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Abstract— The covariance of every unbiased estimator is
bounded by the Cramér–Rao lower bound, which is the inverse
of Fisher’s information matrix. This paper shows that, for the
case of localization with range-finders, Fisher’s matrix is a
function of the expected readings and of the orientation of
the environment’s surfaces at the sensed points. The matrix
also offers a mathematically sound way to characterize under-
constrained situations as those for which it is singular: in
those cases the kernel describes the direction of maximum
uncertainty. This paper also introduces a simple model of
unstructured environments for which the Cramér–Rao bound
is a function of two statistics of the shape of the environment:
the average radius and a measure of the irregularity of the
surfaces. Although this model is not valid for all environments,
it allows for some interesting qualitative considerations. As
an experimental validation, this paper reports simulations
comparing the bound with the actual performance of the ICP

(Iterative Closest/Corresponding Point) algorithm. Finally, it is
discussed the difficulty in extending these results to find a lower
bound for accuracy in scan matching and SLAM.

I. INTRODUCTION

This paper describes a theoretical limit to the precision of
localization methods employing range-finder data. Most of
the current methods model localization as a state estimation
problem: the state is the robot’s pose x and the sensor data
is modelled as a random variable z. Once in the probabilistic
framework, a localization algorithm is an estimator of x

given z. The problem can be analyzed using classical tools of
mathematical statistics, establishing the Cramér–Rao lower
bound (CRB) for the covariance of unbiased estimators of x.

The CRB provides a quantitative reference for comparing
the performance of actual algorithms, which are often hard
to analyze mathematically: the example of the ICP (Iterative
Closest/Corresponding Point) will be discussed as an exam-
ple. The CRB is valid, but weak, for scan matching (recove-
ring the robot’s displacement by comparing two successive
sensor scans), the reason being that the uncertainty of the
map is not modelled here; however, it will be shown that it
gives an indication of the directions with more uncertainty.

The CRB also allows for a qualitative analysis of localiza-
tion. Under-constrained situations are those in which Fisher’s
matrix is singular: therefore it is possible to perform an accu-
rate observability analysis of the problem [1]. This paper also
presents a qualitative model for unstructured environments
that shows how the environment size, the shape, and the
sensor noise contribute to the achievable accuracy bound.

TABLE I
SYMBOLS USED IN THIS PAPER

Statistics
x Quantity to estimate.
z Available measurements.

x̂ = A(z) An estimate of x obtained using algorithm A
on the data z.

Ez{f(z)} Expectation operation with respect to the
density of z. Ez{f(z)} , ∫ f(z)p(z)dz

I (x) Fisher’s information matrix.

Localization
x = (t, θ) The robot/sensor pose.

n Number or rays.
z = {ρ̃i} Output of range-finder. i = 1 . . . n

ϕi Casting direction for i-th ray.
ρ̃i Measurement along direction ϕi.

r(p, φ) “ray-tracing function”: the distance from point
p to the nearest obstacle in the φ direction.

αi Surface orientation at the sensed point.
∆ Angle interval, assuming equally spaced rays.

FOV Sensor’s field of view (FOV = n · ∆).
ri , r(t, θ + ϕi)

vi , v(θ + ϕi)

Miscellaneous
a, a, A Scalar, vectorial, matrix quantity.
∂f/∂x Row vector, defined as (∂f/∂x1 · · · ∂f/∂xn)

for x ∈ R
n and f : R

n → R.
R(ϕ) 2 × 2 rotation matrix.
v(a) Column vector, defined as (cos a sin a)T.

⊥

a Column vector, defined as R(π/2)a.

αi

obstacle

t

world frame

r(t, θ + ϕi)

ϕi
v(αi) βi

θ

Fig. 1. The robot coordinates are x = (t, θ) with respect to a fixed world
frame. The i-th sensor ray is cast in direction ϕi. The actual distance of the
sensed obstacle is r(t, θ +ϕi). The angle αi is the direction of the normal
to the curve and the vector v(αi) is its corresponding versor.
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II. THE CRB FOR RANGE-FINDER LOCALIZATION

Consider a robot equipped with a range-finder in a planar
environment. Let the robot’s pose be x , (t, θ) with respect
to a fixed world frame and, without loss of generality, let the
sensor frame be coincident with the robot’s frame.

