate (5 cm in diameter) so 
that participants were easy to carry. Each RFID tag peri-
odically transmitted its ID, which was received by each of 
the readers. The reader has eight degrees of attenuation (a 
mechanism that increases electrical resistance to weaken 
received radio signals) that reduces the maximum gain of the 
receiver by 12.5% with each step. This enables us to esti-
mate the rough distance between tags and readers. Detection 
areas were affected by the antenna positions of the RFID 
readers and signal reflections from walls. We measured the 
detection area of each RFID reader to adjust the distance 
parameters for each attenuation parameter. Each RFID 
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Figure 1: Fourth floor of Osaka science museum 

   
Figure 2: Interaction scene with a humanoid robot, Robovie-II

  
Figure 3: Interaction scene with other humanoid robots 

 

 

 
Figure 4: RFID reader, antenna attached to ceiling, and tag 
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Figure 5: Placement of RFID tags 
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reader changed attenuation parameters from five to eight at 
0.75 second intervals. In addition, it costs 0.25 seconds to 
stabilize detection in each range. Thus, each reader can 
observe the distance of tags every 4 seconds.  

C. Position estimation with multiple RFID readers 
We integrated the output from all 20 RFID readers (two 

attached to the robot and 18 installed to the environment) to 
achieve approximate position estimation of each RFID tag. 
Figure 6 shows the outline of the estimation method, which 
is based on the Markov chain Monte Carlo method [13]. It 
projects the probability of the tag position to a map image of 
the floor. The size of the map image is 1024 x 512 pixels; 
thus, the area of each pixel represents 8 cm2. The system 
calculates the probability of each tag existence in each pixel 
by the detected signal strength of each RFID reader. The 
probability of tag existence is distributed equally to areas (x, 
y) that satisfy the following two equations: 

222 )1()()( −>−+− a
AAAA Nrcyycxx ,                                   (1) 

222 )()()( a
AAAA Nrcyycxx <−+− ,                                      (2) 

where (cxA, cyA) denote the position of RFID reader ‘A’ in 
the X-Y coordinate. )(nrA  denotes the pre-measured radius 
for RFID reader ‘A’ within which it can detect RFID tags 
with attenuation parameter n. a

AN  is signal strength for 
RFID tag ‘a’ (minimum attenuation parameter within which 
‘A’ could detect ‘a’). The system adds the probabilities of tag 
existence when areas overlap and normalizes the probability 
of each tag’s existence calculated by each RFID reader. 
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Figure 6: Outline of position estimation method 

To decrease observation noise, it incorporates the previ-
ous position into the estimation of the next tag position in the 
following process (This is a standard process of the Markov 
chain Monte Carlo method [13]): 
(1) Acquire weighted sample set },...,1),,{( )(
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and select sample set }{ )('
1
n

ts −  by iterating the following steps: 
(a) Generate a random number ]1,0[∈r , uniformly distributed. 
(b) By binary subdivision, find the smallest j for which rc j

t ≥−
)(
1 . 

(c) Set )(
1

)(' j
t

n ss −= . 
(3) Measure observation features at new sample position )(n

ts , 

and calculate weight )(n
tπ  using equations (1) and (2). 

We evaluated the accuracy of estimated positions with 
this method. Several people walked around the floor simu-
lating typical visiting behavior of museum visitors. We 
compared their real trajectories and estimated trajectories. 
The error in the estimated positions was approximately 2.8 m. 
We believe that there were several sources of errors including 
the reflection of and instability of radio signals and the mov-
ing of RFID tags due to the movement of subjects. 

III. ANALYSIS OF TRAJECTORIES 
We gathered 8,091 visitor trajectories during the 25-day 

field trial1. Since 49,091 people visited the science museum, 
approximately 16.5% participated in the field trial. Partici-
pant IDs, trajectories (sequence of positions), and ques-
tionnaire answers were stored in a database in real-time. 

