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Abstract— Increasing the field of view of camera is an
important issue practical in robot vision. One solution is to
consider catadioptric camera that allows a 360o field of view.
In this paper we propose a 3D model tracking algorithm that
allows a fast and reliable tracking of 3D objects within central
catadioptric images. The proposed approach relies on the
virtual visual servoing approach. All the modeling aspects have
been reconsidered to consider the projection model. Results
show the method to be robust and efficient.

I. INTRODUCTION

Increasing the field of view of camera is an important

issue in robot vision. Omnidirectional cameras have been

recently widely studied in the literature. One solution to build

such systems is to combine a mirror with a classical camera.

Such systems are called catadioptric cameras. When a single

projection center is sufficient to describe the projection

in the image plane, these systems are referred as central

catadioptric cameras.

Theoretical aspects of central catadioptric images are now

well known [2], [12], and a lot of works have been done

in the structure from motion area [13] and more recently

in visual servoing [19]. Nevertheless few researches have

been done to solve visual tracking problem which is a

fundamental issue for the development of visual systems that

consider such images. In [18] an SSD-based tracker allows

the tracking of planar structure using an efficient second

order minimization method. Closer to our problem is [3]

where a model-based tracker based on a global non-linear

minimization is presented. Although the goal is very similar,

the modeling of the cost function as well as the minimization

issue that we consider in this paper are different. In this paper

we present a 3D model-based tracking, relying on the virtual

visual servoing framework [5], [6]. Assuming small camera

motions between two frames, tracking is reduced to a 3D

camera localization problem.

When dealing with 3D camera localization or pose compu-

tation, most of the approaches proposed in the literature rely

on a 3D registration issue. Considering perspective projection

full-scale non-linear optimization techniques (e.g., [16], [7],

[5], [6]) which consists of minimizing the error between

the observation and the forward-projection of the model

have proved to be very efficient. In this case, minimization

is handled using numerical iterative algorithms such as

Newton-Raphson or Levenberg-Marquardt [16]. These 2D-

3D registration techniques rely on the use of a 3D model

of the tracked objects. Considering catadioptric camera,
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similar approaches can be considered [3]. Nevertheless, a

new projection model has to be considered which implies

the definition of new visual features and of new Jacobians

to be used in the minimization approach.

In this paper, we first recall the virtual visual servoing

approach in Section II. We then present in Section III the

visual features used in the minimization process and we

determine the analytical form of the corresponding Jacobian.

In Section IV we describe the low level image processing

method used in our tracker. Finally, experimental results are

presented in Section V.

II. OVERVIEW OF THE TRACKING ALGORITHM

The fundamental principle of the virtual visual servoing

approach [6] is to define the pose computation problem as

the dual problem of 2D visual servoing [8], [15]. In visual

servoing, the goal is to move a camera in order to observe

an object at a given position in the image.

To illustrate the principle, consider the case of an object

with various 3D features oP (for instance, oP are the 3D

coordinates of some object points in the object frame). A

virtual camera is defined, with same intrinsic parameters as

the real camera and whose pose in the object frame is defined

by the homogeneous matrix cMo. The approach consists of

estimating the real pose by minimizing the error ∆ between

the observed data s∗ (the position of a set of features in the

image) and the position s of the same features computed by

forward-projection according to the current pose:

∆ =

k∑

i=1

(
prξ(

cMo,
o Pi) − s∗i

)2
, (1)

where prξ() is the projection model according to the camera

intrinsic parameters ξ and where k is the number of con-

sidered features. Usually prξ() is the perspective projection

model [16], [7], [6] but any kind of projection model such

as a projection model suitable for catadioptric cameras, can

be considered as will be shown in the next section. We will

see that all the modeling issue of the tracking have thus to

be rewritten.

The virtual camera initially at c0Mo is then moved using a

visual servoing control law in order to minimise the error ∆.

At convergence, the virtual camera reaches the pose c∗Mo

which corresponds the real camera’s pose (see Figure 1).

An important assumption is to consider that s∗ is com-

puted from the image with sufficient precision. When outliers

are present in the measures, a robust estimation is required.

