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Abstract— Existing methods for estimating the covariance of
the ICP (Iterative Closest/Corresponding Point) algorithm are
either inaccurate or are computationally too expensive to be
used online. This paper proposes a new method, based on the
analysis of the error function being minimized. It considers
that the correspondences are not independent (the same mea-
surement being used in more than one correspondence), and
explicitly utilizes the covariance matrix of the measurements,
which are not assumed to be independent either. The validity
of the approach is verified through extensive simulations: it is
more accurate than previous methods and its computational
load is negligible. The ill-posedness of the surface matching
problem is explicitly tackled for under-constrained situations
by performing an observability analysis; in the analyzed cases
the method still provides a good estimate of the error projected
on the observable manifold.

I. INTRODUCTION

The ICP (Iterative Closest/Corresponding Point) algorithm

is used in a variety of problems. This paper addresses in

particular the localization and scan matching problems that

arise in mobile robotics, for which a precise covariance

estimate is needed.

The inputs for the localization problem are: a known

map Sref, a sensor scan yt, and the odometry estimate u.

The inputs for scan matching are: a reference scan yt−1, a

sensor scan yt, and u. The input data y and u are modelled

as random variables with known statistical properties. Let

x = (x, y, θ) be the roto-translation between the two poses

of the robot (Fig. 1). Then a scan matching algorithm is a

function A of the input data that returns an estimate of x:

x̂ = A(yt−1,yt,u). The output x̂ is itself a random variable.

To correctly integrate the scan matching estimate in a SLAM

algorithm, it is needed to know its statistical properties: the

bias E{A} − x, and the covariance cov(x̂) ,

E
{

[

A(yt−1,yt,u)−E{A}
][

A(yt−1,yt,u)−E{A}
]T

}

(1)

In SLAM, the covariance is needed to fuse the estimate

with other sensors, to obtain a proposal distribution for

particle filters, and to weight constraints in a pose-graph.

The most rigorous study of the covariance estimation

problem has been developed in [1], [2]: nevertheless, the

two methods proposed there (the Hessian method and the

Offline method) have some drawbacks. The closed-form

Hessian method over-estimates the covariance in some cases.

The Offline method gives reasonable results but cannot be

used online, as it is based on a computationally expensive

procedure. The method presented here has a closed form and

is more accurate.

A. ICP for localization and scan matching

Algorithms of the ICP family solve localization and scan-

matching by formulating a surface matching problem, whose

inputs are a surface Sref, a set of points {pk}, and a starting

guess. This formulation can accommodate both localization

and scan matching. In the first case, Sref is given, while in

the second Sref can be approximated by a polyline connecting

the points in yt−1 (Fig. 1).

The basic surface matching problem is to find an x that

minimizes the following error function:

J(Sref, {pk},x) =
∑

k

‖Txpk − Π(Sref, Txpk)‖2
(2)

Here Txpk indicates the point pk roto-translated by x, and

Π(Sref, Txpk) is the projection of Txpk onto the surface

Sref. ICP minimizes (2) iteratively: at each step it computes

a set of correspondences {(pk, qk)} with pk being one of the

sensor points and qk = Π(Sref, TxOLD
pk) lying on the surface

Sref; then an incremental solution is found for xNEW that

minimizes
∑

k ‖TxNEW
pk − qk‖

2
. This process is repeated

until convergence.

Since its introduction in the early ’90s, the ICP has evolved

in numerous variants [3], with also several specializations for

robotics SLAM (e.g. [4], [5], [6]). This paper considers the

‘vanilla’ ICP with the error metric defined as in (2); however,

the results should be valid for other variants as well. In fact,

the proposed method does not make any specific assumption

on the algorithm itself, and it is based only on the analysis

of the error metric being minimized.

B. Sources of error for ICP

There are three main sources of error for ICP.

The first source of error is wrong convergence: ICP can

converge to a local minimum out of the attraction area of

the ‘true’ solution. It is essentially unavoidable. In fact, an

iterative method cannot be complete, as there are situations in

which two equally likely solutions exists. This kind of error

is very hard to model, because global convergence results do

not exist for ICP.

