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Abstract— This paper reports the analytical development
and preliminary experimental evaluation of a class of exact
nonlinear full state model-based observers for underwater
vehicle navigation. This class of observers exploits exact
knowledge of the vehicle’s nonlinear dynamics, the forces
and moments acting on the vehicle, and disparate position
and velocity measurements. The reported observer is novel
in that it estimates the full state of the vehicle and employs
Lyapunov techniques to show stability. The performance of
the observer is evaluated using data from single degree-of-
freedom experiments with a laboratory remotely operated
vehicle. High-precision measurements from a 300kHz Long
Baseline (LBL) acoustic positioning systems serve as the basis
for evaluating the performance of the observer. Error in the
observer position estimate possesses a significantly lower stan-
dard deviation than measurements from 12kHz LBL systems
alone. The performance of the observer is compared to the
Extended Kalman Filter (EKF) and the error in the position
estimates of these two estimators found to be comparable.
These experiments are, to the best of our knowledge, the first
report of the experimental implementation of exact nonlinear
dynamic model-based observers and their comparison to
EKFs for underwater vehicle navigation.

Index Terms— Nonlinear Estimation, Observers, Underwa-
ter Vehicles, Navigation, Dynamics

I. INTRODUCTION

This paper reports the analytical development and pre-

liminary experimental evaluation of a new class of model-

based nonlinear state observers (state estimators) for under-

water vehicle navigation. Most previously reported under-

water vehicle navigation observers have estimated vehicle

state (position and velocity) with sensor data and kinematic

plant models. The reported observer is novel because:

(i) it exploits knowledge of the vehicle’s exact nonlin-

ear dynamics; (ii) the observer estimates vehicle position

and velocity; (iii) stability of the observer is shown with

Lyapunov techniques and the Kalman-Yakubovich-Popov

(KYP) Lemma; and (iv) the performance of the observer is

experimentally evaluated and compared to the performance

of the Extended Kalman Filter (EKF).

The investigation of these observers is motivated by the

need to provide three-dimensional navigation of underwater

vehicles with a precision and update rate sufficient for

tasks such as closed-loop control. Signals from the global

positioning system (GPS) rapidly attenuate in water, and,
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traditionally, underwater vehicles have employed acoustic

time-of-flight navigation systems — i.e., [19]. Recent ad-

vances in sensor technology and algorithms has enabled

significant progress in underwater vehicle navigation and

the reader is referred to [30] for an extensive survey. While

these reported methodologies utilize navigation sensor data

and kinematic models of the vehicle state dynamics, most

do not employ knowledge of the vehicle’s plant and actuator

dynamics. The analytical development and implementation

of dynamic model-based nonlinear observers promises to

improve underwater navigation, and, in consequence, fur-

ther increase the capabilities of underwater vehicles.

The remainder of this paper is organized as follows:

Section II reviews previously reported work in nonlinear

observers and the application of nonlinear observers to

underwater vehicle navigation. Section III reports a full

state observer for underwater vehicles with proof of asymp-

totic stability. Preliminary experimental evaluation of this

observer is reported in Section IV.

II. PREVIOUS RESULTS IN NONLINEAR OBSERVER

THEORY

The origins of nonlinear observer theory lies in

the development of deterministic linear observers by

Luenberger [36], [37]. The literature on linear observers is

extensive — the reader is referred to linear systems texts

[10], [42], [25] for an introduction to the field. While

Luenberger’s work focused on the development of linear,

deterministic observers, the work of Kalman and others

focused on the development of the optimal, stochastic,

linear observer. Kalman reported the first discrete-time

optimal unbiased minimum variance state estimator in

[26], and Kalman and Bucy extended this work to the

continuous case in [28]. The Kalman Filter (KF) has

been applied to nonlinear state estimation problems with

great success using techniques such as the EKF and the

unscented filter [24]. Numerous texts exist on Kalman

filtering — [6], [11], [46] provide an entry to this literature.

