
Abstract—This paper presents a switching controller for 
positioning a unicycle-like mobile robot at a desired point with 
final orientation avoiding obstacles in completely unknown 
environments. To this aim two complementary algorithms are 
included: the first decides whether to avoid an obstacle around 
its right or left side, and the second is intended to detect when 
an obstacle was successfully avoided. The obstacle avoidance is 
performed using a laser-based reactive contour-following 
controller. The switching controllers include the stability 
analysis at the switching times, using common and multiple 
Lyapunov functions. Finally, experimental results in a typical 
unicycle-like mobile robot show the performance of the 
proposed hybrid control system. 

I. INTRODUCTION 
HE problem of programming a mobile robot to move 
from one place to another is of course as old as the first 
mobile robot. In mobile robotics almost every task to 

solve deals with the problem of parking [1] or with the 
classical behavior “move-to-goal” in behavior-based 
architectures [2]. The unicycle model has a nonholonomic 
constraint that makes it impossible to design a continuous 
invariant control law that guarantees to reach a final posture 
in Cartesian coordinates. In a seminal paper by Brockett [3] 
it is implied that so-called nonholonomic systems cannot be 
stabilized by a differentiable and time-invariant state 
feedback. Intuitively a nonholonomic constraint restricts a 
vehicle motion locally but not globally. For the kinematic 
unicycle, the nonholonomic restriction implies no sideways 
motion of a point on the wheel axis. Note that under this 
constraint, there is a feasible trajectory between any two 
configurations (postures). The price paid for free motion of 
an off-axis point is the lost of orientation control. Several 
works have been developed in this area; [4] uses the dynamic 
model of the mobile robot and achieve the objective by 
means of neural networks, in [5], [6], [1] a change in the 
coordinates of the kinematic model have been introduced. 
Another research objective, related to the autonomous robot 
navigation, is the obstacle avoidance. Regarding this 
problem many possibilities appear, mainly depending on the 

 
Manuscript received August 12, 2006. This work was supported in part 

by CONICET (Argentina) and ANPCYT (Argentina) 
J. M. Toibero is with the Institute of Automatics (INAUT), San Juan, 

J5400ARL ARGENTINA (phone: +54-264-4213303; fax: +54-264-
4213672; e-mail: mtoibero@inaut.unsj.edu.ar).  

Prof. R. Carelli and Prof. B. Kuchen are with the Institute of Automatics 
(INAUT), San Juan, J5400ARL ARG. (e-mails: rcarelli@inaut.unsj.edu.ar
and bkuchen@inaut.unsj.edu.ar). 

 

kind of obstacle and the inclusion of this behavior into the 
control architecture [7], [8], and [9].  

This work presents a switching approach for the parking 
problem (Section III), i.e. the control of the robot between 
two arbitrary postures: the robot must reach the final posture 
[ ]Tddd yx θ starting from any initial posture 

[ ]Tiii yx θ as can be seen in Fig.1. This approach takes 
advantage of the nonholonomic constraint of the unicycle-
like mobile robots by decomposing the robot movement in 
such a way that backward motions are avoided and the robot 
heading is always in the direction of the goal posture. 

Next, the obstacle avoidance problem is considered in 
order to avoid unknown obstacles in a priori unknown 
positions: the chosen algorithm is a reactive contour-
following (CF) controller [10], which maintains a desired 
robot-obstacle distance.  

Finally, the robot-environment interaction is considered by 
proposing a switching control system including both above 
mentioned controllers. The combination of these strategies 
allows the robot to handle very real situations, including 
confinement or trap situations in large-scale settings. While 
working with this robot-environment interaction two 
problems arise: i) the detected obstacle must be avoided 
following its contour, but which side of the robot must be 
selected? And, ii) was the detected obstacle already avoided? 
In order to address these questions two algorithms are 
proposed in sections IV.A and IV.B. A significant part of 
this work is related with the stability of the system. In this 
context, it is important to mention that: i) the stability of the 
individual controllers was proved using Lyapunov theory; ii) 
stability at the switching times for the point-to-point 
controller was considered and furthermore, iii) it is proposed 
an stability approach for the overall control system 
considering multiple Lyapunov functions. 