In this paper it is assumed that the algorithm is not trapped

in a local minimum, and it converges to the attraction area

of the ‘true’ solution.
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TABLE I – SYMBOLS USED IN THIS PAPER

st−1 Initial pose of the robot (relative to world
frame), at which the scan y

t−1 is taken.
x Roto-translation between two consecutive

poses, to be estimated with scan matching.
(relative to robot frame at t − 1 ).

st Second pose of the robot (st−1 ⊕ x = st), at
which the scan y

t
is taken.

y
t
, y

t−1 Sensor scans used to estimate x.
u Odometry estimate of x.
z All the measurements involved:

z , {y
t
, y

t−1}.
ž Actual measurements observed.

x̂ = A(ž) Estimate of x obtained using algorithm A.
J(z, x) Error function minimized by algorithm A.
I(x) Fisher’s information matrix.

Π(S, p) Euclidean projection of p onto set S
Txp Point p transformed by a roto-translation x. If

x = (x, y, p), then Txp , R(θ)p + [x y]T.

v(φ) , [cos φ sin φ]T

ρ̃i ∈ R+ Measurement for the i-th ray.
ϕi Angle of the i-th ray (relative to robot frame).
p Cartesian point corresponding to the polar

measurements: p = ρ̃v(ϕ)
Sref Reference surface. In the case of scan

matching, it is created by connecting the
points in y

t−1.

(ik, jk

1 , jk

2 ) Indexes for the three points used in the k-th
correspondence (i in y

t
, j in y

t−1).

ρ̃

pt
ik

x st

st−1

ϕ

Π(Sref,p
t
ik)

pt−1
jk

2

first pose

approximated Sref

world frame

pt−1
jk

1

real surface

second
pose

Fig. 1. Geometry of the scan matching process. Note that in ICP there are
three sensor points involved in each correspondence: one from the second
scan and two from the reference scan.

J(z,x)

x

different error functions
Different z originate

with different minima

J(ž,x)

J(ž2,x)

x̂(ž)
x̂(ž2)

y

Fig. 2. Some methods for estimating the covariance [7], [1], [8] are based
on the analysis of the error function for the observed measurements. Ac-
tually, one must consider how the error function changes, and consequently
the minimum moves: this is only loosely related to the shape of the error
function at a particular observed z. Mathematically, the shape at a particular
z is given by ∂2J/∂x

2; the change in the shape is contained in the quantity
∂J/∂z, which is explicitly used by the proposed method.

The second source of error are under-constrained situa-

tions: in some environments there is not enough information

to estimate the pose of the robot completely. Apart from

degenerate situations, such as having only 0, 1, or 2 distinct

correspondences, in the bidimensional case the two proto-

typical under-constrained situations are the corridor and the

circular environment (Fig. 4).

It will be shown how it is possible to check for the under-

constrained situations by examining the Fisher’s information

matrix (derived in [9]).

The third source of error is sensor noise: even though

ICP arrives in the attraction area of the ‘true’ solution, the

outcome is different because of noise. It should be noted

that, in constrained situations, this error is independent of

the odometry error. In fact, it is found experimentally that

this error exists even if the first guess coincides with the true

solution. This error is theoretically justified by the existence

of a lower bound for the covariance of any estimator. For the

case of localization (Sref is a perfect map), in [9] it is derived

the Cramér–Rao lower bound (CRB). The CRB gives a good

approximation to the covariance of the ICP in localization,

but it is optimistic for scan matching.

The error due to sensor noise is the object of study of this

paper. The approach presented here computes the covariance

of this error as a function of the error metric used.

II. EXISTING APPROACHES

FOR ESTIMATING ICP’S COVARIANCE

A. The “points-as-landmarks” method

This technique is used in [10], [4], [5]. The idea is to

consider each correspondence as a landmark observation.

[5] proposed a more complex analysis of the errors, where

the covariance is based both on the sensor model and on

the structure of the environment. A covariance matrix P k
ij =

P k
i +P k

j is computed for each correspondence as the sum of

the two point covariances, expressed in the same coordinate

frame. The final covariance matrix is estimated as

cov(x̂) ≃
[

∑

k

(

P k
ij

)−1
]

−1

(3)

One problem with this approach is that point correspon-

dences are not independent observations, as more than two

sensor points are used in each correspondence (Fig. 1).

[1] shows that in practice this kind of estimate is very

optimistic.

B. Black-box methods

The approach proposed in [1], [7], [8] is to estimate the

covariance by examining the shape of the error function.