A. Stability

This section reviews previously reported work in the

field of nonlinear observer stability. A majority of the

existing literature on the stability of nonlinear systems can

be classified into four areas: (i) error linearization, (ii)
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Lyapunov techniques, (iii) frequency domain techniques,

and (iv) contraction mapping.

1) Error Linearization: Early work on the development

of nonlinear observers applies linear observer theory to

linearized nonlinear systems. Krener and Isidori report an

observer for single output nonlinear systems where the

nonlinear system can be transformed to a linear system via

a change of state variables and output rejection — the result

is an exactly linear observer error system [32]. Banaszuk

and Sluis extend this concept to nonlinear systems where

an exact linearizion is not possible by employing a least-

squares technique that results in an approximately linear

observer error system [5].

2) Lyapunov Techniques: A common technique for

showing the stability of nonlinear systems is Lyapunov’s

Second Method [38], and the closely related concept of

passivity. Tsinias addressed the nonlinear observer where

the nonlinearity is bounded and, provided the system sat-

isfied certain sufficiency conditions, proposed an observer

design that is a direct extension of the linear case [48].

Gautheir and colleagues construct an observer for systems

with globally Lipschitz nonlinear functions [16]. Besançon

and Hammouri report an observer that is stable for a variety

of nonlinear inputs [8].

Results using passivity techniques for showing the stabil-

ity of nonlinear observers have been reported by numerous

authors. Berghuis and Nijmeijer propose using a passivity

approach to design a nonlinear controller-observer in [7].

Shim and colleagues use output feedback passification

of the error dynamics to construct a nonlinear observer

[43]. Strand and Fossen use passivity methods to analyze

nonlinear observers for the dynamic positioning of surface

vessels [15].

3) Frequency Domain Techniques: Arcak and Kokotović

proposed using the circle criterion to design observers

with monotone sector nonlinearities [2] and, using Popov

criteria, they develop an extended circle criterion in [3].

[1] investigates using observers designed with the circle

criterion in output-feedback control and develops a mod-

ified circle criterion observer that ensures global asymp-

totic stability for certainty-equivalence controllers. Fan and

Arcak report the design of globally convergent observers

for a class of multi-variable nonlinear systems in [13].

[39] presents a new stability condition that exploits the

state-dependent proprieties of observers, thus eliminating

exogenous disturbances in the system.

4) Contraction Mapping: Lohmiller and Slotine intro-

duced contraction mapping as a tool for proving the stabil-

ity of nonlinear systems [34]. They reported the application

of this technique to nonlinear observers in [35]. This

technique has been applied to the analytical development of

observers for problems such as inertial navigation [51] and

dynamic positioning of surface vessels [47]. Recent work

by Jouffroy provides sufficiency conditions under which the

negative definite condition on the Jacobian may be relaxed

such that the maximum eigenvalue of the Jacobian may

be positive semi-definite [21]. Jouffroy discusses issues

related to the real-time implementation of diffusion-based

trajectory observers in [22].

B. Experimental Evaluation of Exact Nonlinear Observers

Numerous papers report analytical and numerical results

for nonlinear observers, however papers reporting actual

experimental results are rare. Fossen and Strand imple-

mented the nonlinear observer reported in [15] to estimate

the position of an ocean going vessel. The development

and experimental evaluation of a nonlinear observer for

estimating material damage is reported in [9], [12]. [29]

reports experimental results for fault detection in electro-

hydraulic positioning systems using a nonlinear observer.

Görgün and colleagues report the implementation of a

nonlinear observer for estimating membrane water content

in fuel cells in [17]. Jouffroy reports the implementation of

diffusion-based trajectory observers on data collected with

a field deployed remotely operated vehicle (ROV) in [23],

[22].