Next, in Section V experimental results in laboratory and 
office settings are presented. Finally in Section VI the 
conclusions are stated. 

 
Fig.1. Problem description 
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II. MOBILE ROBOT 
In this paper it is considered the wheeled mobile robot of 

unicycle type shown in Fig.2, in which the state variables are 
x, y (the coordinates of the middle point of the front wheels 
axle) and θ (angle of the vehicle with the world X-axis 
[WX]). A rear wheel turns freely and balances the rear end of 
the robot above the ground. The kinematics of the robot can 
be modeled by 
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where v and ω are the control inputs: the forward and the 
angular velocity, respectively. The robot is equipped with a 
laser radar sensor. With reference to Fig.2, the lateral beams 
from 0º to 15º (and from 165º to 180º) are used to estimate 
the obstacle contour angle, while all of the beams are used to 
define a guard-zone (or safety-zone), whose purpose is to 
detect possible robot-obstacle collisions. This rectangular 
guard-zone is defined by two parameters: the desired lateral 
(dlat) and frontal (dfront) distance. The minimum lateral value 
for a Pioneer IIIDX is about 330 millimeters. 
 

III. PARKING PROBLEM 
This section presents a switching controller approach to 

address the parking problem. Two continuous controllers 
described in subsections III.A and III.B respectively acts as 
subsystems. Then, in III.C the switching controller stability 
is considered. 

 

A. Heading Control 
This controller allows positioning the robot at the desired 

orientation angle dθ (Fig.3). Considering a constant angular 
error (2), and its time derivative (3) 

 

θθθ −= d
~ (2) 

 ωθ −=&~ . (3) 
 

Fig.2. Unicycle-like mobile robot and laser rangefinder 
 

Fig.3. Controller for Angular Position 
 
The following control actions are proposed, 

 

0=v (4.a) 
( ) 0;~tanh ~~ >= θθθ θω KkK (4.b) 

 

The expression for the angular velocity saturates at the 
value of the constant θ

~K . The value of 0~ >θk is chosen to 
increase the angular velocity for small errors. Considering 
the following Lyapunov candidate function 
 

2/~ 2~ θθ =V , (5) 
 

the asymptotic stability at the origin, that is: ( ) 0~
→tθ , is 

easily proved. 
 

B. Positioning Control 
Let us consider the controller in [11], where the robot can 

reach a desired destination point [ ]Tdd yx θ in the work 
plane without specifying the final heading (Fig.4).  Cartesian 
errors become defined as: 

 
xxx d −=~ (6.a) 
yyy d −=~ (6.b) 

 

and the control states are calculated as 
 

22 ~~ yxd += (7.a) 

( ) θθθθ −=−= − xyd
~/~tan~ 1 . (7.b) 

 

The time-variation of these control states are given by 
 

( )θ~cosvd −=& (8.a) 

( ) ωθθ −= dv /~sin~& . (8.b) 
 

Fig.4. Controller for Target Position 
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Analyzing the system at the equilibrium point: 
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the following Lyapunov candidate function is considered: 
 

2/2/~ 22 dVt += θ (10) 
 

Its time derivative along the trajectories is 
 

( )( ) ( )θωθθθθ
~cos/~sin~~~ vddvddVt −−=+= &&& . (11) 

 

The following control actions are defined 
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finally, by replacing (12) into (11) the control system 
stability at the equilibrium point can be easily proved. 
 