Here, we define the basic symbols used in the paper. Since 
observations from each RFID reader are asynchronous, we 
need to synchronize every visitor position. 

i
t i

P denotes the 
positions of visitors in the X-Y coordinates, where i denotes 
visitor ID and ti denotes observed time. The position data for 
person i is updated every time one RFID reader detects the tag 
of person i; thus, the duration between ti and ti+1 is not constant. 
It mostly ranged within 0 to several seconds. The position of 
visitor i at time t is linear interpolation, calculated as:  

)(tP i  = i
t

i
t ii

PP
1

)1(
+

−+ αα , 
where  )/()( 1 iii tttt −−= +α   and  it <t< 1+it . (If the duration 
between it  and 1+it  is larger than 30 seconds, we treated 

)(tP i  as a missing data point.) 
The trajectories of visitors iP  are defined as: 

iP  = ))(,),2(),(),(( f
i

i
i

i
i

i
i tPttPttPtP LΔ⋅+Δ+ , 

where ti and tf denote the start and end time of observations. 
We set tΔ  as 4 seconds based on the detection frequency of 
an RFID reader. We refer to iP  as a “trajectory” hereinafter. 

A. Space 
1) Use of space 

We analyzed all 8,091 trajectories to identify how the 
space was used. Figure 7 shows the distribution of positions 
where participants remained. Red (darker in grayscale im-
age) represents positions where visitors remained for 
amounts of time of more than average plus 2σ (standard 
deviation). If the amount equals the average, the software 
colors the position pink. If less than average minus 2σ, it 
colors it white. Two green triangles and 18 green circles rep-
resent the locations of RFID readers. The following findings 
were produced regarding visitor movement in the museum: 
-  The upper left area was crowded because this is where the 

robots and “child-friendly” exhibits were placed, such as 

 
1 The trial was actually performed for two months, but since we changed 
locations of the RFID readers after one month, we only used the data from 
the second month (Aug. 7 to Aug. 31, 2003). 
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“let’s touch materials” and “magnetic power” activities. 
-  In the upper right, the region around “pulley” and “arch 

bridge” activities was crowded while the area around 
“chaotic pendulum” was not as crowded. 

-  The right region around “planets” and “historical tools” 
activities was not crowded. 

However, two limitations must be considered in the context 
of these findings: 
-  Positions in the areas that were not surrounded with RFID 

readers were inaccurate (particularly, in the “planets” area). 
-  Our method did not accurately estimate positions if partici-

pants are positioned upon exhibits because some exhibits are 
partly made of iron, such as “centrifugal force” and “gravita-
tion,” which offered people rides to experience the force. 

2) Spatial partitioning 
To analyze the use of space, we conducted spatial parti-

tioning, which was also used in the following trajectory 
analysis to reduce calculation cost. A k-means algorithm 
was applied to all trajectories to divide the museum into k 
areas. Figure 8 and Table 1 show the results of spatial par-
titioning with different k values. As Figure 8 shows, areas in 
which visitors remained for significant amounts of time, 
such as the robot area, are represented by small clusters. This 
reflects the center of balance of each cluster; a more 
crowded point is likely to be the center of a cluster, and an 
uncrowded point is likely to be the periphery of a cluster. 

Regarding appropriate k value, there is a tradeoff. If the 
number of clusters is large, we can gather more precise 
information about trajectories, but these results will be more 
influenced by errors of position estimation (error is about 2.8 

m). This also affects visualization. As Figure 8 shows, a 
larger k value complicates the interpretation of results. 
Considering these issues, we chose a k value of 30. 

Figure 9 shows the distribution of spaces based on spatial 
partitioning in relation to the amount of time participants re-
mained. Our software assisted visualization by representing 
crowded areas with darker colors. If the number of points 
( )(tP i ) included in the partition equals the average, the software 
colors the area middle gray. If more than average plus 2σ, it 
colors it black. If less than average minus 2σ, it colors it white. 

B. Visiting patterns 
Based on the estimated trajectories, we analyzed how 

people visited the museum exhibits. In this section we in-
troduce a method of extracting typical visiting patterns, which, 
as a result, helps us retrieve atypical visiting behavior. 
1) Preparation: State chain models 

We analyzed trajectories based on the state chain model 
illustrated in Figure 10. That is, we converted the trajectory 
based on X-Y coordination, iP , to a sequence of states, iS , 
based on spatial partitioning. It is defined as, 

U
iPp

nt
i ApnsS

∈

∈== }|{ , 

where An is the partition the point in trajectory p belongs. 

