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Abstract- The harmonic potential field (HPF) approach to
motion planning is shown to provide an efficient and
provably-correct basis for building intelligent, context-
sensitive, and goal-oriented controllers. In [1] a novel type of
dampening forces called: nonlinear, anisotropic, dampening
forces (NADFs) are used to convert the guidance signal from
an HPF into a navigation control signal with verifiable
capabilities. This work provides two extensions of the NADF
approach. The first is a blind, iterative procedure that can
totally cancel the steady state error. The other extension is
concerned with the nonholonomic case. Theoretical
developments and simulation results are provided. 

I. Introduction
In a recent work this author suggested an approach that is
based on nonlinear anisotropic damping forces (NADF) [1] to
enable a harmonic potential field (HPF)  motion planner  [2-4]
to generate an intelligent control signal capable of yielding a
dynamic  trajectory that preserves all the properties
guaranteed by its kinematic counterpart. The NADF approach
demonstrated better performance compared to popular
approaches such as  Guldner and Utkin sliding mode
approach [5] and direct augmentation of the HPF gradient
field  (-LV) with viscous damping to generate the control
signal (u) [6]

                  .                  (1)u B x V(x)= − ⋅ − ∇
•

It ought to be mentioned that in both approaches preserving
the collision avoidance property guaranteed by the kinematic
HPF planner is a concern. 
 

This work provides two extensions of the NADF approach.
The first is a blind, iterative procedure that enables the
approach to handle systems with drift. The method based on
clamping control  suggested in [1] to handle the presence of
external forces can only reduce the error to an arbitrarily
small value. On the other hand, the suggested iterative
procedure can totally cancel the steady state error. The other
extension has to do with adapting the NADF approach to
work with nonholonomic systems.  
 

This paper is organized as follows:  section II provides a brief
background of the HPF approach.  The NADF approach is
quickly presented in section III.  Sections IV and V discuss
the application of the approach to dissipative systems and
systems experiencing external forces respectively.  Section VI
deals with the extension to the nonholomic case.  Simulation
results are in section VII, and conclusions are placed in
section VIII. 

 

II. Background
Although the HPF approach was brought to the forefront of
motion planning independently and simultaneously by

different researchers [7-9], the first work to be published on
the subject was that by Sato in 1986 [7]. The HPF approach
forces the differential properties of the potential field to
satisfy the Laplace equation inside the workspace of a robot
(S) while constraining the properties of the potential at the
boundary of S ('=MS). The boundary set ' includes both the
boundaries of the forbidden zones (O) and the target point
(xT). A basic setting of the HPF approach is:
 

                                          x0S∇ ≡2V(x) 0
subject to:          .                            (2)V 0| & V 1|X X XT

= == ∈Γ

The trajectory to the target (x(t)) is generated using the HPF-
based, gradient dynamical system: 

                                          (3)x V(x) x(0) x0

•
= −∇ = ∈Ω

The trajectory is guaranteed to:

                 1-            2-        (4)lim x(t) x
t T
→∞

→ x(t) ∈ ∀Ω t

whereby a proof of (4) may be found in [4]. Figure-1  shows
the negative gradient field of a harmonic potential and the
trajectory, x(t), generated using (3).
  

 Figure-1: Guidance field and trajectory from an HPF. 

III. The NADF Approach
The linear velocity component acts as a dampener of motion
that may be used to place the inertial force under control by
marginalizing its disruptive influence on the trajectory of the
robot that the gradient field is attempting to generate. This
approach ignores the dual role the gradient field plays as a
control and guidance provider. A dampening component that
is proportional to velocity exercises omni-directional
attenuation of motion  regardless of the direction along which
it is heading. The guidance and disruptive components should
not be treated equally. Attenuation should be restricted to the
inertia-caused disruptive component of motion, while the
component in conformity with the guidance of the artificial
potential should be left unaffected.
 

A dampening component that treats the gradient of the
artificial potential both as an actuator of dynamics and as a
guiding signal is: 
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        (5)M(x, x) [(n ) n ( V(x)
V(x)

( V(x) )) V(x)
V(x)

]t
T

T
T& = +

∇
∇

⋅ ⋅ ∇
∇
∇

• • •

x x xΦ

where n is a unit vector orthogonal to LV and M is the unit
step function. This force is given the name:  nonlinear,
anisotropic, dampening force (NADF). 

