
 

  
Abstract – This paper investigates the posture of a manipulator 

that has redundant DOF similar to human upper extremity. The 
human arm naturally takes a posture with no wandering 
although it has some redundant DOF. The authors consider that 
the posture will be determined task-oriented, which means that 
human unconsciously takes posture of his/her upper 
extremities, which is suitable for the task that the endpoint 
about to do.  This study also assumes that all or some joints are 
capable to adjust the joint stiffness so that the stiffness of the 
endpoint in the task space is also adjustable. Hence our study 
aims to establish the way to make the manipulator take a 
posture that provides a stiffness of the endpoint suitable for the 
task. The new control formula for shaping the manipulator’s 
posture to provide a desired stiffness of the endpoint is 
presented followed by the simulation study to verify it.  
 
Index Terms— Posture control, Stiffness, Non-linear elasticity, 
Stiffness ellipsoid, redundant manipulator 
 

I.  INTRODUCTION 
 It is easily found that some dexterous motions of human 
articulations owe to the capability of regulating the stiffness 
in accordance with a task that he/she is about to do. The 
skeleto-muscular system of human articulations is able to 
regulate its stiffness mechanically rather than by efferent 
command from the CNS using exteroceptive force feedback. 
The key mechanism for regulating the stiffness is the 
antagonistic structure of the musculo-skeletal system; one 
agonist and its antagonist muscles counteractively drive one 
articulation (see Fig.1).  Simultaneous stretching of both 
muscles provides high stiffness of the articulation and both 
relaxing gives us the low stiffness. It is notified that the 
non-linear elasticity of muscles is prerequisite for the 
agonist-antagonistic structure for regulating the stiffness. 
Some amount of displacement of joint angle requires a 
respectively small torque at the joint under the equilibrium 
state of low stretching of both muscles. On the other hand the 
equilibrium state under high stretching requires a 
respectively large torque to provide the same amount of angle 
displacement (see Fig.2). So the stiffness is regulated 
according to magnitude of stretching of both muscles. It is 
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obvious that linear elasticity does not provide such a stiffness 
change. A vast amount of physiological studies have 
elucidated skeletal muscles have the non-linear elasticity like 
it [1][2][3][4].  
 Some studies for investigating the stiffness of human arms 
elucidate that the stiffness ellipse of the arm’s endpoint is 
adjustable in its volume by stretching muscles [5], but its 
shape is roughly determined according to arm’s posture [6]. 
 Some studies in the field of robotics deal with the 
antagonistic control of joints [7][8][9][10][11][12] and 
pointed out the importance of the non-linear characteristics of 
the elastic elements to control the stiffness of the joint 
[9][10][11], but there have been few papers that propose the 
control method of stiffness in the practical point of view, 
although some theoretical approach for stiffness control 
provides valuable insights[11][13][14].  
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  The aim of this study is to control the stiffness of an 
anthropomorphic type manipulator’s endpoint under some 
following standpoints: 
(i) We assume all or some joints are capable to adjust the 
joint stiffness independent of adjusting the joint angle. The 
stiffness of the end point on the task space is composed by 
linearly mapping the joint stiffness to the task space at the 
endpoint. So it implies that we assume the stiffness of the 
endpoint is adjustable. 

As briefly introducing in the following section we have 
developed a new actuator unit called ANLES (actuator with 
non-linear elastic system) [20-23] that can be used as a sort 
of voluntary muscle. Therefore we are now progressing the 
plan to verify the control theory introduced in this paper by 
using the manipulator that has a musclo-skeletal system for 
each joint.  

(ii) The shape of the stiffness ellipsoid that visually shows 
the magnitude of the stiffness for all of the direction in the 
task space is roughly determined by the posture of the 
manipulator. 
As noted above the stiffness of the endpoint is a linear 
mapping of the joint stiffness by the manipulator’s Jacobian 
that is specified by the posture of the manipulator. However 
the shortage of the DOF of the manipulator confines the 
mapping domain (we need some extra DOF to specify the 
stiffness ellipsoid independently to the position and 
orientation of the endpoint [11]). It implies we have to seek 
a posture of the manipulator that provides a desired stiffness 
ellipsoid at the endpoint. 