 
Figure 10: State chain model 

We calculate the distance between two state chains, iS  
and jS , by using a DP matching method, which is identical 
to the comparison of strings known as the Levenshtein dis-
tance. Figure 11 compares trajectory works. Here, we set 
the distance between partitions as the distance between the 
centers of the partitions. Thus, “insert” and “delete” opera-
tion costs partition distance plus a constant parameter, which 
represents the tradeoff cost between time and space. 

    
(a) two trajectories (b) comparison of state chains of trajectories 
Figure 11: Comparison of trajectories based on DP matching 

 
Figure 9: Distribution based on parti-

tioning 

num. of cluster s.d. 
10 2.94
20 1.73
30 1.56
40 1.30
50 1.14
60 0.98

Table 1:  Various par-
titioning sizes 
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  Figure 7: Distribution of positions where participants lingered

  
(a) k=20                                    (b) k=30 

  
(c) k=40                                     (d) k=50 

Figure 8: Spatial partitioning with different k values 
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This state-chain representation reduces calculation cost. 
For example, we compared calculation cost based on raw 
trajectory iP  and state chain iS  for retrieving typical vis-
iting patterns (details explained in 3.B.3) with a k-means 
clustering method from 28 trajectories. The state-chain 
method costs 0.53 sec while the raw-trajectory-based 
method costs 9.56 sec. Thus, using the state chain is eighteen 
times faster. We cached the calculation of distance between 
partitions in the state-chain-based method (that is, insert, 
delete, and substitute costs in DP matching), which greatly 
improved the calculation speed. Moreover, state chain is 
used in the visualization of visiting patterns, which is also its 
advantage. We will demonstrate it in the following section. 
2) Identification of typical visiting patterns 

We classified trajectories with a k-means method to 
identify typical visiting patterns. Although 8,091 trajectories 
were obtained, some were corrupted due to observation 
noise and error. Occasionally, the system failed to estimate 
the position of people, which resulted in missing points in 
the trajectory. We extracted 5,102 trajectories longer than 5 
minutes whose missing duration is less than 10%. 

Predicated on the trajectory distance based on the s-
tate-chain comparison, we clustered these state chains with 
the k-means method. Table 2 and Figure 12 show the rela-
tionship between the number of clusters and standard de-
viations. Calculation times are done with a 3 GHz Pentium IV 
computer. Since standard deviation largely dropped until k=5, 
we interpreted visiting patterns at k=5. Of course, we can 
analyze behavior patterns at any k value; a larger number k 
will result in more detailed separation of visiting patterns. 

Figure 13 shows the visualized output of the global trends 
of each visiting pattern at k=5. In the figure, the frequency of 
remaining in a particular location is represented as color and 
transitions between adjacent areas as arrows. If the fre-
quency is more than average plus 2σ, it is colored black. If less 
than average minus 2σ, it is colored white. The arrow from 
partition i to j indicates that (Nij – Nji) is larger than a threshold 
(here, set as 0.2) where Nij indicates a transition from i to j. If 
(Nij – Nji) is near the threshold, the software outputs it as blue; 
and if around the threshold plus 2.0, the software indicates this 
using red (brighter color in grayscale). As shown in Figure 13, 
the following five typical patterns are retrieved at k=5: (See 
Figure 7 for information of exhibit locations.) 

  
(1) Directly going to robot area  (2) Going around and staying at robot area 

  
(3) Went around backwards           (4) Visited at every place 

   
(5) Stayed for long time     Distribution of visiting patterns 
Figure 13: Five typical behavior patterns of visitors 

 (1) Directly going to robot area: 346 people 
People directly went to the robot area (green triangles 
displayed in the figure around the slightly crowded area) 
from the reception desk clockwise and interacted with the 
robots for a short time. After that, they went to the exit 
desk. In the figure, no arrows and no colored areas ap-
peared around the bottom right and upper right areas, 
which represents that they did not go there. 