C. Application of State Estimators in Underwater Vehicle

Navigation

To date, the development and implementation of model-

based state estimators for underwater vehicle navigation has

primarily focused on applying the KF or EKF to a kine-

matic model. Additional work has investigated using Si-

multaneous Localization and Mapping (SLAM), trajectory-

based observers [23], or dynamic model-based Kalman

Filters [20]. Ribas and colleagues report the experimental

implementation of a dynamic model-based EKF in [41]. An

extended discussion on the application of state estimators

to underwater vehicle navigation is presented in [30].
The analytical development of a nonlinear underwater

vehicle velocity observer has been previously reported by

Lohmiller and Slotine in [34] using contraction mapping

to show stability. In [40], Refsnes and colleagues report

the analytical development of an exact dynamic model-

based observer based on the underwater vehicle model

presented in [14]. The observer reported herein differs

from these previously reported results in that it employs an

experimentally evaluated vehicle model, whose parameters

can be adaptively identified, to estimate the full state of the

vehicle. It is, to the best of our knowledge, the first reported

experimental implementation of an exact dynamic model-

based nonlinear observer for underwater vehicle navigation.

III. THE FULL STATE OBSERVER

This section reports an exact nonlinear observer for

estimating the state of a underwater vehicle. These observer

incorporates (i) exact nonlinear models of the vehicle’s

dynamics; (ii) plant output data from disparate position and

velocity sensors; and (iii) actuator forces and moments act-

ing on the vehicle. We employ the experimentally validated

decoupled underwater vehicle model reported in [45].
Plant: Employing the single degree-of-freedom (DOF)

underwater vehicle plant reported in [45]
[

ẋ(t)
ẍ(t)

]

︸ ︷︷ ︸

ẋ(t)

=

[
0 1
0 µ

]

︸ ︷︷ ︸

A

[
x(t)
ẋ(t)

]

︸ ︷︷ ︸

x(t)

+

[
0
β

]

︸ ︷︷ ︸

β

ẋ(t)|ẋ(t)| +

[
0
α

]

︸ ︷︷ ︸

α

τ(t) +

[
0
ν

]

︸ ︷︷ ︸

ν

(1)
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Where {α, β, µ, ν} ∈ R
1 are lumped parameters, τ(t) is

the scalar plant input (i.e., forces and moments generated

by thrusters), and x(t), ẋ(t), and ẍ(t) are the scalar vehicle

position, velocity, and acceleration, respectively. Note that

α and β are negative. Writing (1) in matrix-vector form we

obtain

ẋ(t) = Ax(t) + βẋ(t)|ẋ(t)| + ατ(t) + ν. (2)

Measured Output: The measured output, w(t), for this

observer consists of measurements for both position and

velocity.

w(t) = Cx(t) (3)

where C is the output map. Note that for C ∈ R
2x1 or

C ∈ R
2×2, the resulting output would be w(t) ∈ R

1 or

w(t) ∈ R
2x1, respectively.

Estimated State: Define x̂(t) to be the estimate of x(t).
˙̂x(t) is the derivative with respect to time of x̂(t).

Estimated Output: Define ŵ(t) to be the estimated

output

ŵ(t) = Cx̂(t) (4)

Depending on the output map, ŵ(t) ∈ R
1 or ŵ(t) ∈ R

2x1.

Task: Given the plant parameters {α, β, µ, ν}, the input

τ(t), and full state output w(t), our goal is to construct a

state estimate x̂(t) that converges asymptotically to x(t) as

time approaches infinity, i.e., limt→∞x̂(t) = x(t).
State Error: The state error is defined as:

1) The error between the state estimate, x̂(t), and the

actual state, x(t):

∆x(t) = x̂(t) − x(t). (5)

2) The derivative of ∆x(t) with respect to time:

∆ẋ(t) = ˙̂x(t) − ẋ(t)

=

[
x̂(t) − x(t)
˙̂x(t) − ẋ(t)

]

. (6)

3) The difference between the scalar estimated quadratic

drag and the scalar actual quadratic drag:

∆ẋq(t) = ˙̂x(t)| ˙̂x(t)| − ẋ(t)|ẋ(t)|. (7)

Let ∆ẋ(t) = ˙̂x(t) − ẋ(t). Notice that when ˙̂x(t) >
ẋ(t), ∆ẋ(t) > 0 which results in ∆ẋ(t)∆ẋq(t) > 0.