M-estimators can be considered as a general form of maxi-

mum likelihood estimators [14]. Many functions have been
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Fig. 1. Virtual visual servoing principle

proposed in the literature which allow uncertain measures

to be less likely considered and in some cases completely

rejected. In other words, the objective function is modified

to reduce the sensitivity to outliers. The robust optimisation

problem is then given by

∆R =

k∑

i=1

ρ
(
si(r) − s∗i

)
, (2)

where ρ(u) is a robust function [14] that grows sub-

quadratically and is monotonically non-decreasing with in-

creasing |u|. Iteratively Re-weighted Least Squares (IRLS) is

a common method of applying the M-estimator. It converts

the M-estimation problem into an equivalent weighted least-

squares problem. Thus, the error to be regulated to 0 is

defined as

e = D(s(r) − s∗), (3)

where D is a diagonal weighting matrix given by D =
diag(w1, . . . , wk). Each element of D is a weight which is

given to specify the confidence in each feature location. The

computation of weights wi is described in [6].

A simple control law that allows to move a virtual camera

can be designed to try to ensure an exponential decoupled

decrease of e. It is given by [6]:

v = −λ(D̂L̂s)
+D

(
s(r) − s∗

)
, (4)

where v is the virtual camera velocity (v = (v,ω) where v

is the instantaneous linear velocity and ω is the instantaneous

angular camera velocity), Ls is called the interaction matrix

and links the motion of the feature in the image to the camera

velocity (ṡ = Lsv) and λ is a gain that tunes the convergence

rate.

The choice of s (and thus of Ls) is a key point of this

algorithm and is now described in details.

III. MODELING ISSUES FOR CATADIOPTRIC CAMERAS

A. Projection models

A unified projection model for central panoramic systems

has been proposed by Geyer and Daniilidis [11]. According

to this model such cameras can be modeled by a first

projection on a sphere with coordinates (0, 0, ξ) followed

by a perspective projection on the image plane (see Figure

2). Such a model can be defined using parameter ξ which

depends intrinsically of the mirror parameters used in the

catadioptric camera.

Assuming that sensor intrinsic parameters are known,

point X = (X,Y,Z) projects in the image plane as x =
(x, y, 1) such that:

x = f(X) with

{
x = X

Z+ξ
√

X2+Y 2+Z2

y = Y

Z+ξ
√

X2+Y 2+Z2

(5)

ξ

Image plane

x = (x, y, 1)

X = (X, Y, Z)

M

z

xC

Fig. 2. Generic projection model as defined in [11]

B. Choice of the visual features

In this paper we assume that the 3D model of the object is

made of 3D lines. Therefore, following our previous work [6]

we consider as visual features the distance between a point p

(extracted from the image, see Section IV) and the projection

of this line, (that is an ellipse e(r)) for a given pose .

Therefore in our case vector s(r) will defined by:

s(r) =




...

si(r)
...


 with si(r) = da(x, e(r)) (6)

where da(.) defines the algebraic distance between point x

and the projection e(r) of the 3D line (see Section III-E).

In this paper we have chosen to represent a 3D line as

the intersection of two planes. We will show how this line

projects in the image according to the projection model (5)

and how to compute the interaction matrix related to the

projection of a 3D line, and then to the considered distance.

In [3] a distance between a point projected on the normal of

the contour is considered (as in [7] in the perspective case).

This leads to a different modeling of the visual feature and

of its interaction matrix.
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Let us note that other representations of 3D lines exist

and can also be considered in this framework. For example

Andreff et al. [1] considered a Pluckerian representation of

3D lines and computed the related interaction matrix for

classical perspective cameras. This work has been extended

in [19] to the case of a catadioptric camera. This Pluckerian

representation of 3D line can be easily used as an alternative

to the method presented in this paper.

C. Projection of a 3D straight line

A 3D straight line can be represented as the intersection

of two 3D planes given by:

P1 : A1X + B1Y + C1(Z − ξ) = 0 (7)

P2 : A2X + B2Y + C2Z + D2 = 0

where the 3D parameters are constrained by:





A2
1 + B2

1 + C2
1 = 1

A2
2 + B2

2 + C2
2 = 1

A1A2 + B1B2 + C1C2 = 0
(8)

so that the two planes with unit normals N1 = (A1, B1, C1)
and N2 = (A2, B2, C2) are orthogonal.