IV- Dissipative  Systems
In this section two propositions are stated for dissipative
systems. Proofs may be found in [1]. 

Proposition-1: Let V(x) be a harmonic potential generated
using the BVP in (2). The trajectory of the dynamical system:
                (6)D x x C x x x B M x x K V x 0( )&& ( , & )& ( , & ) ( )+ + ⋅ + ⋅∇ =d

will globally, asymptotically converge  to: 
           ,        lim

t→∞
→x xT lim &

t→∞
→x 0

for any positive constants Bd and K, where x0RN, V(x):RN6R,
D(x) is an N×N positive definite inertia matrix,C(x, x)x& &

contains the centripetal, Coriolis, and gyroscopic forces.  For
a proof of the preposition see [1]. 
   

Proposition-2: Let D be the trajectory constructed as the
spatial projection of the solution, x(t), of the first order
differential system in (3). Also Let Dd be the trajectory
constructed as the spatial projection of the solution, x(t), of
the second order system in (6), figure-2. Then there exist a Bd
that can make the maximum deviation  between D and Dd (*m)
arbitrarily small. For a proof of the preposition see [1]. 
             

∇
∇

V x
V x

( )
( )

       Figure-2: The kinematic and dynamic trajectories. 
   

V. Systems with External Forces
The NADF approach may be adapted for designing
constrained motion controller for mechanical systems
experiencing external forces (e.g. gravity). The dynamical
equation of such systems has the form: 

                                 (7)D(x)x C(x, x)x G(x) F&& & &+ + =
where G(x) and F are vectors containing the external forces
and the applied control forces respectively. The controller: 
           .                    (8)F B M(x, x) K V(x)d= − ⋅ − ⋅∇&

has the ability to make the trajectory of the system  in (7)
closely follow the kinematic trajectory from an initial  starting
point (xo) to the target point xT.  However, due to the presence
of the external forces the controller will not be able to hold
the state close to the target point and drift will occur (Figure-
10). Here an approach for effectively dealing with this type of
systems is suggested.
 

1. Clamping control: 
The effect of the clamping control (Fc) is strictly localized to
a hyper sphere of radius F surrounding the target point. If

motion is heading towards the target, this control component
is inactive. On the other hand, if motion starts heading away
from the target, the control becomes active and attempts to
drive the trajectory back to the target (Figure-3). A form of a
clamping control that behaves in the above manner is: 
                  (9)F (x,x) (x x ) ( x x ) (x (x x ))C T T

T
T& &= − ⋅ − − ⋅ −Φ Φσ

The strength of Fc is adjusted using the  constant Kc so that
the steady state error is kept below a desired level (,).
Clamping control maintains stability  for any positive Kc. 
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    Figure-3: The clamping control. 

Proposition-3:
For the mechanical system in (7), a controller of the form: 
                             (10)F B M(x, x) K V(x) K F (x, x)d C C= − ⋅ − ⋅∇ − ⋅& &

can make     and             (11)lim x(t) x
t T→∞

− ≤ <ε σ lim x 0
t→∞

=&

provided that: 
1- K, Bd, and Kc are all positive, 
2- Kc$Fmax/,,  x0SF & .  (12)F max G(x)max X

= Ωσ σ= − ≤{x: x x }T

3- a high enough value of Bd is selected so that at some
instant in time t`           (13)x(t`) xT− < σ
4- K is high enough so that the gradient field is capable of
directing the trajectory to SF

          X0S-SF               (14)K V(X) G (X) V(X)
V(X)

T⋅∇ >
∇
∇

For a proof of the preposition see [1]. 