Similarly, if ˙̂x(t) < ẋ(t), ∆ẋ(t) < 0 which results

in ∆ẋ(t)∆ẋq(t) > 0. Consequently, ∆ẋ(t)∆ẋq(t) is

sign definite.

Output Error: We define the output error as

∆w(t) = ŵ(t) − w(t) (8)

Observer: Consider the following observer:

˙̂x(t) = Ax̂(t)+β ˙̂x(t)| ˙̂x(t)|+ατ(t)+LC∆x(t)+ν (9)

where L is a gain matrix of appropriate dimensionality.

System: Substituting the observer and the plant into the

time derivative of the state error results in the system.

∆ẋ(t) = (A + LC)∆x(t) + β∆ẋq(t) (10)

Defining Ã = A + LC and

ζ =
[

0 −1
]

(11)

we obtain the error system,

∆ẋ(t) = Ã∆x(t) + β∆ẋq(t)

ϑ = ζ∆x(t). (12)

The quadratic drag, ∆ẋq(t), is the input to the error

system, and the velocity error, ∆ẋ(t) is the output.

Stability: Consider the Lyapunov function candidate

φ(t) =
1

2
∆x(t)T P∆x(t) (13)

where P ∈ R
2×2 is a positive definite symmetric matrix.

Differentiating with respect to time yields,

φ̇(t) =
1

2

(
∆ẋ(t)T P∆x(t) + ∆x(t)T P∆ẋ(t)

)
. (14)

Substituting in the system (12) yields

φ̇(t) =
1

2

(

∆x(t)T
(

ÃT P + PÃ
)

∆x(t)
)

+

Pβ∆x(t)∆ẋq(t). (15)

If the error system satisfies the Kalman-Yakubovich-

Popov (KYP) Lemma [50], [27], [33], then there exists a

P such that

ÃT P + PÃ = −Q̃

Pβ = ζT (16)

where Q̃ ∈ R
2×2 is a symmetric, positive definite matrix.

Substituting these identities into (15) results in the negative

definite function

φ̇(t) = −
1

2

(

∆x(t)T Q̃∆x(t)
)

− ∆ẋ(t)∆ẋq(t)

< 0. (17)

The proposed Lyapunov function φ(t) satisfies

the following criteria: (i) φ(t) is continuously

differentiable; (ii) when ∆x(t) = 0, φ(t) = 0; (iii)
∀∆x(t) �= 0, φ(t) > 0; (iv) φ(t) is radially unbounded;

and (v) ∀∆x(t) �= 0, φ̇(t) < 0. Thus the error system

is globally asymptotically stable, and the state estimate,

x̂(t), converges to the state, x(t), as t → ∞.

IV. EXPERIMENTAL EVALUATION

The reported observer was experimentally implemented

and evaluated with data obtained with the JHUROV, a

laboratory ROV designed for underwater vehicle research.

Position was measured using a 300kHz acoustic time-of-

flight positioning system possessing sub-centimeter pre-

cision [31]. A RDI Doppler sonar measured velocity at

0.03% precision and attitude was sensed with an Ixsea

Phins North-seeking gyrocompass. The reader is referred

to [44], [31] for an extended exposition of the JHUROV

and its sensor suite.

Since we utilize a decoupled model for the underwater

vehicle dynamics, the vehicle trajectories were commanded
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TABLE I

ESTIMATED VEHICLE PARAMETERS

Experiment α β µ ν

1/kg 1/m 1/s m/s2

EXPT098 1.709e−3 -6.118e−1 -1.532e−1 -2.175e−3

EXPT099 1.371e−3 -4.383e−1 -1.150e−1 -2.072e−3

along a single degree-of-freedom (DOF). The two experi-

ments conducted employed sinusoidal trajectories in the X

DOF. The first experiment, EXPT098, had an amplitude of

1 meter and a frequency of 0.25Hz. The second experiment,

EXPT099, had an amplitude of 1.4 meter and a frequency

of 0.15Hz. The duration of each experiment was 30 min-

utes. For each experiment, the vehicle model parameters

were estimated using the adaptive identifier reported in

[45]. Table I shows the estimated parameters used by the

observer.