The “Hessian” method (proposed in [1]): The idea is

that if the error function was a quadratic: J(ž,x) ≃ (Y −
Mx)T(Y − Mx), then the optimal least-squares estimate

would be x̂ = (M TM)−1M TY with a covariance equal to

cov(x̂) =

(

1

2

∂2

∂x2
J(ž,x)

)

−1

σ2 (4)

An unbiased estimate s2 of σ2 in (4) would be s2 =
J(ž, x̂)/(K−3), where K is the number of correspondences.
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The final expression for the covariance estimate is

cov(x̂) ≃ 2
J(ž, x̂)

K − 3

[

∂2

∂x2
J(ž,x)

]

−1

x=x̂

(5)

[1] shows that this method in some cases greatly

over-estimates the true covariance.

Sampling the error function: If the error function is not

described analytically or it is not smooth, a robust estimate

of the curvature of the error function can be obtained by

sampling such function around the minimum [7], [8]. Once

the estimate of the Hessian is obtained, the same reasoning

can be applied to obtain the covariance estimate.

The problem with these approaches is that the shape of

the error function for one particular observed z does not

contain all the information needed to compute the covariance.

Consider Fig. 2 which shows a bidimensional version of

the problem. The estimate x̂ is the minimum of the error

function J(ž,x) which depends on the observed data ž. If

another data ž2 had been observed, a different error func-

tion J(ž2,x) would have been produced, with a different

minimum x̂2. The covariance of x̂ describes the change of

the position of the minimum of J if other z were observed;

this is only loosely related to the shape of J at a particular

z. The approach proposed in this paper does consider the

change in J due to noise in z (that is, ∂J/∂z).

C. The “brute force” approach

This simulation-based approach was proposed in [1]:

1) Read the first scan yt−1, taken at pose st−1.

2) Create a map S̃ref from yt−1 by connecting consecutive

points if their distance is below a threshold.

3) Repeat these steps 100 times:

a) Choose a random displacement x according to an

error distribution.

b) Simulate a new scan ỹt by ray-tracing map S̃ref

from position st = st−1 ⊕ x.

c) Match ỹt to yt−1 and store the matching error

(x̂ − x).

4) Compute the covariance matrix on the basis of the

matching errors.

The main problem with this approach is that it is not possible

to simulate other scans accurately because the map is not

known. Moreover, it might be impossible to run the algorithm

online, because of the heavy computational requirements.

III. THE COVARIANCE MATRIX

OF A MINIMIZATION ALGORITHM

The following is a known method in the statistical and

vision communities (see for example [11] for a similar

approach).

Proposition 1: Let x̂ be the result of an algorithm A
minimizing an error function J , which depends on the

measurements ž: x̂ = A(ž) = arg minx J(ž,x). Then the

covariance of x̂ can be approximated as

cov(x̂) ≃

(

∂2J

∂x2

)

−1
∂2J

∂z∂x
cov(z)

∂2J

∂z∂x

T (

∂2J

∂x2

)

−1

(6)

where everything is computed at x̂, ž.

Proof: The first-order approximation to the covariance

is

cov(x̂) ≃
∂A

∂z
cov(z)

∂A

∂z

T

(7)

Since A is not in closed-form, it is not easy to compute

∂A/∂z. However, A(z) and z are bound by an implicit

function. In fact x̂ is a stationary point of J ; a necessary con-

dition is that the gradient is null at x̂: ∂J(ž, x̂)/∂x = 0
T. In

this case, the implicit function theorem gives an expression

for ∂A/∂z. Apply the theorem (see the Appendix) with

F = ∂J/∂x, f(z) = A(z),x0 = x̂ to obtain

∂A(z)

∂z

∣

∣

∣

∣

z=ž

= −

(

∂2J

∂x2

)

−1
∂2J

∂z∂x

∣

∣

∣

∣

∣

x=A(ž)

(8)

By substituting this in (7) the thesis follows.

Please note that the approximation depends only on the

error function J being minimized by algorithm A; there are

no hypotheses on A itself. The term ∂2J/∂x∂z quantifies

the variation of the error function caused by noise: this is

the information that the methods described in Section II-B

did not use.

IV. APPLICATION TO ICP

It is very easy to apply the method. One must simply

rewrite (2) as to show explicitly the contribution of each

range measurement; then one computes the derivatives at the

estimated x̂ and evaluates (6).