2. Iterative, blind error cancellation: 
While clamping control has the ability to reduce the steady
state error to an arbitrarily small value, sometimes it is desired
that this error be totally cancelled. Here, an iterative, blind
procedure is suggested  for error cancellation. The procedure
works by providing an alternative path ($) other than the error
channel (KPAe, where KP is a positive definite matrix) to
supply the control signal (u) that is needed to hold the robot
at a location xT (figure-4),  

          u = kAe + $                  (15)
    

         Figure-4: The suggested scheme for iterative error cancellation.
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 The fixed point iteration method [10] is used to evolve an
estimate of the control signal so that the steady state error is
driven to zero. This procedure is implemented using a
switched logic circuit with one memory storage element. One
implementation requires the circuit to have two inputs: the
control that is directly fed to the robot and velocity of the
robot’s coordinates in order to assess convergence (other
means to decide if the robot has converged may be used).
There is only one output consisting of the bias term $. The
bias term is iterativly determined as follows: when motion is
about to settle (i.e. *dx/dt*< ", where 0 < " <<1), the circuit
measures the value of u and assigns it to $. This value is kept
till at another instant i the event becomes true again. At the
i’th instant we have: 

u=G( xi),  $=G(xi-1), and  KPAe = KPA(xT-xi)        (16)
where xi is the position of the robot at the i’th settling instant.
Relating the above quantities using (15) yields the recursive
relation: 

          G( xi) = G(xi-1) + KPA(xT-xi) .                  (17)
Proposition-4: 
The recursive relation in (17) has a fixed point at which: 

    (xT-xi) = 0                  (18)
Proof:  Using Taylor series expansion around xT, we have: 

G(x) = G(xT) + J(G(xT))(x-xT)+ ....                  (19)
         = G(xT) + F(x-xT)

where J is the Jacobian matrix of G and F is a function
containing the (x-xT) terms of the Taylor series. Substituting
(19) into (17) we get: 

            F(e`i) = F(e`i-1) - KPAe`i                  (20)
where     e`i = - (xT - xi) .                  (21)

Now let 0=F(e`) and Q be the inverse function of F in the
neighborhood of xT. Substituting Q in (20), we obtain the
recursive relation: 

KPAQ(0i) + 0i = 0i-1 .                            (22)
At a fixed point we have : 

          0i = 0i-1                   (23)
or        KPAQ(0i) = 0.
Since KP is positive definite, i.e. it is not singular: 

           Q(0i) = e`i = (xi - xT) = 0                  (24)
In other words:              xi = xT .

Proposition-5: 
For any positive definite KP, the fixed point x=xT is a stable
attractor fixed point, i.e. if xi is sufficiently close to xT, 

                          (25)lim
i→∞

→x xi T

Proof:  In the close neighborhood of xT, equation (17) may be
written as: 
          J(G(xT))A(xi-xT) =J(G(xT))A(xi-1-xT) +KPA(xT-xi)       (26)
Notice that: J(G(xT)) = J(LP(xT)) = H(xT)               (27)

where H is the symmetric hessian matrix. Substituting (27) in
(26) yields the equation: 

[KP + H(xT)]Aei = H(xT)Aei-1                  (28)
where          ei = (xT-xi) . 
Since KP is positive definite and H is symmetric, they are
simultaneously diagonalizable into: 

    Kp=UUT and H=U7UT                  (29)

 where U is a nonsingular matrix and 7 is a diagonal matrix
with non-negative elements 8l, l=1,..,N, see [11, page-
86].Using the above decomposition (28) may be written as: 

  U(I+7)UTAei = U7UTAei-1                  (30)
Using the transformation qi = UTAei ,
we have qi = AAqi-1                  (31)

where       .                  (32)A I

1
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It is well-known that the solution of (31) is: 
       qi = AiAq0                  (33)

Since                   l=1,..,N                  (34)0
1

1≤
+

<
λ
λ
l

l

we have:          .                  (35)lim lim
i i→∞ →∞

= ⋅ →q U e 0i
T

i

Since U is a nonsingular matrix 
    or                     (36)lim

i→∞
→e 0i lim

i i→∞
→x xT

VI. The Nonholonomic Case
In the following methods are  outlined on how to adapt the
HPF approach to work with  nonholonomic  robots to
generate both kinematic and dynamic trajectories. 

1. Kinematic, Nonholonomic, HPF-based planner: 
The linearized equation of motion of a nonholonomic mobile
robot may be written as: 

                                 (37)
&

&

&
( , , )

x
y H x y
θ

θ
ν
ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣
⎢

⎤

⎦
⎥

where x and y are the coordinates of the center point of the
robot, 2 is its orientation, < is the set radial speed of the robot,
T is the set angular speed, and H is a matrix function. The
HPF approach may be directly applied to the robot in its
linearized form by considering the set radial speed at a certain
point in space to be equal to the magnitude of the gradient
guidance field at that point and the set angular speed may be
taken as the angle between the robot’s orientation and the
orientation of the gradient  guidance field, 
             < = *-LV(x,y)*  T = 2 - arg(-LV(x,y))           (38)
The above procedure can be with little effort adapted to many
nonholonomic robots. However, in this work we are going to
consider planning for a differential drive robot (figure-5). 
                