A. Methodology of Nonlinear Observer Evaluation

The data collected from these experiments was post-

processed in Matlab. Implementing the nonlinear observer

requires 300kHz Long Baseline (LBL) position measure-

ment data, the vehicle velocity data measured by the

1200kHz Doppler sonar, the vehicle attitude data as mea-

sured by the Phins inertial measurement unit (IMU), and

thrust input data. Thrust was quantified using a static thrust

model (i.e., thrust is proportional to the command current).

More precise thrust models are available (e.g., [4], [18]),

however the necessary dynamic thruster characterization

was unavailable at the time of these experiments.

The sub-centimeter precision of the 300kHz LBL po-

sition measurements is superior to the precision of 12kHz

systems typically used in at-sea operations [49]. To simulate

the noise characteristics of 12kHz LBL systems, random

noise with a Gaussian distribution and a standard deviation

of 0.25 meters was added to the 300kHz position mea-

surements. The 0.25 meter standard deviation was chosen

based on data collected with 12kHz and 300kHz LBL

systems during an at-sea experiment [49]. We consider the

simulated 12kHz LBL signal to be the measured value and

the 300kHz position measurements to be the ground truth.

The 300kHz position measurements serve as the basis for

comparing the performance of the nonlinear estimators.

The position of the underwater vehicle is estimated with

the following two nonlinear estimators:

1) NLO - The exact nonlinear observer (NLO) reported

in Section III.

2) EKF - The Extended Kalman Filter (EKF), a version

of the Kalman Filter that linearizes the plant and then

uses the Kalman Filter to estimate the position [6],

[11], [46]. The implementation of the EKF on these

data sets is discussed in Section IV-C.

The NLO was implemented using the ODE45 numerical

solver in Matlab. The logged times of the thrust and LBL

data were used as the time vector used by ODE45. At

every time interval, ODE45 used the most recent thrust and

velocity measurements to compute the estimated velocity.

Since position was sampled at a lower update rate of 1Hz,

ODE45 only updated the position measurement and posi-

tion estimate when it received a new position measurement

— i.e. the position innovation was updated only when

new position measurements were received. At present, there

exist no general results for analytically selecting the optimal

gains of nonlinear systems. This contrasts linear systems

where techniques such as Linear Quadratic Regulation

(LQR), Linear Quadratic Gaussian Regulation (LQGR), and

the Kalman Filter can be employed to select the optimal

gain. Consequently, a numerical simulation technique was

employed for gain selection.

After estimating the position of the vehicle, we compared

this estimated position and the 12kHz position measure-

ment to the position measured by the 300kHz LBL. The

result is the error in the estimated position and the 12kHz

position. The error is quantified by computing the mean and

the standard deviation of the error for the last half of the

experiment. Figure 1 shows the histograms for Experiment

098 (EXPT098) and Experiment 099 (EXPT099).

B. Nonlinear Observer Performance

The “Nonlinear Observer” columns of Table II show the

means and standard deviations (sigmas) of the NLO posi-

tion estimates. Compared to the 12kHz LBL measurements,

the standard deviations of the NLO position estimates are

significantly lower. The means of the position error for the

NLO estimates range from 0.004670 meters to 0.015371

meters — higher than the means for the 12kHz LBL

measurements. This is reasonable given that the reported

derivation of the NLO makes no assertion to providing an

estimate resulting in zero-mean error. Histograms of the

12kHz LBL and NLO position errors for EXPT098 and

EXPT099 are shown in Figure 1. Despite the increase in

the mean error, the significant decrease in the standard devi-

ations demonstrates the NLO’s ability to provide position

estimates with a superior precision than those of 12kHz

LBL measurements alone.

