
Generalized Algebraic Deadlock Avoidance Policies for
Sequential Resource Allocation Systems

Spyros Reveliotis, Elzbieta Roszkowska and Jin Young Choi

Abstract— Currently, one of the most actively researched
approaches regarding the design of deadlock avoidance policies
for sequential resource allocation systems is based on concepts
and techniques provided by the, so called, theory of regions,
that addresses the broader problem of synthesizing PN models
with pre-specified behaviors. However, one limitation of the
theory of regions and its aforementioned derivatives is that they
cannot be applied when the target behavior has a non-convex
representation in the underlying state space. In this paper, we
show how this problem can be circumvented by appropriately
generalizing the employed class of the candidate policies.

I. INTRODUCTION

The problem of deadlock avoidance in sequential resource
allocation systems (RAS) is a well established and exten-
sively studied problem in the relevant literature. Generally
speaking, the problem concerns the coordinated allocation
of a finite set of reusable resources to a set of concurrently
executing processes so that circular waiting situations –
i.e., situations where a subset of processes wait upon each
other for the release of the necessary resources for their
advancement – are avoided and each process can proceed
to its successful completion. Past work has formally char-
acterized the problem by means of a number of modelling
frameworks provided by qualitative Discrete Event Systems
(DES) theory [1] – e.g., finite state automata, Petri nets (PN),
and various other graph theoretic models – and it has also
provided a number of methodologies for the synthesis of the
necessary deadlock avoidance policies (DAP’s) for various
sub-classes of these systems; we refer the reader to [2], [3]
for a systematic and comprehensive exposition of all the
currently available results. The main focus of this work is a
particular DAP class that in the past has been characterized
as algebraic, since the relevant policies seek to ensure the
deadlock-freedom of the underlying RAS by confining its
operation in a subspace that satisfies a properly chosen set
of linear inequalities. Some typical examples of such policies
are the RUN and RO DAP’s, introduced respectively in
[4] and [5]. Furthermore, references [2], [3] provide some
generic methodology for synthesizing appropriate algebraic
DAP’s for a very broad RAS class, while more recently, the
works of [6], [7] have offered some interesting additional
insights regarding the functionality of these policies.
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When it comes to the synthesis of algebraic DAP’s, one
of the currently most active approaches seeks first (i) to
deploy the reachable state space of the underlying RAS,
and subsequently (ii) to exploit the information provided
in the obtained reachability graph in order to derive the
linear inequalities that will successfully establish deadlock-
free operation. The original works of [8], [9] that introduced
this method, motivated and justified it on the basis of
some more general results pertaining to the synthesis of PN
models with pre-specified behaviors, collectively known as
the theory of regions [10]. Furthermore, the aforementioned
works constrained the synthesis problem to that of obtaining
the maximally permissive or optimal DAP, i.e., the DAP
that admits the maximal possible subspace that guarantees
deadlock-free behavior.1 However, there are two potential
problems that can arise during the deployment of the afore-
mentioned approach, when confined to the computation of
the maximally permissive DAP: (i) The first problem relates
to the computational complexity of the resulting policy,
since it is possible that the maximally permissive DAP is
characterized by a number of linear inequalities that is a
super-polynomial function of the size of the underlying RAS.
(ii) The second problem is of a more existential nature,
since it is also possible that the target behavioral space
characterizing the optimal DAP is not convex, and therefore,
it cannot be effectively characterized by a system of linear
inequalities. Motivated by these remarks, the work of [11]
proposed a variation of the original methodology that, instead
of always seeking to compute the maximally permissive
DAP, it computes, through an appropriate Mixed Integer
Programming (MIP) formulation [12], the most efficient
DAP that can be expressed by a user-specified number of
linear inequalities. Clearly, this new approach can guarantee
the polynomial complexity of the derived policy by (pre-
)selecting a number of linear inequalities that is polynomi-
ally related to the underlying RAS size. Furthermore, the
methodology can overcome the second problem stated above
by returning a sub-optimal DAP with a convex admissible
state space, in the case that the subspace defined by the
optimal DAP is not convex. The work of [11] also discusses
how to accommodate additional design considerations, like
uncontrollable process advancement and resource allocation,
and how to deal with the computational complications arising
from the potentially large-scale nature of the underlying

1All the technical concepts and results that are necessary for the thorough
understanding of the presented work are systematically introduced in the
subsequent parts of this manuscript.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC10.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 991



reachability space. Finally, from a more analytical standpoint,
the constraints of the MIP formulation presented in [11]
provide a complete, formal characterization of the entire class
of algebraic DAP’s that are appropriate for any given RAS
and do not exceed a certain dimensionality bound.