(2) Going around and staying in the robot area: 1024 people 
People moved counter clockwise, which is the suggested 
direction from the entrance; but they rarely stayed at the 
exhibits and only stayed around the robot area. This caused 
the visualization output of arrows in the upper right. 

(3) Went around backwards: 728 people 
People directly went to the robot area from the reception 
desk, which resembles pattern 1. After that, they looked 
around the exhibits in a counter clockwise fashion. 

(4) Visited at every place: 2726 people 
People almost stayed at every place, particularly at “the 
Earth” exhibit; some stayed at the exhibits in the upper 
right area and the robot area.  

(5) Stayed for long time: 278 people 
Similar to pattern 4, but these people stayed in the floor for a 
long time (2488 to 7059 seconds) lingering at many exhibits. 

The relationships among the five patterns are also illustrated 
in the bottom right of Figure 13. It represents the similarity 
of participant trajectories by using a spring model, which is 

pattern 1

pattern 2
pattern 3 

pattern 4

pattern 5 

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10 k

S.D.

    Figure 12: Illustration of stan-
dard deviations 

k S.D. calc. costs 
2 20.9 40903.7 
3 18.2 17144.3 
4 17.5 10362.9 
5 14.6 7278.8 
6 14.7 7208.0 
7 12.8 9493.3 
8 14.1 8789.4 
9 12.4 6449.9 

10 12.2 6691.7 
Table 2: Standard deviation 
and calculation costs [sec.] 
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based on the distance between each trajectory as a spring 
force. Due to the heavy calculation of the spring model, we 
only used 10% of the trajectories. We can see the relation-
ships among the visiting patterns. For example, pattern 2 and 
4 are connected together while pattern 1 and 5 are placed in 
the both ends: which means they are very different. 
3) Identification of non-typical visiting behaviors 

Based on trajectory distance from the closest cluster 
center, we retrieved atypical visiting behavior, as shown in 
Figure 14. Figure 14(a) is one notable atypical visiting 
behavior, whose distance to the closest cluster center was 
34.0. As shown in Table 2, the standard deviation of distance 
from the closest cluster center was 14.6 at k=5; therefore, 
34.0 is a large value. This person left the field trial by re-
turning his tag to a staff member who immediately per-
formed his exit process at the robot area. As a result, his 
trajectory “disappeared.” In the cases of (b) and (c), the 
participants only stayed around the entrance, which is un-
usual as people usually tried to interact with the robots. In the 
case of (d), the person stayed around the floor for 6776 sec 
while the average length of stay was 1990 sec. 

  
(a) Disappeared (distance=34.0)   (b) Only stayed around entrance (34.0) 

   
(c) Only stayed around        (d) Started to visit in counter clockwise 

“the Earth” and “planets” (29.8)      and stayed for long time (23.7) 
Figure 14: Examples of non-typical visiting behaviors 

(Path materialized by a ranging from red (darker color) to green (lighter).) 

4) Analysis of attributions 
We used a visualization technique to analyze how peo-

ple’s interests and attributions affected their visiting be-
havior. Figure 15 shows the results for attributions with 
respect to the robots. At the exit desk, some participants 
filled out questionnaires that asked about their interest in the 
robots on 1-to-5 scale [12]. Figure 15 on the left is the visiting 
pattern of people who answered low interest, and Figure 15 on 
the right is the visiting pattern of people who answered high 
interest. As the figure shows, the difference was very small. 

Figure 16 illustrates the museum’s crowdedness as an 
environmental factor affecting visiting patterns. From reg-
istration information, we calculated the “crowdedness” of 
each visitor’s environment, based on the average number of 

registered people during their stay. For example, if there are 
10 other registered visitors during a registered person’s stay, 
the crowdedness for the person is calculated as 10.0. We 
compared upper quartile (“crowdedness” of more than 78.6, 
1275 visitors) and lower quartile (lower than 20.4, 1275 
visitors), but the difference was also small. 