For each correspondence, there are three measurements

that give a contribution. The reference surface Sref is created

by connecting the points in yt−1 with segments; each seg-

ment is created by two points. For the k-th correspondence,

call ik the index of the point in yt, and call jk
1 and jk

2

the indexes for the points in yt−1 that create the segment

closest to Txpt
ik . By writing the points p in the polar form

(for example: pik = ρ̃ikvik , where vik is the direction of

the sensor ray), one obtains J as a function of the readings:

J({ρ̃t−1
j }, {ρ̃t

i},x) = (9)
∑

k

∥

∥

∥
Txρ̃t

ikvik−Π
(

seg(ρ̃t−1
jk

1

vjk

1

, ρ̃t−1
jk

2

vjk

2

), Txρ̃t
ikvik

)∥

∥

∥

2

The necessary derivatives (∂2J/∂x2 and ∂2J/∂x∂z) can

easily be computed in closed form – they are not reported

here for reasons of space. Evaluating (6) requires only some

matrix multiplications (greatly simplified in the common case

of a diagonal cov(z)) and the inversion of a 3×3 matrix.

Please note that the method takes into account the fact that

a measurement is involved in more than one correspondence,

and that it does not assume that the measurements are

uncorrelated: cov(z) can be a full matrix. Moreover it can

handle the case of localization, by simply not considering

Sref as subject to uncertainty (using z = yt instead of

z = {yt−1,yt}).

A comment on the well-posedness of the problem. The

implicit function theorem requires that ∂2J/∂x2 be non

singular. Assume that there are more than 3 correspondences:

then in scan matching ∂2J/∂x2 > 0 with probability 1,
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OBSERVABLE AND UNOBSERVABLE MANIFOLDS IN UNDER-CONSTRAINED SITUATIONS

w
a
ll

world frame

(w
2 is θ)

observable coordinate

kernel of Fisher’s matrix

unobservable manifold

U(x)
w
a
ll

x

w
1

st−1

y

world frame

θ

x

wall

U(x0)

unobservable manifold

kernel of Fisher’s matrix

unobservable manifold
on the x, y plane

projection of
ker(I(x))

w1 observable coords.

w2

st−1

x

Fig. 3. In a bidimensional world, two kinds of under-constrained situations are possible [9]: the corridor environment and the circular environment. In
the first case the unobservable manifold is a linear subspace, while in the second case it is a curve. In both case, the kernel of Fisher’s information matrix
is tangent to the unobservable manifold.

as the only situation in which it is singular is when all

the segments in Sref are parallel, and this is never true

because measurements are noisy (in other words, {z :
det(∂2J/∂x2) = 0} is a set of measure 0 immersed in

the space of measurements). Incidentally, this means that

one can expect that (2) is a strictly convex problem even

in under-constrained situations: in that case the ICP finds a

minimum, but that is just fitting the noise. As for localization,

det(∂2J/∂x2) = 0 can indeed hold in some cases.

There are at least two ways to work around this problem.

The first is to step back and recognize that localization and

scan matching are never under-constrained, if an odometry

estimate is present. Let u be the odometry estimate of x

having a bounded covariance cov(u). One can formulate a

maximum-a-posteriori problem by adding a term to the error

function, which weights the odometry information:

JMAP(z,u,x) = J(z,x)+(x−u)T[cov(u)]−1(x−u) (10)

(this can be solved by ICP by introducing a dummy corre-

spondence). Applying (6) to JMAP and considering u as part

of the measurements, one may conclude that the covariance

of x̂MAP is bounded: cov(x̂MAP) ≤ cov(u).
The second way, and the one that will be employed in

the next section, is to explicitly detect the under-constrained

direction by analyzing Fisher’s information matrix, and then

carry on the analysis on the observable manifold.

V. SIMULATIONS

The goal of the simulations was to compare the method

with those proposed in [1]. Three cases are considered:

the square, the corridor and a circular environment. The

latter two exemplify the two kinds of under-constrained

situations which may happen [9]; for those an observability

analysis is performed. Methodology: The best way to think

of the simulations is as Monte Carlo approximations to (1).

Therefore, the values of yt,yt−1,u change, while the true

x remains fixed. This is the simulation algorithm:

1) Choose the first pose st−1. Choose a fixed true x.