Yet, one particular issue that remains unresolved by the
aforecited works, is how to extend the concept of the
algebraic DAP and how to appropriately modify the outlined
methodology in order to be able to obtain the maximally
permissive DAP even in the case that the relevant state
space is non-convex. This particular problem is undertaken
in this work. More specifically, the results provided in
this paper (i) first re-cast the MIP formulation developed
in [11] so that it pertains more directly to the concepts
underlying the DAP synthesis problem – i.e., stripping it
from the “overhead” concepts and elements introduced by
the previously adopted PN formalism2 – and subsequently
(ii) they exploit the insights obtained from this new formu-
lation, in order to address the policy extension problem, by
introducing the class of generalized algebraic DAP’s. The
last part of the paper also discusses how to modify the
derived MIP formulation so that it applies to the synthesis
of generalized algebraic DAP’s. We start the development of
this material by formally introducing in the next section the
notion of sequential RAS and the corresponding deadlock
avoidance problem. In order to provide a more concrete
exposition of our results, we confine our discussion in the
class of disjunctive/conjunctive (D/C-)RAS; however, it must
be pointed out that the presented methodology pertains to
any other RAS covered by the representational framework
introduced in [2]. Finally, we notice that while the imposed
space limitations do not allow the inclusion of demonstrative
examples in this manuscript, such examples can be readily
found in [11] and the other provided references (e.g., [8],
[9]).

II. DISJUNCTIVE / CONJUNCTIVE RESOURCE
ALLOCATION SYSTEMS AND THEIR DEADLOCK

AVOIDANCE PROBLEM

D/C-RAS For the purposes of this work, a Disjunctive
/ Conjunctive Resource Allocation System (D/C-RAS) is
formally defined by a 4-tuple Φ =< R, C,P,A > where:
(i) R = {R1, . . . , Rm} is the set of the system resource
types. (ii) C : R → Z+ – the set of strictly positive
integers – is the system capacity function, characterizing
the number of identical units from each resource type
available in the system. Resources are considered to be
reusable, i.e., each allocation cycle does not affect their
functional status or subsequent availability, and therefore,
C(Ri) ≡ Ci constitutes a system invariant for each i. (iii)
P = {Π1, . . . ,Πn} denotes the set of the system process
types supported by the considered system configuration. Each
process type Πj is a composite element itself, in particular,
Πj =< Sj ,Gj >, where: (a) Sj = {Ξj1, . . . ,Ξj,l(j)} denotes

2Of course, as mentioned above, this formalism was instrumental for the
original conception and the formal justification of the approach.

the set of processing stages involved in the definition of
process type Πj , and (b) Gj is an acyclic digraph with
its node set, Vj , being bijectively related to the set Sj .
Let V ↗

j (resp., V ↘
j ) denote the set of source (resp., sink)

nodes of Gj . Then, any path from some node vs ∈ V ↗
j

to some node vf ∈ V ↘
j defines a process plan for process

type Πj . (iv) A :
⋃n

j=1 Sj →
∏m

i=1{0, . . . , Ci} is the
resource allocation function associating every processing
stage Ξjk with a resource allocation request A(j, k) ≡ Ajk.
More specifically, each Ajk is an m-dimensional vector, with
its i-th component indicating the number of resource units
of resource type Ri necessary to support the execution of
stage Ξjk. Obviously, in a well-defined RAS, Ajk(i) ≤
Ci, ∀j, k, i. Furthermore, the resource set Ajk, required
for the execution of a particular processing stage Ξjk, is
allocated exclusively and non-preemptively to each process
instance, and it is released by it only upon the allocation of
the resources required for the execution of the subsequent
stage. Finally, |Φ| ≡ |R| + |

⋃n
j=1 Sj | +

∑m
i=1 Ci will be

referred to as the size of Φ.
A logical characterization of the RAS behavior The

behavior generated by the D/C-RAS can be formally mod-
eled as a Finite State Automaton (FSA) [1]. The state of this
automation is defined as follows:

Definition 1: The D/C-RAS state, s(t), at time t, is a
vector of dimensionality D, equal to the total number of
distinct processing stages, such that each of its components
s(t; q) corresponds to a processing stage Ξjk and indicates
the number of process instances executing stage Ξjk at time
t. �

To simplify the notation, the following discussion omits
the dependence of state s on time t. The information con-
tained in the RAS state is sufficient for the determination of
the distribution of the resource units to the various processing
stages, as well as of the slack (or idle) resource capacity
in the system; in particular, the slack capacity, δi(s), of
resource Ri at sate s, can be computed as δi(s) ≡ Ci −∑D

q=1 s(q(j, k)) · Ajk(i). The set S of feasible resource
allocation states for the considered RAS is defined by S ≡
{s ∈ (Z+

0 )D : δi(s) ≥ 0, ∀i = 1, . . . ,m}. The finiteness
of the resource capacities implies that card(S) ≡ |S| < ∞.
However, in general, |S| will be a super-polynomial function
of the RAS size.

The set of events, E, that can change the system
state, comprises: (i) the events el

jk, j = 1, . . . , n, k ∈
{1, . . . , l(j) : Ξjk ∈ V ↗

j }, corresponding to the loading
of a new instance of process type Πj into the system, that
is to follow a process plan starting with stage Ξjk, (ii) the
events ea

jkh, j = 1, . . . , n, k, h = 1, . . . , l(j), k 6= h,
corresponding to the advancement of a process instance
executing stage Ξjk to a successor stage Ξjh, and (iii) the
events eu

j , corresponding to the unloading of a finished
process instance of type Πj . Without loss of generality, it
is assumed that, during a single state transition, only one of
these events can take place. The resulting transition, however,
is feasible only if the additionally requested set of resources
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can be obtained from the system slack capacity.
A natural definition for the initial state is s0 ≡ 0 i.e., the

state in which the system is idle and empty of any process
instances. Since the main logical concern addressed herein is
the establishment of non-blocking behavior, the set of marked
states is defined as Sm ≡ {s0}. Hence, the marked language
Lm of this automaton corresponds to “complete runs”.

The above FSA-based model of the RAS behavior can
be expressed graphically by the State Transition Diagram
(STD), i.e., a digraph G with nodes corresponding to the FSA
states, and edges corresponding to the feasible state transi-
tions. Of particular interest is the STD subgraph induced by
the nodes s that are reachable from node s0; this subgraph
is denoted by Sr and it is characterized as the reachable
subspace of the considered RAS.

Deadlock and Deadlock Avoidance in D/C-RAS A major
concern in the logical control of RAS is the establishment of
live – or deadlock-free or non-blocking – behavior. Deadlocks
are defined as RAS states where there is a set of process
instances, such that each of its processes, in order to advance,
requests the allocation of resources currently held by some
other process(es) in the considered set. Their development
results from (i) the fact that processes will hold upon their
allocated resources in a non-preemptive manner and (ii) the
arbitrary structure of the process routes that can give rise
to cyclical patterns of resource requests among the various
executing processes.

In the FSA-based modelling of the RAS operation, dead-
locks are represented by the formation of strongly con-
nected components in the system reachable space, Sr, which,
however, are not co-accessible, i.e., the empty state, s0, is
not reachable from them through any sequence of feasible
transitions. Hence, a correct Deadlock Avoidance Policy
(DAP), ∆, tries to restrict the system operation to a strongly
connected component of Sr which contains the empty state
s0. The RAS subspace that is reachable under – or admissible
by – some DAP ∆ will be denoted by Sr(∆). Given a
D/C-RAS configuration, an applied DAP is characterized
as optimal, if the corresponding admissible subspace is the
maximal strongly connected component of Sr which contains
the empty state s0. The set of states admitted by the optimal
DAP, ∆∗, is characterized as (the set of) reachable safe
states, and it is denoted by Srs. The complement of Srs

with respect to Sr is denoted by Sru, and it constitutes the
system reachable unsafe (sub-)space.

In the D/C-RAS operational context, the optimal DAP, ∆∗,
is well-defined, and it is effectively computable through an
one-step lookahead scheme that admits a tentative resource
allocation if and only if (iff) the resulting state is safe.
However, the corresponding state safety problem is NP-
complete [13]. In the light of this result, the research commu-
nity has sought the development of sub-optimal DAP’s that
are implementable in polynomial complexity with respect
to the underlying RAS size, and yet, efficient, i.e., they
manage to admit a large part of Srs. This idea has been
formalized by the concept of Polynomial Kernel (PK-) DAP
[2]. From an implementational standpoint, a typical approach