  
Low                                                 High 

Figure 15: Interest in robots 

  
Low: less than 20.4 visitors   High: more than 78.6 visitors 

Figure 16: Crowdedness of environment 

  
Adults (1331 visitors)       Children (3771 visitors) 

Figure 17: Adult-child attribution 

   
Without a child in groups (201 visitors)  With a child in groups (4901 visitors) 

Figure 18: Whether accompanying a child 

We also analyzed participant attributions; that is, whether 
a participant is an adult or a child. Figure 17 shows the 
results of adult-child comparisons, which revealed a slight 
difference of staying time around the robot and planet areas. 
Moreover, we only retrieved people who came in with an 
adult. Figure 18 shows the comparison of “adults without a 
child in the group” and “people in the group including a 
child.” It shows a large difference in the visiting of the robot 
and planets areas. A comparison of the left figure with the 
right shows a smaller staying time around the robot area and 
larger staying time around the planet area when without 

FrE8.4

4851



 
 

 

children (left figure) than with children (right figure). Thus, 
it suggests that visitor behavior largely depended on the 
presence of children who usually enjoyed interaction with 
the robots very much. 

C. Relationships 
A previous work demonstrates a robot’s capability of es-

timating children’s friendship based on measuring a period 
of simultaneous stay between two children [14]. Similarly, 
we estimated the friendliness of people based on co-visiting 
behavior in the science museum. Since visitors registered their 
names with the group members (we limited registration forms 
to one per group), we define members of a group as the visi-
tors on the same registration form. We defined the estimated 
relationship between persons A and B (Group (A, B)) as: 

Group (A, B) = if (TAB / min(TA, TB)> TTH), 
TA = Σ if (obs (A) ) ⋅ Δt, 
TAB= Σ if (obs (A) and obs (B) and dist (A, B)<DTH ) ⋅ Δt , 

where obs (A) becomes true only when any RFID reader ob-
serves the ID of person A, dist (A, B) is calculated as 
| )(tP A - )(tP B | at time t, and if () becomes 1 when the logical 
equation inside the parentheses is true (otherwise 0). We pre-
pared two thresholds TTH and DTH; threshold TTH is for the ratio 
of simultaneous interaction time, and threshold DTH  is for the 
distance which the system uses to assume A and B are together. 
After this process, a graph-based refine of estimation was 
conducted to maintain the consistency of group relationships. 
In our trial, we set Δt to four seconds (observation frequency of 
an RFID reader) and DTH to five meters.  

Figure 19 indicates the estimation results with various 

parameters (TTH). Since the number of group relationships 
among all visitors was fairly small, we focused on the ap-
propriateness (coverage and reliability) of the estimated 
relationships instead of the rate of correct classification 
(precision and recall in web search techniques), which are 
defined as follows: 

Coverage = 
shipst relationall correc

ionshipsated relats in estimlationshipcorrect re  

Reliability = 
ipsrelationshestimated 

ionshipsated relats in estimlationshipcorrect re  

Here, correct relationships denotes the group relation-
ships gathered from registration forms, and estimated rela-
tionships are given by our estimation method. The line in the 
figure has several points corresponding to different TTH. 
There is obviously a tradeoff between reliability and cov-
erage that is controlled by TTH . As a result, for example, our 
method estimated about 68% coverage of the relationships 
with 91% reliability (at TTH =0.6) and 89% coverage with 
81% reliability (at TTH =0.4). In other words, this result also 
indicates that in the museum, 89% of visitors spent 40% of 
their time with their group members. Figure 20 shows an 
example of estimated relationships and real relationships. 

IV. DISCUSSIONS AND CONCLUSION 

A. Summary of findings 
This paper revealed the extent to which we can obtain 

information from people’s trajectories in a science museum 
using RFID tags. We found the following: 
1. We obtained 5,102 clean trajectories of visitors within 2.8 

m distance error using 20 RFID readers placed in the 84 x 
42 m environment during the 25-day field trial. 

2. The trajectories enable us to see how the space was used, 
such as which areas were crowded and uncrowded. For 
example, “the Earth” and robot areas were crowded while 
the “planets” area was not so crowded. 