According to the projection model defined by (5) the

projection of a straight line is nothing but the perspective

projection of a circle defined as the intersection between

plane P1 and the sphere S centered in (0, 0, ξ) with radius

1 (see Figure 2). This 3D circle is characterized by the

following system:

X2 + Y 2 + (Z − ξ)2 = 1 (9)

A1X + B1Y + C1(Z − ξ) = 0 (10)

Considering (9) we directly obtain from [8] the equation of

Image plane

C

P2

P1

Q(x, y) = 0

(0, 0, ξ)

S

Fig. 3. Algebraic distance between a point and an ellipse

the perspective projection of this circle in the image plane

(that is an ellipse) defined by:

K0x
2 + K1y

2 + 2K2xy + 2K3x + 2K4y + K5 = 0 (11)

with





K0 = 1 +
A2

1

C2

1
ξ2

(ξ2 − 1) K1 = 1 +
B2

1

C2

1
ξ2

(ξ2 − 1)

K2 = A1B1

C2

1
ξ2

(ξ2 − 1) K3 = − A1

C1ξ2

K4 = − B1

C1ξ2 K5 = − 1
ξ2

(12)

To obtain a minimal representation, let us define ai =
Ki/K5, i = 0 . . . 4, we have then an ellipse defined by:

Q(x, y) = a0x
2 + a1y

2 + 2a2xy + 2a3x + 2a4y + 1 (13)

with





a0 =
A2

1

C2

1

(1 − ξ2) − ξ2 a1 =
B2

1

C2

1

(1 − ξ2) − ξ2

a2 = A1B1

C2

1

(1 − ξ2) a3 = A1

C1

a4 = B1

C1

(14)

D. Interaction matrix

Let us now compute the interaction matrix related to

parameters ai. It is possible to rewrite a0, a1 and a2 using

a3 and a4 




a0 = a2
3(1 − ξ2) − ξ2

a1 = a2
4(1 − ξ2) − ξ2

a2 = a3a4(1 − ξ2)
(15)

Leading to





ȧ0 = 2a3(1 − ξ2)ȧ3

ȧ1 = 2a4(1 − ξ2)ȧ4

ȧ2 = (1 − ξ2)(a3ȧ4 + a4ȧ3)
(16)

To obtain the interaction matrix Lai
for ai, i = 0 . . . 4, we

thus need to determine La3
La4

. Considering equation (14)

we have
{

ȧ3 = Ȧ1

C1

− A1

C2

1

Ċ1 = Ȧ1

C1

− a3
Ċ1

C1

ȧ4 = Ḃ1

C1

− B1

C2

1

Ċ1 = Ḃ1

C1

− a4
Ċ1

C1

(17)

It is then necessary to use Ṅ1 = (Ȧ1, Ḃ1, Ċ1). The time

variation Ṅ1 is given by [9][1]:

Ṅ1 = −
1

D2
N1N

⊤
2 v − N1 × ω (18)

leading to:

LA1
=

[
−A1A −B1A −C1A 0 −C1 B1

]

LB1
=

[
−A1B −B1B −C1B C1 0 −A1

]

LC1
=

[
−A1C −B1C −C1C −B1 A1 0

]

(19)

with

A = −
A2

D2
, B = −

B2

D2
, C = −

C2

D2

Plugging (19) in (17) then using (14), we easily obtain:

La3
=

[
αa3 αa4 α a3a4 −1 − a2

3 a4

]
(20)

La4
=

[
βa3 βa4 β 1 + a2

4 −a3a4 −a3

]
(21)
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with α = A − Ca3 and β = B − Ca4.

Considering (20) and (21) in (16) allows us to deduce the

interaction related to a0, a1 and a2 since we have of course:

La0
= 2a3(1 − ξ2)La3

(22)

La1
= 2a4(1 − ξ2)La4

(23)

La2
= (1 − ξ2)(a3La4

+ a4La3
) (24)

E. Distance between a point and the projection of a 3D line

There exist various ways to define the distance between a

point and an ellipse (ie, here the projection of a 3D line) [20],

[10]. In this paper we decide to use the algebraic distance

(see Figure 4). Considering a point (x, y), the algebraic

distance between this point and an ellipse of equation (13)

is given by:

da = Q(x, y) (25)

x

(x, y)da

Q(x, y) = 0

O

y

Fig. 4. Algebraic distance between a point and an ellipse

It is then possible to compute the interaction matrix Ld

related to this distance. Considering the time derivative

of (25):

ḋa = ȧ0x
2 + ȧ1y

2 + 2ȧ2xy + 2ȧ3x + 2ȧ4y

we obtain immediately:

Lda
=




x2

y2

2xy
2x
2y




⊤ 


La0

La1

La2

La3

La4




IV. LOW LEVEL IMAGE PROCESSING

When dealing with low-level image processing, the con-

tours are sampled at a regular distance. At these sample

points a 1 dimensional search is performed to the normal of

the contour for corresponding edges. An oriented gradient

mask [4] is used to detect the presence of a similar contour.