Let st = st−1 ⊕ x be the second pose. These remain

constant for all the simulations.

2) Repeat for m = 1, 2, . . . , 300

a) Create a noise-corrupted first scan ym
t−1 at st−1.

b) Create a noise-corrupted second scan ym
t at st.

c) Sample a starting guess um ∼ N (x, cov(u)).
d) Run ICP to obtain x̂m = A(ym

t−1,y
m
t ,um)

3) Compute cov({x̂m}) as an approximation to cov(x̂).

The experimental methodology is subtly different from that

employed in [1]. Here the true x is fixed, while in [1]

it changes. Another important difference is that in [1] the

second scan is simulated on an approximated geometric map

built on the first scan: this produces artificially good results

for the Offline method.

For the rest, the parameters have been chosen as close as

possible to those employed in [1], [2]. The sensor has 52 rays

distributed on 360◦; the noise is Gaussian with zero mean

and a standard deviation of 0.03m. The odometry error has

covariance cov(u) = diag(0.35m, 0.35m, 7.5◦).
a) The square environment (Fig. 4): The square is an

example of a constrained environment. In Fig. 4 both the

results for localization and for scan matching are shown.

As for localization, the Cramér–Rao bound and the pro-

posed method provide a very close estimate to the true cova-

riance. As for scan-matching, the pessimism of the Hessian

method, as shown in [1], is confirmed. The Offline method

has worse performance than in [1] as the methodology has

been slightly changed. The proposed method provides an

excellent approximation.

b) The corridor environment: This is the most common

under-constrained situation encountered in practice: the robot

cannot see the end of the corridor and on the sides there are
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no useful features. To treat this situation, one must recognize

that there is an unobservable direction, and then carry on

the comparison of the methods on the observable manifold.

Only the projection of the errors on the observable manifold

are significant. The Appendix recalls the definition of I(x),
the Fisher’s information matrix for localization. In an under-

constrained situation, one eigenvalue of I(x) is close to zero.

The corresponding eigenvector pu(x) defines the unobser-

vable subspace U(x) = span {pu(x)}; while the other two

define the observable subspace O(x) = span {p1(x), p2(x)}.

To ignore the components of the errors which lie in U(x)
and are not observable, one should project the errors from

the (x, y, θ) space to O. Define T (x) as a projector from

R
2 × [0, 2π) to O: T (x) , [p1(x) p2(x)]

T
. The error

samples are projected with w = T (x)(x − x), and the

covariances estimated by the different approaches can be

projected using: cov(w) = T (x)cov(x̂)T (x)T. Finally, one

can compare the actual errors on O with the projection of the

estimated covariances. The Hessian method and the proposed

method match the actual covariance well; the Offline method

is moderately optimistic.

c) The circular environment (Fig. 4): The difference

with respect to the corridor is that now the projection of the

samples on the observable manifold is a non-linear transform.

The unobservable manifold U(x), containing all the points

which are not distinguishable from x, can be parameterized

by a number φ: U(x) , {[R(φ)t, θ + φ] for φ ∈ [0, 2π)}.

U(x) is a spiral in the (x, y, θ) space, as shown in Fig. 3.

At each point the kernel of I(x) is tangent to U(x).

Also in this case the Hessian and the proposed method

give similar results: they are both moderately optimistic

with respect to the true error. The Offline method is very

pessimistic, probably because the the polyline map it uses is

quite a bad approximation for a circular environment.

The results can be summarized as follows:

Square Corridor* Circle*

Hessian [1] pessimistic good
moderately
optimistic

Offline [1] good
moderately
optimistic pessimistic

proposed very good good
moderately
optimistic

*: projection on the observable manifold

VI. CONCLUSIONS

This paper presented a method for estimating the covarian-

ce of the ICP algorithm, based on the analysis of the error

function being minimized. It has been shown that under-

constrained cases can be detected by examining the Fisher’s

information matrix. In such cases the proposed method

accounts for the errors on the observable manifold. In the

simulations, the proposed algorithm performed better than

existing approaches, and the computational load is negligible

with respect to the ICP algorithm itself.

Acknowledgements: thanks to Javier Minguez for

insightful comments on a draft of this paper.