C. Comparison to the Extended Kalman Filter

This section compares the performance of the NLO

position estimate to the estimate computed by the Ex-

tended Kalman Filter (EKF). Since its inception in the

early 1960’s, the EKF has been used in a wide variety

of nonlinear estimation applications with great success [6],

[11], [46], including underwater vehicles [41]. Numerous

other nonlinear estimators (e.g. particle filters, unscented

filters, etc) have been reported, however the simplicity

of the EKF makes it a logical choice for comparing the

performance of the NLO.

The EKF used the underwater vehicle model (1) reported

in [45] and the vehicle parameters identified in Table I. The

variance of the measurement noise was 0.25 meters and

the variance of the velocity measurement was 0.003 meters

per second. The process noise was heuristically estimated

to be 0.0005 m/s2. The EKF estimated the velocity of the

vehicle at every occurrence of either a position or a ve-

locity measurement, and used the most recent thrust value.

Given the long intervals between position measurements,
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TABLE II

MEANS AND STANDARD DEVIATIONS OF THE POSITION ERRORS FOR THE 12KHZ LBL MEASUREMENTS, THE NONLINEAR OBSERVER POSITION

ESTIMATE, AND THE EXTENDED KALMAN FILTER POSITION ESTIMATE.

12kHz LBL Nonlinear Observer Extended Kalman Filter
EXPT Mean Sigma Mean Sigma Mean Sigma

meters meters meters meters meters meters

EXPT098 0.006030 0.246136 0.015371 0.062560 0.005237 0.083186
EXPT098 0.005368 0.240783 0.004670 0.049435 0.001028 0.055849

the position estimate was updated only when a position

measurement was received.

The EKF estimated the position of the vehicle for both

experiments. The “Extended Kalman Filter” columns of

Table II show the means and standard deviations (sigmas)

of the position error for the EKF. Error histograms for the

EKF are shown in Figure 1. The EKF means are lower

than the NLO means — this is reasonable given that the

Kalman Filter computes a state estimate with zero-mean

error. The NLO provides estimates with standard deviations

lower than those provided by the EKF.

V. CONCLUSIONS

This paper reports the development of an exact nonlin-

ear dynamic model-based observer for underwater vehicle

navigation. The reported observer is novel because: (i) it ex-

ploits knowledge of the vehicle’s exact nonlinear dynamics;

(ii) the observer estimates vehicle position and velocity;

(iii) stability of the observer is shown with Lyapunov

techniques and the KYP Lemma; and (iv) the performance

of the observer is experimentally evaluated with data from

a laboratory ROV. From the experimental data we con-

clude that the error in the observer position estimate is

significantly lower than the error of position measurements

from a 12kHz LBL acoustic positioning system alone.

The performance of the observer is compared to the EKF

and the experimental data demonstrates that the observer

and EKF perform comparably. The reported experimental

results are, to the best of our knowledge, the first known

implementation of an exact NLO for underwater vehicle

navigation. These experiments demonstrate the ability of

exact NLOs to provide improved state estimation, and

further research in multiple DOF parameter identification

and state estimation techniques will enable us to employ

these techniques in at-sea vehicles. The continued analytical

development and implementation of dynamic model-based

nonlinear observers promises to improve underwater navi-

gation, and, in consequence, further increase the capabilities

of underwater vehicles.
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as tools for nonlinear feedback design,” Automatica, vol. 39, no. 4,
pp. 643–650, Apr. 2003.

[4] R. Bachmayer, L. L. Whitcomb, and M. Grosenbaugh, “An accu-
rate four-quadrant nonlinear dynamical model for marine thrusters:
Theory and experimental validation,” IEEE Journal of Oceanic
Engineering, vol. 25, no. 1, pp. 146–159, January 2000.

[5] A. Banaszuk and W. Sluis, “On nonlinear observers with approx-
imately linear error dynamics,” in Proceedings of the American
Control Conference, 1997.

[6] Y. Bar-Shalom, A. Rong Li, and T. Kirubarajan, Estimation with
Application to Tracking and Navigation, Wiley InterScience, 2001.

[7] H. Berghuis and H. Nijmeijer, “A passivity approach to controller-
observability design for robots,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 6, pp. 740–754, December 1993.
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