to the design of PK-DAP’s is the identification of a property
H(s), s ∈ S, such that (i) the complexity of testing H()
on the RAS states is polynomial with respect to the RAS
size, and (ii) the subspace {s ∈ Sr : H(s) = TRUE} is
strongly connected.3 In this setting, algebraic PK-DAP’s can
be defined as the particular class of PK-DAP’s where the
property H(s) constitutes a system of linear inequalities on
the RAS state s that is polynomially sized with respect to the
RAS size |Φ|. In the next section, first we characterize the
set of correct algebraic DAP’s for any given D/C-RAS Φ that
can be expressed as a system of K linear inequalities, where
K is an externally specified parameter, and subsequently
we employ this characterization towards the development
of a mathematical programming (MP) formulation that will
return the most efficient DAP in the aforementioned class,
when assuming that efficiency is characterized by a “weight”
function defined on the reachable space of Φ, Sr.

III. DESIGN OF ALGEBRAIC DAP’S THROUGH THE
DEPLOYMENT OF THE RAS REACHABILITY SPACE

In the subsequent discussion, the considered class of
algebraic DAP’s will be represented with the tuple (A, b),
where A is a K × D real-valued matrix and b is a K-
dimensional real-valued vector. Furthermore, the algebraic
policy

A · s ≤ b (1)

obtained for some particular pricing of the matrix A and
vector b, will be denoted by ∆(A, b). It must be noticed
that this definition of the algebraic DAP constitutes already
a generalization of the way that this concept was employed
in the earlier works, since it allows for real-valued entries
of the policy-defining elements A and b.4 Also, it is easy
to see that under this extended, real-valued representation,
all the elements of A and b can be appropriately scaled so
that they belong in the interval [−1, 1], while maintaining
the discriminatory power of the original constraint set; i.e.,
all the key problem variables in this section can be naturally
bounded in the interval [−1, 1], and this assumption will be
applied in the subsequent developments:

∀i = 1, . . . ,K, ∀j = 1, . . . , D,

−1 ≤ A(i, j) ≤ 1 (2)
∀i = 1, . . . ,K,

−1 ≤ b(i) ≤ 1 (3)

We remind the reader that according to the characteri-
zations provided in the previous section, an algebraic DAP
∆(A, b) will be correct iff every state s ∈ Sr\{s0} that is

3We notice, for completeness, that an additional condition that is expected
to be satisfied by the property H() defining a PK-DAP, is that H(s0) =
TRUE; c.f. [2]. However, this requirement can be relaxed since the state s0

can be easily recognized and admitted through an additional step that tests
explicitly for “s = s0” during the policy implementation. This approach is
actually presumed in the rest of this work.

4The integrality of the elements of matrix A and vector b in the algebraic
DAP’s appearing in all the past developments, was the result of the (ad-hoc)
reasoning underlying the specification of these DAP’s and/or the PN-based
modelling framework employed for their analysis.
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reachable under the policy, is also co-reachable under it, i.e.,
there is an admissible transition sequence from state s back
to the initial state s0. This correctness specification can be
expressed analytically through a constraint set that confines
the pricing of variables A(i, j), i = 1, . . . ,K, j = 1, . . . , D
and b(i), i = 1, . . . ,K, and it is developed as follows:

First we introduce the binary variables xi
l, l =

1, . . . , |Sr|, i = 1, . . . ,K, that will be priced to one if state
sl satisfies the inequality A(i, ·) · sl ≤ b(i), and to zero,
otherwise. This pricing can be achieved by the following
constraint set:

∀l = 1, . . . , |Sr|, ∀i = 1, . . . ,K,

b(i)−A(i, ·) · sl ≤ ε · (xi
l − 1) + U · xl

i (4)
b(i)−A(i, ·) · sl ≥ ε · xi

l + U · (xi
l − 1) (5)

xi
l ∈ {0, 1} (6)

The introduction of the parameter ε > 0 in Eqs 4 and 5 seeks
to prevent any potential ambiguity in the developed formula-
tion, by forcing the value of the difference |A(i, ·) ·sl−b(i)|
away from zero. Its value should be chosen small enough so
that it does not affect the outcome of the formulation, and
it can be determined by trial and error. On the other hand,
the parameter U appearing in Eqs 4 and 5 denotes an upper
bound for the quantity |A(i, ·)·sl−b(i)|, l = 1, . . . , |Sr|, i =
1, . . . ,K, and it can be readily obtained when taking into
consideration the bounds established by Eqs 2 and 3, and the
bounds established for the components of the state vector s
by the finiteness of the resource capacities. It is easy to see,
then, that a positive value for the difference b(i)−A(i, ·) ·sl

will force xi
l to one, while a negative value for this difference

will force xi
l to zero.