APPENDIX

A. Implicit function theorem

Let S an open set of R
n+h and F = F (x,z) a function

from S to R
h of class C1. Let (x0,z0) be a point in S such

that F (x0,z0) = 0, and det (∂F (x0,z0)/∂x) 6= 0. Then

there exists a neighborhood I of z0, a neighborhood J of x0

and a unique function f : I ⊂ R
n → J ⊂ R

h such that x0 =
f(z0) and F (f(z),z) = 0 ∀z ∈ I . Moreover f ∈ C1 and

∂f(z)/∂z = − [∂F (z, f(z))/∂x]
−1

∂F (f(z),z)/∂z.

B. Fisher’s information matrix for localization

In [9] it is derived the Fisher’s information matrix for

localization:

I (x) =
1

σ2

∑

i

[

v(αi)v(αi)
T

cos2 βi

ri
tan βi

cos βi

v(αi)

∗ r2
i tan2 βi

]

(11)

where αi is the direction of the normal to the surface at

the sensed point, βi is the incidence angle (angle between

the normal to the surface and the sensor ray) and ri is

the expected sensor reading. The inverse of I(x) is the

Cramér–Rao bound for unbiased estimators for localization

(cov(x̂) ≥ [I(x)]
−1

). In an under-constrained situation

I(x) is singular, and the kernel gives the direction of the

uncertainty. As for I SM(x), the corresponding matrix for

scan matching, it is difficult to obtain a closed form [9].

However, because scan matching is the very same problem

as localization, but with less information, one may conclude

that I SM(x) ≤ I (x). Because ker (I SM(x)) ⊃ ker (I (x)),
it makes sense to consider the kernel of I(x) as the

under-constrained directions for scan matching as well.
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SQUARE ENVIRONMENT

Localization errors (mm,mm,◦)

σ(x) σ(y) σ(θ)

true 5.3 5.3 0.039

CRB 5.1 5.3 0.037

proposed 5.4 5.4 0.042

Scan matching errors (mm,mm,◦)

σ(x) σ(y) σ(θ)

true 7.6 7.8 0.058

Hessian 20.0 20.3 0.171

Offline 7.0 6.8 0.086

proposed 7.7 7.7 0.060

ERRORS FOR LOCALIZATION (matching a noisy sensor scan against a perfect map)
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ERRORS FOR SCAN MATCHING (matching two noisy sensor scans)
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CORRIDOR ENVIRONMENT

Scan matching errors (mm,mm,◦) Projected on O →

σ(x) σ(y) σ(θ) σ(w1) σ(w2)

true 38 219 0.22 0.84 0.38

Hessian 33 186 0.24 0.94 0.42

Offline 50 273 0.14 0.63 0.26

proposed 40 257 0.19 0.84 0.33
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CIRCULAR ENVIRONMENT

Scan matching errors (mm,mm,◦) Projected on O →

σ(x) σ(y) σ(θ) σ(w1) σ(w2)

true 284 31 8.2 1.50 0.39

Hessian 13 7 0.3 0.78 0.36

Offline 378 43 5.6 3.27 8.37

proposed 13 9 0.3 0.84 0.36
−0.04 −0.02 0 0.02 0.04

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

w
1

w
2

Error projected on observable manifold
Circular environment, scan−matching

samples

Hessian

proposed

Fig. 4. The figure shows the results for localization and scan matching in three environments: the simple square and the two possible under-constrained
environments: corridor and circle. Square: The three-dimensional data is shown projected on the three planes (x, y), (x, θ), (θ, y). In the picture the black
dots are the actual error samples. The proposed method is very accurate, both for localization and scan matching, and much more accurate than the Hessian
method (very pessimistic) and the Offline method. Parameters: The environment is a square with a 10m side. The first pose is at st−1 = (0, 0, 0◦) (center
of the square), and the displacement is x = (0.1m, 0, 2◦). Corridor: In an under-constrained case, only the errors projected on the observable manifold
are significant (right table and figure). The Hessian and the proposed method provide a good approximation of the covariance for the observable part of
the state space. Parameters: The environment is a 10m square with two sides removed. st−1 = (0, 0, 10◦), x = (0.1m, 0, 2◦). Circle: In this case, the
Offline method is pessimistic, and the Hessian and the proposed method are moderately optimistic. Parameters: The environment is a circle with a 5m
radius. The first pose st−1 is (0, 2m, 0◦), slightly off-centered; the displacement is x = (0.1, 0, 2◦).
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