 (iii) Human unconsciously takes the posture of his/her 
upper extremity, which is suitable for the task the endpoint 
(hand) is about to do. Since the human upper extremity has 
one or two redundant DOF, it has some freedom to choose a 
posture even the position of the endpoint is specified. 
Therefore we also assume an anthropomorphic type 
manipulator that has one redundant DOF and consider the 
control method for having the manipulator to take a posture 
that is suitable for the task in the above-mentioned meaning.   
 
This paper is organized as follows. 
In the subsequent section we briefly introduce the actuator 

unit (ANLES) that we have developed so far. It shows the 
joint stiffness can be regulated using ANLESes, basically a 
pair of ANLESes for one DOF in the antagonistic manner. 
In the third section we derive the control algorithm for 

regulating the arm’s posture that provides a desired stiffness 
of the endpoint. The fourth section is devoted to show the 
simulation analysis. In the last section some conclusive 
remarks are noted.      
 

II. THE MECHANICAL MODULE FOR THE JOINT ANGLE 
AND STIFFNESS CONTROL UNDER ANTAGONISTIC 

DRIVING 

Fig.3 Actuator with non-linear elastic system 

DC motor 

torsion spring 

guide shaft 
transmission cylinder 

F 
Fig.5  Model of the guide-shaft 

r (x)  

x 

L

R0

(a) Parts of the fabricated ANLES 

(b) Assembled view of the ANLES 
Fig.4 The fabricated ANLES 

torsion spring

guide shaft

DC motor

transmission cylinder

L 

FrD10.1

4504



 

In this chapter we briefly introduce the actuator module 
that can be used as a voluntary muscle, called ANLES 
(actuator with non-linear elastic system). Fundamentally a 
pair of ANLESes is used to control a single rotary joint in an 
antagonistic manner. The details of the design and the 
development please refer our recent papers [15-18]. 

A.  ANLES (type A) 
We have developed the two types of ANLES. The type A 

is used for controlling a single axis joint, in which a pair of 
ANLES drives one rotary joint.  

Fig.3 shows the structure of the actuator with non-linear 
elastic system (ANLES) of type A. Fig.4 also shows the parts 
and the assembled appearance. It consists of DC-motor, 
guide-shaft, torsion spring, and transmission board (pulley). 
The torque generated by DC-motor rotates the guide shaft. 
The guide-shaft rotates the transmission cylinder via the 
torsion-spring. The transmission cylinder may be combined 
with a pulley that winds wire. The diameter of the guide shaft 
smoothly thins down along the rotation axis as schematically 
shown in Fig.5. The torsion spring covering the guide shaft 
coils on the surface of the guide shaft from its edge of large 
radius.  The coefficient of the torsion spring at the state that it 
is coiled by φ  is calculated by 

( ) / ( ) .rK EI lφ φ=                                      
where, E  is the modulus of longitudinal elasticity and I  is 
the second moment of area of the torsion spring wire. ( )rl φ  
is the expansion length of the spring wire that actually works 
as a spring. Now we have a free hand to design the non-linear 
elasticity through shaping the guide shaft. 
 
B.  ANLES (type B) 
 The ANLES designed for controlling the multi-DOF joint 
has almost the same structure as the ANLES (type A). The 
method for designing the guide-shaft to obtain the non-linear 
elasticity when combined with the torsion spring is identical. 
But this type of ANLES needs to transform the rotation to the 
translation, and the vice versa with minimum transmission 
loss. We therefore employ a super long lead ball screw 
( 6φ diameter of the rod with 6 mm lead) embedded into the 
guide-shaft as shown in Fig.6 and located the DC-motor 
outside the guide-shaft.  
 