C. Switching Controller for parking with final orientation 
The block diagram in Fig.5 shows this switching control 

system composed by the controllers described in the 
previous sections. The switching signal is σ1; whereas 11 =σ
the controller for distance correction is active, and whereas 

01 =σ or 21 =σ the controller for Angular Position is 
active. By redefining the errors according with Fig.6 

( ) θθθθ −=−= − xyd
~/~tan~ 1

11 (13.a) 

θθθ −= d2
~ (13.b) 

22 ~~ yxd +=  (13.c) 
 
and considering as individual subsystems the controllers 
described in sections III.A and III.B: the switching between 
these controllers is ruled by an automata, which logic (Fig.7) 
is based on three different stages, a) first the robot is oriented 
to the destination point by correcting the angle θd1, b) then, 
the robot achieves the final point without regard of its 
orientation and c) finally the robot corrects its orientation to 
the desired final heading with ( ) 0~

2 →tθ . Switching 
according this logic the robot goes straight to the target point 
by activating the heading controller before moving towards 
the target point and after reaching it. Regarding the stability 
at the switching times, it can be proved that both controllers 
share the closed-loop equation 
 

( )θθ θθ
~tanh~

~ kK−=& (14) 
 
then, considering the equilibrium point 0~

=θ is easy to see 
that (10) is a Common Lyapunov Function for the switching 

system above. Therefore, the supervisor can switch among 
the mentioned controllers without affecting the stability of 
the system. In the following (see Fig.8), we show a 
comparison between a usual continuous parking controller 
[11] and the proposed switching controller. 
 

Fig.5. Block diagram of the Supervisor 
 

Fig.6. Angles description for the parking controller 
 

Fig.7. Parking controller: Supervisor logic  
 

Fig.8. Left: continuous parking controller without final orientation 
for eight different starting points and the origin as goal. Note the 
path followed by the robot when moving backwards. Right: 
Switching parking controller with final orientation. Always 
reaching the final point by means of a straight path 

IV. SWITCHING PARKING CONTROL 
Given the robot in its initial position, it must arrive at a 

destination posture avoiding the obstacles between the initial 
and the final points (the only requirement is that there is a 
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feasible path connecting these points). The solution proposed 
here is not optimal, in the sense that if two or more possible 
ways are available, the selection of an optimal path is not 
performed due to lack of global information. It is important 
to know the instant at which the obstacle has been avoided. 
To this aim, an appropriate algorithm is proposed.  

 

A. Obstacle Avoided Detection 
This algorithm requires to know the present robot position 

(x,y), the desired final position (xREF,yREF) and the position 
(x000,y000)/(x180,y180) of the laser beam at 0º/180º that 
indicates the position at the right/left side of the robot. These 
points can be appreciated in Fig.9. Then the problem is 
divided into four quadrants depending on the relation 
between the actual and the final points. A flag variable 
OBSTpassed is defined; the value TRUE for this variable 
indicates that the obstacle was actually surpassed. As an 
example for the case in which xREF>x and yREF>y, see Fig.9, 
the algorithm is  
 

( ) ( ) ( ) ( )( ){
}trueOBSTACLE

yyANDxxANDyyANDxxif

falseOBSTACLE

passed

REFREF

passed

=
<<>>

=

000000
 (15) 

 

B. Right/Left robot side selection algorithm 
As the obstacle avoidance problem is treated by using a 

CF controller, it is important to detect the side of the robot 
that will avoid the obstacle. To this aim, the safety-zone 
defined by the laser range finder is employed, in such a way 
that, analyzing the obstacle invasion according to Fig.10, it is 
decided if the robot will avoid the obstacle to its left or to its 
right side. For brevity this algorithm is not explained in 
detail, but an intuitive approach can be seen in Fig.10. 

C. Block diagram 
The block diagram of the control system is as depicted in 

Fig.11, the switching signal is σ, whereas σ=0 the robot is 
approaching the goal point using the parking controller of 
Section III.C and will only switch to the CF controller if an 
obstacle is detected. The CF controller allows the robot to 
follow the discontinuous contour of the obstacle at a desired 
constant distance. 

 

D. Stability Analysis 
In order to prove asymptotic stability of this switching 

control system a Multiple Lyapunov Functions (MLF) [12] 
based approach is considered by associating a Lyapunov 
function to each controller (one for the parking and other for 
the CF) and designing a logic that guarantees that the 
sequence of values for these functions is decreasing.  