One of the advantages of this method is that it only searches

for edges which are aligned in the same direction as the

parent contour. An array of 180 masks is generated off-line

which is indexed according to the contour angle. This is

therefore implemented with convolution efficiency, and leads

to real-time performance.

More precisely, the process consists of searching for the

corresponding point pt+1 in image It+1 for each point pt

(see Figure 5). A 1D search interval {Qj , j ∈ [−J, J ]} is

determined in the direction δ of the normal to the contour.

(a) (b)

p
t

δ

e(r(t))
e(r(t))

Q2

Q∗

j = pt+1

Q−1

Q1

Q0 = pt

Fig. 5. Determining points position in the next image using the moving
edge algorithm: (a) calculating the normal at sample points, (b) sampling
along the normal and searching new similar contour.

For each point P t
i in the list Lt, and for every integer position

Qj , we compute a criterion corresponding to the square

root of a log-likelihood ratio ζj [4]. The latter is nothing

but the absolute sum of the convolution values, computed

at pt and Qj respectively in images It and It+1, using a

pre-determined mask Mδ function of the orientation of the

contour. Then the new position pt+1 is given by:

Q∗
j = arg max

j∈[−J,J]
ζj with ζj =| It

ν(pt) ∗ Mδ + It+1
ν(Qj)

∗ Mδ |

(26)

ν(.) is the neighborhood of the considered pixel. In this paper

the neighborhood is limited to a 7 × 7 pixel mask. That is

a trade-off made between real-time performance and mask

size. Likewise there is a trade-off to be made between the

search distance and real-time performance while considering

the maximum inter-frame movement of the object. Currently,

this search distance has been set to 10 pixels.

This low level search produces a list of k points which

are used to calculate the distances defined in (25) and used

in (6) and (13).

V. EXPERIMENTAL RESULTS

The algorithm was tested on real data acquired using

two different catadioptric cameras. Two objects were also

considered: a box and a set of two plinths. Real images and

sensor calibration used to obtain our experimental results

are courtesy of the Lasmea. The whole system has been

implemented using the ViSP software [17]. Computation

time is 100ms for each frame using a 2.6 Ghz PC.

A. Tracking handheld box

In the first experiments a box has been considered. Al-

though the object is quite simple, the object moves very

fast which implies very large inter-frame motion as can

be seen on the video (see Section V-C). Let us note that

despite faces appearance and disappearance (eg, on Figure 6a

and 6d or on Figure 7a and 7b), partial occlusions of the

object and large contour ambiguity (see Figure 7d) tracking

is achieved successfully. The robust minimization based on

the M-estimation considered in section II is one of the key

of the success of the tracking for these difficult sequences.

Without robust estimation (as considered in [3], that if D = I
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in equation (4)) tracking failed almost immediately due to the

issues mentioned above.

a b

c d

Fig. 6. Tracking a moving box: results on a first sequence

B. Tracking plinths

In this experiment the considered object is composed

by two orthogonal plinths and is made with 7 segments.

In the image sequence, the sensor, initially static is then

handled and moves in various directions (with translations

and rotations) and is then finally put back down. Let us note

that this is a very long sequence with more than 800 images.

The goal is to use such a tracker within a visual servoing

system such as [19]. Indeed robust structure tracking is

usually one of the key of the success of such navigation

systems. In this experiment, despite large and fast motion

of the camera tracking is successfully achieved along all the

sequence. Figure 8 shows the results of the image processing

algorithm. In blue the search line of the moving edge (ME)

algorithm is displayed while red points correspond to the

point x (found using the ME) used in equation (6). Yellow

parts of ellipses correspond to the projection of the 3D model

a b

c d

Fig. 7. Tracking a moving box: results on a second sequence

(e(r)) for the final estimated pose. Figure 9 shows height

images of the full sequence with the forward projection of

the 3D model.

Fig. 8. Tracking plinths: red points correspond to the points p extracted by
the ME algorithm along the normals to the previous 3D model projection
(in blue). Forward projection of the model for a given pose is displayed in
yellow.

C. Videos

Videos are available from the demo section in the Lagadic

web site http://www.irisa.fr/lagadic.

VI. CONCLUSIONS

We have presented in this paper a 3D model-based algo-

rithm suitable for central catadioptric images. It has proved to

be fast and reliable and can therefore be considered in various

robotics applications such as visual servoing. Let us note

that the parametrization used for the line is an interesting

alternative to the one proposed in [19] and can also be used

for visual servoing purpose.
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