C. Single DOF joint controlled by two ANLESes (type B) 
and stiffness regulation 
 
 Fig.7 shows the single DOF joint. It was built as an 
intermediate stage aiming to construct a three DOF joint 
similar to a wrist joint. So that it is controlled by two tendons, 
in each of which the ANLES(type (B)) shown in Fig.6 is 
equipped. The DC motor embedded under the base plate 
rotates the ball screw rod via the universal joint. If the DC 
motors of both ANLESes rotate the same torsion angle with 
the identical direction, the same amount of torque is 
generated  
 

Fig.7   Single DOF ADJ (type B) controlled by two ANLESes
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and it is transformed to the same amount of traction force by 
the super-lead ball screws. 
 These two forces work as torques about the rotary joint, the 
same amplitude but opposite direction, so that they are 
antagonistically cancelled and the rotary joint will not rotate. 
In this case the DC motor purely twists the torsion spring of 
the ANLES, which enhances the stiffness of the rotary joint 
with no rotation. If the balance of the traction forces of two 
rods breaks the joint rotates to reach the equilibrium state that 
is determined not only by the traction forces but also by the 
moment arms between the axis of the rotary joint and each 
rods, which is varied by the angle of the rotary joint. 

Fig.8 shows the experimental results and the theoretical 
curve of the stiffness of the joint shown in Fig.7 when both of 
the ANLESes twist the same amount of torsion angle. The 
error bar shows the variations of the measured data of five 
trials. As shown in Fig.8, the experimental data are well 
congruent with the designed stiffness curve. 
 
D. Three DOF  joint controlled by multiple ANLESes 

We are now constructing the wrist joint having three DOF. 
As shown in Fig.9 four ANLESes of type B (just identical to 
the one shown in Fig.6) are used for controlling two DOF (the 
extension/flexion and the radial flexion/ulnar flexion). The 
remaining one DOF is controlled by one motor (motor 5 in 
Fig.9). This design is determined in the practical point of 
view since it is very hard in terms of the capacity and the 
disposition to equip the extra two ANLES for controlling the 
pronation/spination. Alternatively we equip a planetary gear 
system into the upper plate as shown in Fig.10. The motor 5 
rotates the solar gear providing the rotation of the carrier of 
the planetary gears. It is an active pronation/spination. On the 
other hand an external torque loaded on the end point rotates 
the carrier, which leads the rotation of the inner gear and the 
twist of four ANLESes. Therefore it enables some elastic 
rotation of pronation/spination although its stiffness cannot 
independently be specified. It depends on the torsion angles 
of four ANLESes. 

III. THE THEORY OF POSTURE CONTROL FOR OBTAINING 
THE IDEAL STIFFNESS OF THE ENDPOINT 

In this section we derive the formula to provide the posture 
of the anthropomorphic manipulator. The assumed model has 
one or more redundant DOF as shown in Fig.11. Our study 
has one standpoint that the DOF of the shoulder and the 
elbow, total four in the model of Fig.11, are used to determine 
the position of the wrist and the direction of the forearm, 
which roughly specifies the stiffness matrix of the endpoint. 
The precise adjustment of the stiffness matrix is then 
achieved by the three DOF of the wrist joint. So as a first step 
of our study we assume to equip the mechanism shown in 
Fig.9 as an actuator for the wrist joint and also assume to 
equip single rotary joints driven by high-geared motors for 
the other DOF existing at the shoulder and the elbow. As a 

4 Motors for ANLES 
and one motor for    
pronation/supination 

Lower plate 

Upper plate 

Four non-linear 
elastic modules
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Fig.9 Structure of the three DOF wrist joint using 4 
ANLESes 
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second step we are planning to equip a pair of ANLESes of 
type A (Fig.3) to all of the DOF at the shoulder and the elbow.  
Let us set the wrist coordinate as shown in Fig.12, in which 

the unit vector wk  is assumed to be in parallel to w tO O . Let 
us suppose some variance of external force vector 

( ) [ ]w T
t t i t jf f∆ = ∆ ∆f is loaded at the end point. It gives rise to 

the variance of the torque vector ( ) [ ]w T
w wi w jτ τ∆ = ∆ ∆τ at the 

origin of the wrist coordinate, 

 ( ) ( )
7

0 1
, with 

1 0
w w

w tl
−⎡ ⎤

∆ = ∆ ≡ ⎢ ⎥
⎣ ⎦

τ C f C                  (1)      

where, the superscript “(*)” designates the coordinate system. 