Given the variables xi
l , the admissibility of state sl by

policy ∆(A, b) can be expressed by the real-valued variable
xl, which is priced as follows:

∀l = 1, . . . , |Sr|,∀i = 1, . . . ,K,

xl ≤ xi
l (7)

∀l = 1, . . . , |Sr|,

xl ≥
K∑

i=1

xi
l −K + 1 (8)

0 ≤ xl ≤ 1 (9)

Constraint 7 forces xl to zero, if any of the policy-defining
inequalities are violated by state sl. In the opposite case, the
combination of Constraints 8 and 9 forces xl to one.

In order to formally express the aforestated policy correct-
ness requirement, we also need to characterize the reacha-
bility and co-reachability of any state sl ∈ Sr\{s0}, under
∆(A, b). For this task, we introduce the additional sets of
real-valued variables zq

l and yq
l , l = 0, . . . , |Sr|, q =

0, . . . Q̄, such that the pricing of the variable zq
l (resp., yq

l )
to one indicates that there is a policy-admissible path from
state s0 to sl (resp., from state sl to s0) and the minimal
length of any such path is equal to q steps; in any other
case, zq

l (resp., yq
l ) should be priced to zero. The parameter

Q̄ appearing in the above definition denotes an upper bound
to the maximal length of any loop-free path emanating
from or resulting to state s0, and it can be easily obtained
from the deployed reachability graph. The availability of the
variables zq

l and yq
l enables the straightforward expression

of the policy correctness requirement through the following
constraint set:

∀l = 1, . . . , |Sr|,
Q̄∑

q=1

zq
l ≤

Q̄∑
q=1

yq
l (10)

It remains, however, to introduce additional constraint sets
that will enforce the desired pricing for zq

l and yq
l . The set

enforcing the correct pricing of variables zl
q is as follows:

∀l = 0, . . . , |Sr|, z0
l = I{sl=s0} (11)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≥ 0 (12)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≤

∑
m∈IP (l)

zq−1
m (13)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≤ xl (14)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄,∀m ∈ IP (l),

zq
l ≥ zq−1

m − (1− xl)−
q−1∑
ζ=0

zζ
l (15)

Eq. 11 is a “boundary condition” that prices the variables
z0
l ; the parameter I{sl=s0} is the corresponding indicator

variable. Eq. 12 states the nonnegative real nature of the
variables zq

l , while the pricing of these variables in a way that
is consistent with their definition is enforced by Eqs 13–15.
More specifically, the quantity IP (l) appearing in these two
equations denotes the set of immediate predecessor states
of state sl, i.e., those states sm from which there is an
immediate transition to state sl. Hence, Eq. 13 expresses the
fact that for state sl ∈ Sr\{s0} to be accessible under policy
∆(A, b) in q steps, there must be an immediate predecessor
state sm that is accessible under policy ∆ in q − 1 steps.
Similarly, Eq. 14 expresses the fact that state sl ∈ Sr\{s0}
will be accessible under ∆(A, b) only if it satisfies the policy-
defining constraints. Finally, Eq. 15 forces zq

l to 1, if there
is an immediate predecessor state sm that is accessible from
state s0 through a minimal policy-admissible path of q − 1
steps; however, this enforcement takes place only if (i) state
sl itself is policy-admissible and (ii) there is no other shorter
policy-admissible path to it.

The correct pricing of the variables yq
l can be enforced

by a constraint set analogous to that of Eqs 11–15, when
noticing that co-reachability becomes equivalent to reacha-
bility, once the arcs of the underlying reachability graph have
been reversed. Defining the set IS(l) as the set of immediate
successor states for state sl ∈ Sr\{s0}, we obtain:

∀l = 0, . . . , |Sr|, y0
l = I{sl=s0} (16)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≥ 0 (17)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≤

∑
m∈IS(l)

yq−1
m (18)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≤ xl (19)
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∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄,∀m ∈ IS(l),

yq
l ≥ yq−1

m − (1− xl)−
q−1∑
ζ=0

yζ
l (20)