Assume the output of the sensor to be a set z of n range
measurements, with ρ̃i being the range measurement for the
i-th ray along direction ϕi. Define the “ray tracing function”
r : R

2× [0, 2π) → R
+ such that r(p, ψ) is the distance from

point p to the nearest obstacle in direction ψ. The function r
completely defines the environment. With this notation, the
sensor model is

ρ̃i = r(t, θ + ϕi) + ǫi i = 1 . . . n (1)

The term ǫi is assumed to be a Gaussian random variable
with zero mean and variance σ2. This model ignores the bias
term on ρ̃i which is specific to the device and is a function of
distance, orientation, color, and material of the surface [2];
in high-speed robotics [3] also the motion of the robot while
sensing might introduce a non-negligible bias.

Fisher’s information matrix is defined by the first derivati-
ves of the ray-tracing function r with respect to t and θ — a
step by step derivation is given in section A of the Appendix.

I (x) =
1

σ2

n∑

i

[
∂ri
∂x

T ∂ri
∂x

]

ri , r(t, θ + ϕi) (2)

The necessary derivatives depend on the surface’s orientation
α at the point intercepted by each ray (Fig. 1)1.

∂r(t, θ + ϕi)/∂θ = r(t, θ + ϕi) tan(βi) (3)

∂r(t, θ + ϕi)/∂t = v(αi)
T/ cos(βi) (4)

where βi , αi − (θ + ϕi). By substituting (3), (4) in (2):

I (x) =
1

σ2

n∑

i






v(αi)v(αi)
T

cos2 βi
ri

tanβi

cosβi
v(αi)

∗ r2i tan2 βi




 (5)

The achievable error covariance is given by the inverse of
I (x). These formulas are valid for every disposition of the
rays and for every environment. The results are not intuitive
at all: see Fig. 2 for some examples.

The CRB is attainable only if r is a (locally) linear function
of its arguments [4]: that is, successive derivatives are zero
at the considered point. This is possible for t in a polygonal
environment where ∂r/∂t is locally constant and the bound
is attainable. As for θ, the function r(·, t) is non-linear,
therefore the bound is not tight. However, in practice (see
Section IV), the CRB is very close to the accuracy achieved
by actual algorithms.

Under-constrained situations: Fisher’s information matrix
allows for characterizing under-constrained situations are

1The Cramér–Rao bound is not defined where r(t, θ + ϕi) is not
continuous (condition (11)): this happens when the sensor point samples
exactly the edge of one of the surfaces in the environment: in that case a
small variation of x makes r ‘jump’. Note however that the set of x such
that r is not continuous is a set of measure 0.

“LOCALIZABILITY” IN A SQUARE ENVIRONMENT

θ = 0◦ θ = 30◦ θ = 45◦
O

rientation
det(cov(x̂

))
det(cov(t̂))

var(θ̂)

(a) (b) (c)

Fig. 2. Each column shows the results with a different orientation of the
robot. In each image, the orientation θ is kept fixed, while x and y change at
each pixel. Three statistics are displayed: the determinant of cov(x̂) that is
a measure of the global achievable accuracy, the determinant of cov(t̂) and
the variance of θ. Red areas denote large values, which mean low achievable
accuracy, while blue areas correspond to high accuracy.

KERNEL OF THE INFORMATION MATRIX

IN A CIRCULAR ENVIRONMENT

y

x

θ

Fig. 3. In a circular environment the information matrix has a null
eigenvalue. This figure shows the corresponding eigenvectors in the x, y, θ
space as thick red segments. The thin black segments are the projections
of such eigenvectors on the x, y plane. At the center of the circle the
uncertainty is concentrated only on θ; when the robot is near the walls,
the estimate of θ becomes correlated with the estimate of t. Intuitively, at
the center the robot might rotate and continue to get the same readings; in
the other places it has to rotate and translate to obtain the same effect.
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those for which it is singular. Eigenvectors of I(x) cor-
responding to small eigenvalues are the directions (in the
x, y, θ space) of maximum uncertainty.

There are two such situations: if all the surfaces are locally
parallel (e.g. corridor) or if they are all concentric; in both
cases it is possible to give a closed-form expression for the
eigenvectors (see the Appendix for a proof). For example,
in a corridor with no end the kernel of I(x) is along the
corridor direction. Similarly, in a circular environment there
is a null eigenvalue, whose eigenvector changes according to
the pose of the robot (Fig. 3).