The rotational stiffness matrix ( )( )
2 2

w
R
wS ×∈ℜ  can be defined 

as the relation between ( )w
w∆τ and the variance of the rotation 

about wi and wj ; 5 6[ ]T
w θ θ∆ = ∆ ∆θ , 

( )( )w
R

w w w∆ = − ∆τ S θ                             (2) 

The corresponding linear stiffness matrix at the end point is 
calculated by, 

( ) ( ) ( )( ) ( )
2 2 2
71/

w w
L R
t wl Τ ×= ∈ ℜS C S C             (3) 

Now we expand the 2 2× matrix ( )( )w
L
tS  to the 3 3× matrix 

by introducing the sufficiently large constant α , 

 ( ) ( )( )( )
,

wwL L
t tdiag α⎧ ⎫= ⎨ ⎬

⎩ ⎭
S S                            (4) 

α is the linear stiffness along wk , hence  it will be considered 
as the modulus of longitudinal elasticity of the link 7. 

( )( )wL
tS can be transformed into the expression on the task 

space (inertia) coordinate  by using the rotation matrix of the 
wrist coordinate: 0wR  

( )( )

0

wL L T
t w t ow=S R S R                       (5) 

Now let us denote the ideal linear stiffness matrix on the 
task space by 3 3L

t
×∈ ℜS  and also let us denote the rotation 

matrix from the current stiffness matrix L
tS to the ideal one 

by sR . It follows, 
L L
t s t s

Τ=S R S R                          (6) 

sR can be expressed by using the unit vector of the rotation 
axis [ ]T

s sx sy szv v v=v and the rotation angle sφ∆ as, 

( ) ( )( ) 2ˆ ˆsin 1 coss s s s sφ φ= + ∆ + − ∆R Ι v v          (7) 

where, ˆsv stands for the skew-symmetric matrix  that 
comprises the elements of the vector  sv  such as, 

0
ˆ 0

0

z y
s s

z x
s s s

y x
s s

v v
v v
v v

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

v  

Let us assume sφ∆ is so small that (7) can be simplified as,  

( )ˆ sins s sφ≅ + ∆R Ι v                      (8) 
It follows by substituting (8) into (5), 

( ) ( )
( ) ( )

( ) ( )2

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

L L
t s s t s s

L
ss s t s s

L L L L
t t s ss t s s t s s

φ φ

φ φ

φ φ

Τ= + ∆ + ∆

= − ∆ + ∆

= + − ∆ − ∆

S I v S Ι v

I v S I v

S S v v S v S v

 

By neglecting again the third term of the right hand side due 
to the assumption of sφ∆ being so small, we have, 

( )ˆ ˆ , with   L L L L L L
t t s ss t s t t tφ∆ ≅ − ∆ ∆ ≡ −S S v v S S S S     (9) 

We can derive s sφ∆v from the relation (9). It is not necessary 
to calculate sφ∆ although it is capable since 1s =v . 
 s sφ∆v should be come about the variation of the joint angles 
residing at the shoulder and the elbow. Let us denote it as 

se∆θ (= 1 2 3 4[ ]Tθ θ θ θ∆ ∆ ∆ ∆ if we consider an 
anthropomorphic type manipulator as shown in Fig.11). It 
follows by introducing the Jacobian matrix of the wrist joint 
coordinate owJ , 

3

s s
ow se

φ∆⎡ ⎤
= ∆⎢ ⎥

⎣ ⎦

v
J θ

0
                     (10) 

Dividing the owJ  into the rotation part (the upper three rows) 
and the linear part (the lower three rows) such as         

( ) ( )
TT TR L

ow ow ow
⎡ ⎤= ⎢ ⎥⎣ ⎦

J J J , we have, 

R
s s ow seφ∆ = ∆v J θ                          (11) 

3
L
ow se= ∆0 J θ                                    (12) 

The general solution of (11) with respect to se∆θ is, 

( ) ( )†R R
se ow s s owφ ⊥∆ = ∆ + Ρθ J v J η               (13) 

where, †(*) designates the generalized inverse of the matrix 
“*” and (*)P⊥ is the null- projection operator that projects 
the vector into the complementary space defined by the 
matrix “*” . η is an arbitrary vector.  
It follows by substituting (13) into (12), 