Figure-5: A differential drive mobile robot. 

ThA11.2

1982



The equations describing motion for such a robot are: 

                            (39)
&

&
&

( )
( )

x
y

cos 0
sin 0

0 1θ

θ
θ

ν
ω

⎡

⎣

⎢
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⎦

⎥
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
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⎥

⎡

⎣
⎢

⎤

⎦
⎥

and                              (40)ν
ω

ω
ω

ω
ω

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣

⎢
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⎢

⎤

⎦

⎥
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⎡

⎣
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⎦
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⎣
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⎦
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where A is the dimension matrix of the robot, r is the radius
of the robot’s wheels, W is the width of the robot, TR and TL
are the angular speeds of the right and left wheels of the robot
respectively. The guidance signal derived from the HPF is: 

     (41)
ω
ω θ

R

L

A
V

arg V
⎡

⎣
⎢

⎤

⎦
⎥ =

− ∇
− −∇

⎡

⎣
⎢

⎤

⎦
⎥

+

( )
where A+ is the pseudo inverse of A. For a differential drive
robot A+=A-1. The block diagram of the HPF planner for the
kinematic case is shown in figure-6.     
   

Figure-6: A Kinematic, HPF-based planner, Nonholonomic case. 

The above scheme is tested for the gradient guidance field in
figure-7. This field encodes the simple behavior of move right
and stay at the center of the road (y=0).             

Figure-7: Move right and stay at center. 

2. Dynamic, Nonholonomic, HPF-based planner: 
The dynamic behavior of the differential drive robot that ties
the torques applied to the right and left wheels (TR, TL) to the
position and orientation of the robot may be described using
two, coupled differential equations. The first one is obtained
by differentiating equation-39 with respect to time,   

            ,               (42)
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&&
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&
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and the second is derived using Lagrange dynamics in the
natural coordinates of the robot, 

     (43)
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where M is the mass of the robot. Choosing M=1, the
dynamic model of the robot is used instead of the kinematic
model in the example shown in figure-7 for the case of
2(0)=B/2. As expected direct use of the guidance force as a
control signal will fail (figure-8).

        

Figure-8: Adding mass causes instability. 

To stabilize the system an omni-directional, linear viscous
dampening force applied in the natural coordinates of the
robot is used to generate the control signal: 

 ,        (44)T
T

B K
V

arg V
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L
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⎡

⎣
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⎤
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&

where KP and KD are positive constants, B+ is the pseudo
inverse of B,  and  is the radial speed of the robot, &ρ

  .                  (45)& & &ρ = +x y2 2

The block diagram of the planner is shown in figure-9. 
         

( &, &)ρ θ

Figure-9: HPF-based  planner with linear dampening, nonholonomic case. 

The response of the system may be tuned using KP and Kd.
Significant transients should be expected for a small
coefficient of rate feedback. Increasing this coefficient can
reduce the transients, however, as in the holonomic case, it
also reduces the speed of the robot.      

One way to sensitize the dampening to the guidance signal is
to notice that changing the speed of the robot is not needed if
the actual speed of the system is equal to the reference speed.
This leads to a simple, nevertheless effective, change in the
form of the control signal: 

               (46)
T
T

B K
V

K
arg V
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The performance can still be further enhanced by making the
reference radial speed at a certain point dependant on the
orientation of the robot relative to the orientation of the
guidance vector. The reasoning that may be used is: if the two
orientations are the same use maximum reference speed. If the
two orientations are at right angle use zero reference speed,
and if the two orientations are diametrically opposite use a
negative maximum reference speed. This reasoning may be
implemented by simply multiplying the reference speed with
cosine the difference between the two orientations. The
control signal that realizes the above is: 

    (47)
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VII. Results
A point mass with constant external forces having the system
equation in (48) is controlled using the suggested approach,

                            (48)x
y

••

••
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4
4

As can be seen from figure-10, for a sufficiently high Bd the
controller will succeed in driving the mass to the target and
avoiding the obstacles. However, when the target is reached,
drift caused by the external forces occur. 