III. A MODEL FOR UNSTRUCTURED ENVIRONMENTS

In this section a “generic” unstructured environment is
considered and it is shown that, under appropriate assump-
tions, the CRB is a function of two simple statistics of the
shape of the environment: the average radius and a measure
of the irregularity of the shape. This allows for a number of
interesting qualitative considerations.

Consider a robot at the center of an approximately circular
environment (Fig. 4) with average radius ρ, described by the
ray-tracing function as:

r(0, φ) = ρ+ f(φρ) |f | ≪ ρ (6)

The function f is assumed to be periodic with period 2πρ
and continuously derivable.

Proposition 1: If f(s) is a realization of a random process

which is stationary and ergodic with respect to s, then, by

indicating with Ef{·} the expectation with respect to the

possible realizations of f , the expectation of the information

matrix at the center can be expressed as a function of ρ and

C , Ef

{
f ′

2
}

.

In the case of a 180◦ sensor:

Ef{I(0, θ)} ≃
n

σ2







1 + C

2
I2×2 R(θ)

[
0

2ρC/π

]

∗ ρ2C







(7)

For a 360◦ sensor:

Ef{I(0, θ)} ≃
n

σ2







1 + C

2
I2×2

[
0
0

]

∗ ρ2C







(8)

The approximation is valid if the sampling is dense with

respect to the bandwidth of f . (See the Appendix for a proof).
It is possible to express some intuitive considerations ba-

sed on Proposition 1. Note that for a 360◦ sensor, (8) is block
diagonal: there is “on average” no correlation between θ and
t, while for a 180◦ sensor a correlation exists. Moreover,
from (8) it follows that, for any unbiased estimator (t̂, θ̂), in
an “average” unstructured environment,

var(θ̂) ≥
(σ/ρ)

2

n

1

C
(9)

λmincov
(
t̂
)
≥ 2

σ2

n

1

1 + C
(10)

⊥v
i

‘random’
environment

ρ

f((θ + ϕi) · ρ)

θ

ϕi

v i

(t = 0)

Fig. 4. A simple model for unstructured environments. The robot is
assumed to be at the center of an approximately circular environment:
the average radius is ρ and the function f describes the profile of the
environment. For this environment, Fisher’s information matrix is a function
of the radius and of C , Ef{f

′2}.

• If C → 0, then f ′ → 0 and the environment tends to
a circle. For a circle, the uncertainty on θ is infinite,
while the uncertainty for t is still finite.

• For both θ and t, high values of C correspond to
low values of the covariance: intuitively, localization is
easier if the environment is irregular, jagged and rich in
features.

• The accuracy for θ depends on the “normalized” noise
deviation σ/ρ. This expresses an invariance to scale: in
a bigger environment the bound is constant if the noise
is scaled accordingly; in other words, for θ, it is the
shape that matters, not the size.

IV. SIMULATIONS

The goal of the experiments was to compare the covariance
of the error of an actual algorithm with the CRB, and to see
how weak is the bound for scan matching. Experiments have
been performed in a simulated environment because a very
precise ground-truth (sub-millimeter accuracy) is needed.

The algorithm used is the ICP [5] because it is simple,
popular, and many researchers have a first-hand experience
with it. Although many variants exist, and special parti-
cularizations to robot localization have been investigated,
the ‘vanilla’ version was employed (point-to-point distance,
linear interpolation in the reference scan). Results were
found consistent among a series of different environments;
the simple square environment is used here for ease of
reproducibility.

Some caveats: for the CRB to hold exactly, two conditions
should be met: (a) “localization” is performed, that is, the
world is perfectly known, and (b) the algorithm is unbiased.
To achieve (a), the reference scan was set as a zero-noise
dense sampling of the environment: in such a way the
environment is effectively “known” to the ICP. To achieve
(b), the trials were performed in a situation of perfect
symmetry: at the center of a square environment with a 360◦

sensor. Another series of experiments was performed, with
a 180◦ scan taken at x = (−2m, 2m, 30◦). Sometimes ([6],
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[7]) performance benchmarks are executed by changing only
the starting guess, without simulating the sensor noise: that
originates a characteristic cluster-like distribution of errors.
Conversely, if one simulates sensor noise, then a familiar and
reassuring ellipsoidal distribution appears.