( ) ( )†

3
L R R
ow ow s s owφ ⊥⎡ ⎤∆ + Ρ =⎢ ⎥⎣ ⎦

J J v J η 0  

t∆f  
0t

0w

wk  wi  

wj   
7

Fig.12  Wrist joint coordinate and the end point
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Solving it with respect to η  and substituting into (13) we 
have the final result by utilizing the nilpotent property of the 
projection operator, 

( )( ) ( )( )( ) ( )
1 †R L L R L L R

se ow ow ow ow ow ow ow s sφ
−Τ Τ⊥ ⊥⎡ ⎤∆ = − Ρ Ρ ∆⎢ ⎥⎣ ⎦

θ Ι J J J J J J J v  

(14) 
The part of the square bracket in (14) can be viewed as the 
weighted projection operator that projects the vector into the 
complementary space of L

owJ  under the weight matrix 

( )R
ow

⊥Ρ J  so that (14) can be written as, 

( ) ( ) ( )†
R
ow

L R
se ow ow s sφ⊥

⊥

Ρ
∆ = Ρ ∆

J
θ J J v               (15) 

[Remark 1]  The inverse operation in (14) may fail because of 
( )R

ow
⊥Ρ J being a rank deficient. It is due to a shortage of DOF 

at the shoulder and the elbow. In this case the following 
equation in lie of (14) offers fairly good results, 

( )( ) ( )( ) ( )
1 †

(16)R L L L L R
se ow ow ow ow ow ow s sφ

−Τ Τ⊥⎡ ⎤∆ = − Ρ ∆⎢ ⎥⎣ ⎦
θ Ι J J J J J J v

 although (16) does not assure to hold the position of the wrist 
origin, which is the identical meaning that (12) is not held.  

[Remark 2] As found in the derivation of (14) it requires 
small rotation of s sφ∆v  ((8)(9)) so that (14) should be 
calculated successively by assigning the small value for 

s sφ∆v . 

IV. THE SIMULATION 

Fig.13 shows the configuration of the seven DOF 
manipulator served on the simulation study. It is supposed 
that the suspension spring or the actuator compensates the 
gravitational torque loaded on each joint individually. The  
task for the manipulator is to draw the sliding door as shown I 
Fig.14. It is postulated that posture like the left figure is 
unnatural for the task and it should be changed to the one like 
the right figure. The rotation angle sφ∆ is divided by 1000 
and (14) or (16) are calculated 1000 times to reach the desired 
posture. 

Table 1 Simulation results 
 Joint angle [rad] θ１ θ2 θ3 θ4 θ5 θ6 θ7

Initial -0.6 0.55 -1.8 2.5 0.2 0.25 0.0
Desired -0.8 0.027 -1.1 2.5 0.2 0.25 0.0

After rotation -0.494 0.049 -1.463 2.515 0.2 0.25 0.0
Error 0.306 0.029 0.363 0.015 0.0 0.0 0.0

 
The result of the calculation is summarized in  Table 1. In 

this case all of the computations are carried out based on (16). 
 Fig.15 shows the stiffness ellipsoid of the end-point, which 
are directly calculated from the stiffness matrix. As shown the 
posture regulation provides the stiffness ellipsoid that is 
almost identical shape to the desired one. Fig.16 shows the 
postures of the manipulator. The regulated posture is fairly 

close to the desired one. But as found in Table 1 some small 
discrepancies exist, the reason of which is considered for 
using (16) in lieu of (14) for avoiding ill-conditioned 
computation. However As shown in Table 2 the wrist joint 
stays the initial position satisfactory. 

V. CONCLUSIONS 

 This paper proposes a method for determining the posture of 
the redundant manipulator on the task bases. It stands on one 
postulation that the human takes his/her posture of the upper 
extremities, which provides a stiffness ellipsoid that is 
suitable for the task. One derives a formula that makes the 
manipulator take a posture that provides desired stiffness 
ellipsoid of the end-point for the task. It follows the 
simulation study that elucidates the proposed formula 
successfully working. 
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       (a) the initial posture and the initial stiffness ellipsoid 
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(b) the desired posture and the desired stiffness 
ellipsoid 
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                     (c) the result of the posture control 
Fig.16 Simulation results: the posture and the corresponding 
stiffness ellipsoid  
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Fig.15 Stiffness ellipsoids of the initial posture, desired 
posture and the regulated posture 
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