 
Fig.9. Obstacle avoided detection example for the III quadrant 
(taking xREF,yREf as the origin of the Cartesian coordinate plane 
and x,y of the robot as a point in space with some displacement 
from the origin) and for the robot following an obstacle (here with 
oval shape) at its right side. Black robots indicate the zone where 
the obstacle was avoided and the grey robots the zones where the 
obstacle was not yet avoided. Similar graphs can be constructed 
for the other quadrants and for the robot following the obstacle at 
its left side 

 
Fig.10. a) Invasion to the safety-zone is stronger at its left side and 
b) when the invasion is equal at both sides the selection depends 
on the positions of the goal-point. Finally, if the goal-point is just 
in front (through the obstacle) then the side to follow is randomly 
selected. Note that the robot heading is always in the goal direction 
 

Fig.11. Control system block diagram  

 
Fig.12. Supervisor logic 
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First, it is considered the following Lyapunov function, 
derived from (10) which indicates the achievement of the 
parking control objective 

 

2/2dVP = . (16) 
 

In order to guarantee a decreasing sequence for (16) it is 
considered a threshold (THR) value, which takes the value of 
(16) each time that an obstacle is detected. Then the CF 
controller is activated and the control will return to the 
parking controller only if the obstacle was avoided and the 
value of (16) is less than the THR value. Note that every 
time the parking controller is activated, it must recalculate 
the control actions considering the actual point as the initial 
point, i.e., the robot will head at the desired final point every 
time that it is switched to the parking controller. Second, 
some assumptions must be stated: i) the CF controller is 
asymptotically stable and has an associated Lyapunov 
function which indicates the robot-obstacle error. As this 
function converge asymptotically to zero when the CF 
controller is active, it is assumed that will be always 
decreasing and therefore its corresponding analysis is not 
included here; ii) another implicit assumption is that 
following the obstacle contour the value of (16) will be 
smaller. This is a strong hypothesis heavily dependent on the 
IV.A and IV.B algorithms performance. However, as can be 
seen in the experimental results presented in this paper, this 
analysis approach prove asymptotic stability in typical 
indoor settings, iii) finally, the completely unknown 
environment assumption must be relaxed, since the robot 
navigation capability depends directly on the dfront and dlat 
values (Fig.2). 

V. EXPERIMENTAL RESULTS 
The experiments were carried out using a Pioneer IIIDX 

mobile robot. In the first experiment (Fig.13), it can be seen 
how the obstacle is detected in <1> and the value of Vd is 
taken as the new threshold value. Next, in <2> the obstacle is 
avoided but the value of Vd is greater than the threshold, so 
the robot keeps following the obstacle until <3> where the 
value of Vd is less than the threshold and the system switches 
to the parking controller (securing that Vd will be decreasing 
due to the selected logic). 
 

Fig.13. Obstacle between the initial and the final point 

 
Fig.14. <1>: Obstacle detected; <2> Obstacle avoided; <3>: 
Switching to the parking controller 

 
Fig.15. Avoiding a trap situation 

 
Fig.16. <1>: obstacle detected; <2>: obstacle avoided with a Vd 
value smaller than the threshold (direct switching case) 

 
Fig.17. Large-scale experiment setting (20meters long)  
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Fig.18.<(1,3,5,7,9> obstacle detected; <2,4,6,8,10>: obstacle avoided. Right Picture: Decreasing Lyapunov function. 

 
Fig.19. Same experimental setting, but blocking the corridor: <1>: obstacle avoided; <2>: obstacle detected. 

 

In the experiment of Fig.17 the robot must arrive to the 
destination point crossing several doors and corridors. 
The result is depicted in Fig.18. Finally, the main corridor 
was blocked, forcing a trap situation in (Fig.19). 

VI. CONCLUSIONS 
In this paper, we have presented a switching controller 

that deals with the problem of positioning a mobile robot 
with final orientation by avoiding unknown obstacles. To 
this aim two complementary algorithms were proposed: 
one that allows the robot to detect when an obstacle was 
or not avoided; and another that selects the side to avoid 
the obstacle. The presented switching controllers have 
included the stability analysis at the switching instants. 
Finally, experimental results have shown the good 
performance of the control system in real situations. 
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