                  

Figure-10: Trajectory, NADF - external force present.
  

In figure-11 a clamping control similar to the one in (9) is
added with K=1, Bd=10, KC=10. As can be seen, the
controller was able to hold the trajectory near the target point
relying only on a loose, upper bound estimate of the drift.
Despite  the high value of KC , the trajectory settled in an
overdamped manner with no oscillations taking place. 

 

Figure-11: Trajectory and x-y control forces, NADF and clamping -
external force present.

  

The iterative procedure to remove the steady state error
suggested in section V is tested using a simple pendulum
(figure-12) with concentrated mass M=1Kg and length L=1M.
The dynamic equation of the pendulum is: 
               (49)M L M g u⋅ ⋅ + ⋅ ⋅ =&& sin( )Θ Θ
where g is the acceleration constant and u is the external
applied control torque. 
                    

            Figure-12: A simple pendulum. 

A simple controller with position and velocity feedback (50)
is used to move the pendulum from 1=0 to 1=B/2. 

                             (50)u K B= − ⋅ − ⋅Θ Θ&
As can be seen from figure-13, the weight of the pendulum
causes significant steady state error. In order to remove the
error, the switching circuit suggested in V.2 is added to the
controller. Different switching thresholds are used to assess
the sensitivity of the procedure to the presence of transients
(figure-14). As can be seen, the error was eliminated in all
cases. Although the iterative error cancellation procedure was
designed to be used when transients fade away and motion
settles, simulation shows that the procedure exhibits little
sensitivity to the presence of transients that enables us to
loosely choose the threshold ". Actually, the simulation
reveals that better results in terms of having a lower settling
time could be obtained if switching is carried out before
motion completely settles. 

          

          Figure-13: Steady state error caused by weight of pendulum. 

          

Figure-14: Error cancellation using switching circuit - different thresholds.

In figure-15 the PD control approach (44) in the natural
coordinate of the nonholonomic robot is tested for different
values of KP and Kd. The two cases are simulated for the same
duration. As can be seen, the use of rate feed back in the
natural coordinates of the robot did stabilize the response and
made the system yield to the guidance signal derived from the
HPF. Significant transients are observed for a small
coefficient of rate feedback. Although increasing this
coefficient reduces the transients, it results, as in the
holonomic case, in reducing the speed of the robot.      
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    Figure-15: Response of the planner in (44) for different Kp and Kd. 

In figure-16, the direction sensitive dampening is compared
to the linear dampening case using same coefficients for the
planner. As can be seen sensitizing the dampening to direction
significantly reduced the overshoot and settling time without
compromising the speed of the robot. 

Figure-16: response of the planner in (46) compared to the one in (44). 

In figure-17 the direction sensitive controller in (46) is
compared to the jointly sensitized controller in (47). As can
be seen the jointly sensitive controller lead to more reduction
in the overshoot. 

  

    Figure-17: response of the planner in (46) compared to the one in (47). 
  
Using a Kp=.001 and a Kd=60,  The controller in (47) is tested
in a cluttered environment. Figure-1 shows the harmonic
gradient guidance field that is used to motivate the motion of
the robot and the holonomic, kinematic trajectory such a field
generates. Figure-18 shows the dynamic trajectory the
controller generates and the orientation of the robot as a
function of time. As can be seen, the nonholonomic, dynamic
trajectory is very close in shape to the holonomic, kinematic
trajectory with a satisfactorily smooth orientation profile. The
control torques applied to the right and left wheels of the
robot are shown in figure-19.      

VII. Conclusions
In this paper the capabilities of the HPF approach are
extended to tackle the kinodynamic planning case. The

extension is based on a novel type of nonlinear, passive
dampening forces called  NADFs. The approach enjoys
several attractive properties. It is easy to tune; it can generate
a well-behaved control signal; the approach is flexible and
may be applied in a variety of situations,  it does not require
exact knowledge of system dynamics, it can tackle dissipative
systems as well as systems under the influence of external
forces, and it can be extended to the nonholonomic case.  
       
  

            Figure-18: Trajectory and curvature using the planner in (47).

Figure-19: Torque control signals corresponding to fig. 18.
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