3. The trajectories enabled us to recognize typical visiting 
patterns. For example, people in “visited at every place” 
pattern lingered around “the Earth” exhibit for a while, 
quickly passed the “planets” exhibit area, stayed around the 
“pulley” area, and then interacted with the robots. 

4. The trajectories enabled us to identify participants with 
atypical behavior. For example, it detected a person who 
only stayed around “the Earth” exhibit near the entrance. 

5. We revealed to what extent people’s trajectories are related 
to their subjective impressions and attributions. There is a 
stronger correlation between trajectories and attributions, 
particularly whether the group consists of only adults. 

6. We estimated group membership based on trajectories. 

We believe that these demonstrate the effectiveness of the 
method in inferring complex visiting behavior in the museum. 

B. Contribution to the method of analyzing trajectories 
This study demonstrated one successful method of ana-
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Figure 19:  Estimation of group relationship 

(Numbers besides the line represents threshold TTH. For example, at TTH 
=0.4, it estimated 89% of group relationships with 81% reliability) 

  
Figure 20:  Example of estimated (left) and real (right) group 

relationship: circles represent a person, and links between 
persons represents a relationship 
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lyzing people’s trajectories obtained by ubiquitous sensors 
and an RFID tag system. The method consists of analysis 
function and visualization support function. Regarding the 
analysis, it converts trajectories to state chains based on 
partitions, calculates similarities between two trajectories 
based on the DP matching method, and makes clusters of 
thousands of trajectories with the k-means method. It also 
accurately estimates group-membership between visitors by 
observing co-visiting behavior. Regarding the visualization 
support, the software displays staying times and transitions 
based on partitions, our software enabled us to visualize the 
following: trajectories, how the space was used, typical and 
atypical visiting patterns, and the relationships between 
trajectories and attributions. 

To explore optimal algorithm will be our future work. Our 
method is combination of available straight-forward meth-
ods. The k-means clustering with DP matching worked well 
but its calculation cost is heavy. Several methods analyze 
time-sequence data; however, note that an appropriate al-
gorithm also depends on the quality of position estimation. 
In our case, position estimation based on RFID resulted in 
2.8 m error. Although we tried to apply a method based on 
Bayesian clustering with a Markov-chain model, it failed 
due to the noisiness of state transitions. 

C. Implication for network robot system 
The developed method is a powerful tool for developing 

network robot system (or, ubiquitous robotics), since it 
enables to recognize capability of visitors’ activity (visiting 
pattern) and relationship, particularly in a museum envi-
ronment. For example, since this method enables us to clas-
sify people’s visiting patterns, we will be able to efficiently 
prepare the interactive behavior of robots. The robot may 
talk more about robotics to the people in the “directly going 
to the robot” visiting pattern, and it may talk more about the 
science museum to people in the “stayed for long time” 
visiting pattern. Identifying atypical visiting behavior can 
also contribute to optimizing robot behavior, because the 
person whose behavior is atypical may need special services. 
The estimation of group relationships can also contribute to 
promoting human-robot interaction. For example, the robot 
may promote conversation among visitors who are within 
estimated group relationship by talking such as “Are you with 
friends today?”  In other words, we can prepare several types 
of robot behavior according to the detected visiting patterns, 
but utilizing estimated information about people’s behavior 
and relationships is one future research area. 

D. Privacy issues 
Privacy is a concern that may arise from this study. As a 

scientific investigation, we conducted this study to identify 
what we can estimate from people’s trajectories. It was never 
our intention to force “every” visitor to wear RFID tags and 
make their private experience public. In this study, we in-

formed participants that the recorded and obtained informa-
tion would be carefully managed and only used for research 
purposes. We only provided RFID tags to visitors who com-
pleted a consent form. When a system that employs this 
technology is used, people must have a choice to participate, 
which balances privacy concerns and benefits from system. 

E. Limitations 
This study was conducted in a science museum where 

humanoid robots were exhibited. Thus, limitations exist 
about the degree to which we can generalize its findings. We, 
however, expect to find similar trends in other exhibition 
environments, since the presence of specific robots can 
probably be generalized as other popular exhibits. 
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