In all experiments, an excellent match of the ICP cova-
riance with the CRB was observed (Fig. 5). In the symmetric
case, the three components of x are uncorrelated. In the
asymmetric case, there is a correlation between x and θ
which is perfectly predicted by the CRB. Another series of
experiments was performed to simulate scan matching, by
matching pairs of noisy scans. The bound is indeed weak
for scan matching, but still it gives an approximation of the
directions with more uncertainty.

V. CONCLUSIONS AND FUTURE WORK

This paper refers only to localization. The CRB is valid but
weak for scan matching or SLAM; the reason being that the
dominant uncertainty in those problems is the uncertainty
of the map, which is not modelled here. It is the author’s
opinion that this line of research, should it be possible to be
extended to SLAM, might allow for obtaining convergence
results or quality guarantees for SLAM methods employing
raw laser data: consider as an example Rao–Blackwellized
particle filters [8], which have recently provided impressive
results but really lack adequate theoretical analysis (this is a
general problem for particle filters [9]).

Before approaching SLAM, one should consider the pro-
blem of mapping, that is estimating a model of the en-
vironment given scans taken at known positions. Bounds
for mapping are harder to define because the problem is
infinite-dimensional. In neighboring fields there are problems
conceptually similar to mapping, however the results seem
to be not easily transferable. Many localization algorithms
have been borrowed from the vision community which uses
range-finders. One typical application is to reconstruct the
shape of an object through dense three-dimensional scans; it
is important to assess the accuracy of the reconstruction (e.g.
for forensics analysis). [10] studies the CRB for surface re-
construction from multiple scans, but the hypothesis assumed
(that the resolution is so high so that different scans sample
exactly the same points) makes that result not applicable to
robotic mapping. Cramér–Rao bounds have been studied also
for functional inverse problems: for example for the problem
of passive radar imaging [11] and tomography [12], [13], but
the results do not seem to be applicable to mapping.

Nevertheless, what we can understand from these works
is that the key for a good analysis is to choose a good
representation, possibly finite-dimensional. For example, a
polygonal environment has a finite-dimensional represen-
tation for which it is very easy to define the CRB given
range measurements. Other candidate representations include
splines or Gaussian processes [14] for which it is possible
to define some kind of prior over the possible worlds and
inference is not difficult, as opposed, for example, to Elfes’
occupancy grids [15] for which inference is tricky due to the
cell-independence assumption.

Future work will concern investigating such representa-
tions for use in robotic mapping.

APPENDIX

A. The Cramér-Rao inequality

Let x ∈ R
q be an unknown, fixed quantity to be estimated

through the measurements z ∈ R
n, affected by noise and

modelled as a random variable.
Cramér-Rao inequality. If the density p(z,x) satisfies two

regularity conditions:

1) The derivative of the log-likelihood function is finite

∂ log p(z,x)

∂x
<∞ ∀x : p(z,x) > 0 (11)

2) For any finite statistic T (z) such that Ez{T (z)} <
∞ the operation of integration with respect to z and

derivation with respect to x can be interchanged in
∫
T (z)p(z,x)dz:

∂

∂x

∫

T (z)p(z,x)dz =

∫

T (z)
∂

∂x
p(z,x)dz (12)

Then for any unbiased estimator x̂,

cov(x̂) ≥ [I(x)]
−1 (13)

The q×q symmetric matrix I(x), called Fisher’s information
matrix, is defined as

I(x) = Ez

{
∂ log p(z,x)

∂x

T
∂ log p(z,x)

∂x

}

(14)

In the Gaussian case, the bound has a simple form.
Consider the observation model described in (1). Com-
pute the derivative of the log-density: ∂(log p)/∂x =
−

∑

i(ǫi/σ
2)∂ri/∂x. The information matrix contains the

expectation of the product of two sums:

I(x) = Ez

{ n∑

i

−
ǫi
σ2

∂ri
∂x

T n∑

j

−
ǫj
σ2

∂rj
∂x

}

(15)

Expand the sums to highlight the mixed products:

I(x) =
n∑

i

Ez

{
ǫ2i

}

σ4

∂ri
∂x

T∂ri
∂x

+
n∑

i

n∑

j 6=i

Ez{ǫiǫj}

σ4

∂ri
∂x

T∂rj
∂x

(16)
The term Ez {ǫiǫj} is null because of independence, while
Ez

{
ǫ2i

}
= σ2. Finally one obtains (2).

B. Under-constrained situations

It will be shown that Fisher’s information matrix is singu-
lar in the following cases by explicitly giving an expression
for the kernel’s eigenvector k.

Lemma 1: Necessary and sufficient condition for k to
belong to the kernel of I(x) is that ∀i (∂ri/∂x)k = 0.

Proof: (Sufficiency) Assume that ∀i (∂ri/∂x)k = 0.
Then:

I(x)k =
1

σ2

n∑

i

∂ri
∂x

T(∂ri
∂x

k

)

=
1

σ2

n∑

i

∂ri
∂x

T

0 = 0 (17)
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(Necessity) Assume that k ∈ ker I(x). Write
I(x) as I(x) =

∑

i Ii(x) where Ii(x) ,

(1/σ2)(∂ri/∂x)T(∂ri/∂x). Note that Ii(x) is a 3 × 3
semi-definite positive matrix. It follows that Ii(x) ≤ I(x)
and ker I(x) ⊂ ker Ii(x): therefore k ∈ ker Ii(x).
Because (∂ri/∂x)T 6= 0, Ii(x)k = 0 implies that
(∂ri/∂x)k = 0.
a) All surfaces locally parallel (e.g. corridor): k =
[
⊥

v(α); 0]. Assume that every surface of the environment (at
the sensed points) is parallel to each other: αi = α or
αi = α + π (so that v(αi) = ±v(α) ). Then, because
v(α)T ⊥

v(α) = 0,

∂ri
∂x

k =

[
±v(α)T

cos(βi)
ri tan(βi)

] [
⊥

v(α)
0

]

= 0 (18)

b) All surfaces locally concentric (e.g. circle); robot at

center: k = [0; 0; 1]. Consider the case in which all surfaces
are arcs of circumferences whose common center is (0, 0).
If the robot is at the center (t = 0), then βi = 0 for all i,
and

∂ri
∂x

k =
[

v(αi)
T 0

]
[

0

1

]

= 0 (19)

c) All surfaces locally concentric; robot not at center:

k = [
⊥

t; 1]. This case requires a longer proof. Consider the
point pi which is the point intercepted by the sensor ray:
pi = t + riv(θ + ϕi). Now assume that each pi lies on a
circumference with center (0, 0) and radius Ri: ‖pi‖ = Ri.
Square both sides to obtain the implicit function h(ri,x) = 0
which binds ri and x (abbreviate v(θ + ϕi) as vi) :

h(ri,x) = (t + rivi)
T
(t + rivi) −R2

i = 0 (20)

From the implicit function theorem it follows that ∂ri/∂x =
(∂h/∂ri)

−1
∂h/∂x provided that (∂h/∂ri) 6= 0 (note that

I(x) is not defined where ∂ri/∂x does not exist). The
necessary derivatives are

1×3
︷ ︸︸ ︷

∂h/∂x = 2[

1×2

(
︷ ︸︸ ︷

tT + riv
T
i )

1×1
︷ ︸︸ ︷

rit
T ⊥

vi ]

∂h/∂ri = 2 (tTvi + ri) (21)

Finally it is possible to verify that (∂ri/∂x)k = 0:

∂ri
∂x

k ∝
∂h

∂x

[
⊥

t

1

]

= 2
(

tT
⊥

t + riv
T
i

⊥

t + rit
⊥

vi

)

= 0 (22)

The last passage exploited the fact that aT ⊥

a = 0 and that
aT

⊥

b = −b
T ⊥

a.
Note that the three cases discussed encompass all possi-

ble situations: if k = [∗; ∗; 0], the environment is locally
invariant to a pure translation of the robot (and therefore
all surfaces are parallel); if k = [0; 0; ∗], the environment is
locally invariant to a pure rotation (and therefore all surfaces
are concentric); if k = [∗; ∗; ∗] the environment is locally
invariant to a roto-translation (the surfaces are concentric but
the robot is not at the center).

C. Proof of Proposition 1

Partition the information matrix in four blocks:

Ef{I(x)} ,

[
Ef{I(t)} Ef{I(t, θ)}

∗ Ef{I(θ)}

]

(23)

The proof will be given for each block separately.
a) Derivation of Ef{I(θ)}. From (6) it follows that

∂ri/∂θ = ρf ′i and therefore I(θ) =
(
ρ2/σ2

) ∑

i(f
′
i)

2. By
taking the expectation one obtains Ef{I(θ)} = (ρ/σ)

2
· nC

where C , Ef{f
′
i
2
}.

b) Derivation of Ef{I(t)}. An expression for ∂ri/∂t can
be inferred from geometric inspection of Fig. 4. The robot is
at the center: t = 0. Consider δt, an infinitesimal variation
of t along direction vi , v (θ + ϕi) (the ray’s direction): ri
becomes smaller of |δt|. Instead, if δt is parallel to

⊥

vi, the
variation of ri depends on the angle βi, which is related to
the first derivative of f at the intercept’s point (tanβi = f ′i ).
Putting all of this together:

∂ri
∂t

= −vT
i + (tanβi)

⊥

vT
i = −vT

i + (f ′i)
⊥

vT
i (24)

Substituting this into (14):

I(t) =
1

σ2

n∑

i

(
−vi + f ′i

⊥

vi

) (
−vi + f ′i

⊥

vi

)T
(25)

Expand the product and take the expectation:

Ef{I(t)} =
1

σ2

n∑

i

viv
T
i +

1

σ2
Ef

{

f ′i
2
} n∑

i

⊥

vi
⊥

vT
i +

+
1

σ2
Ef {f ′i}

n∑

i

(
−

⊥

viv
T
i − vi

⊥

vT
i

)
(26)

Because f is periodic and the process is ergodic, Ef {f ′} =
0. For a 360◦ or a 180◦ FOV sensor with dense, equally
spaced rays, the sums

∑

i
⊥

vi
⊥

vT
i ,

∑

i viv
T
i can be approxima-

ted with an integral; one obtains, setting vi = R(θ)v(ϕi) =
R(θ)v(−FOV/2 + ∆ · i),

n∑

i

viv
T
i ≃

1

∆
R(θ)

[
+FOV/2∫

−FOV/2

v(ϕ)v(ϕ)Tdϕ
]

R(θ)T =
n

2
I (27)

This is valid if the sampling is dense enough with respect to
the bandwidth of f . Analogously

∑

i
⊥

vi
⊥

vT
i ≃ (n/2) I . Then

finally:

Ef{I(t)} =
1

σ2

n

2
I +

1

σ2
C
n

2
I =

n

σ2

1 + C

2
I (28)

c) Derivation of Ef{I(t, θ)}. By definition:

I(t, θ) =
1

σ2

n∑

i

∂r

∂t

T ∂r

∂θ
=

1

σ2

n∑

i

(
vT

i + f ′i
⊥

vT
i

)
ρf ′i (29)

Take the expectation and set Ef{f
′} = 0, to obtain

Ef{I(t, θ)} =
1

σ2
ρC

n∑

i

⊥

vi (30)
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COVARIANCE OF ICP’s ERRORS COMPARED WITH CRAMÉR–RAO BOUND

Symmetric situation: square environment (5m side), FOV = 360◦,x = (0, 0, 0◦)
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Asymmetric situation: square environment (5m side), FOV = 180◦,x = (−2m, 2m, 30◦)

−2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x (mm)

y
 (

m
m

)

Residual error −  x, y

Loc. cov.

C.−R. bound

S.M. cov.

−4 −2 0 2 4 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x (mm)

θ
 (

d
eg

)

Residual error −  x, θ

−0.1 −0.05 0 0.05 0.1
−6

−4

−2

0

2

4

θ (deg)

y
 (

m
m

)

Residual error −  θ, y

Fig. 5. This figures compares the actual error covariance of ICP (continuous line) with the prediction given by the CRB (dashed line): there is an excellent
match. However the bound is weak for scan matching (dotted line). The simulated environment is a 5m-side square. For each trial, the sensor scan was
simulated adding Gaussian noise with σ = 10mm. The starting guess was randomly selected according to a Gaussian with mean (0m, 0m, 0◦) and
σx = σy = 20mm, σθ = 0.5◦: this forced good convergence of the algorithm; 200 trials were executed.

For a 360◦ sensor,
∑

i
⊥

vi ≃ 0 (for reasons of symme-
try), while for a 180◦ one can approximate the sum wi-
th the same procedure as in (27), and obtain

∑

i
⊥

vi ≃

R(θ)
[

0 (2n/π)
]T

.
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