Hence, for any given D/C-RAS Φ, the constraint set of
Eqs 2–20 characterizes the entire set of algebraic DAP’s,
∆(A, b), that can be expressed by no more than K linear
inequalities. A notion of optimality can be introduced over
this set, by employing an objective function

max
|Sr|∑
l=1

wl ·
Q̄∑

q=1

zq
l (21)

where wl is some “weight” function defined on the set of
states sl ∈ Sr\{s0}. In particular, setting wl ≡ 1, ∀l,
enables the computation of the maximally permissive DAP,
as defined in Section II. Finally, the following theorem is
an immediate consequence of the above discussion and it
parallels the developments presented in [11]:

Theorem 1: For any given D/C-RAS Φ and a value K
characterizing the (maximum) number of the linear inequal-
ities to be employed by the designed algebraic DAP, the
formulation of Eqs 2–21 will return the best possible5 alge-
braic DAP ∆(A, b), according to the performance criterion
established by the function wl, l = 1, . . . , |Sr|. �

The formulation of Eqs 2–21 will be always feasible, since
it contains the trivial policy that confines the RAS to its
initial state s0. Of course, such a result should be interpreted
as lack of an effective DAP in the considered policy space.
If we want such a negative result to be communicated as
infeasibility by the proposed formulation, we can add the
constraint

|Sr|∑
l=1

z1
l ≥ 1 (22)

Furthermore, in most practical cases, one would like to en-
force the existence of at least one policy-admissible process
plan for each process type Πj , j = 1, . . . , n. In such a case,
Constraint 22 should be replaced with the following stronger
requirement:

∀j = 1, . . . , n,
∑

l∈LD(j)

Q̄∑
q=1

zq
l ≥ 1 (23)

where LD(j) denotes the set of states involving a loading
event for process type Πj .

IV. GENERALIZED ALGEBRAIC DAP’S

As it was pointed out in the introductory section, if the
reachable safe space Srs is a non-convex area according
to the state representation introduced by Definition 1, the
methodology developed in the previous section will fail
to return the optimal DAP, ∆∗, no matter how large we
set the value of the design parameter K. This can be
immediately deduced by the fact that the polytope defined

5We avoid to use the word “optimal” in order to prevent confusion with
the optimal DAP ∆∗.

by Eq. 1 is always a convex region [12]. To circumvent this
problem, we need to identify mechanisms that are able to
effectively recognize non-convex patterns. It turns out that
such a mechanism can be provided by the concept of the
“Committee Machine” (CM), a pattern classifier that has
been studied by the machine learning community since the
early sixties [14].6 In this section, first we introduce the
CM concept and establish its capability to recognize non-
convex patterns in the (state) spaces of interest in this work,
and subsequently we show how to modify the methodology
introduced in Section III, so that it applies to the design of
DAP’s that are based on the CM concept. For reasons that
will become clear in the following, we shall refer to this new
class of DAP’s as generalized algebraic DAP’s.

Committee Machines Given an n-dimensional pattern
space Ω, a (generalized) committee machine (CM) is defined
by a quadruple CM =< A, b, π, θ >, where: (i) A is a
real-valued matrix of some dimensionality m × n; (ii) b is
a real-valued m-dimensional vector; (iii) π is a real-valued
m-dimensional vector; and (iv) θ is a real-valued scalar. The
machine accepts a pattern ω ∈ Ω iff

m∑
i=1

π(i) · I{A(i,·)·ω≤b(i)} ≤ θ (24)

In Eq. 24, I{A(i,·)·ω≤b(i)} denotes the indicator variable that
is priced to one if the inequality A(i, ·) · ω ≤ b(i) is
satisfied, and to zero, otherwise. The following theorem is
an immediate consequence of the results presented in ([14],
Chpt. 6):

Theorem 2: Given two distinct, finite subsets of a finite-
dimensional pattern space Ω, there is always a generalized
committee machine to dichotomize them. �

Generalized algebraic DAP’s It should be clear to the
reader that the reachable safe and unsafe subspaces of any
given D/C-RAS Φ, satisfy the conditions of Theorem 2.
Therefore, there will always exist a committee machine,
CM =< A, b, π, θ >, able to effectively recognize the safe
sub-space Srs. We shall refer to the DAP established by this
CM as a generalized algebraic DAP, and we shall denote
it by ∆(A, b, π, θ). The following corollary formalizes the
above remarks:

Corollary 1: Given a D/C-RAS Φ, there will always
exist a generalized algebraic DAP ∆(A, b, π, θ) such that
Sr(∆(A, b, π, θ)) = Srs, i.e., the class of generalized alge-
braic DAP’s will always contain the maximally permissive
DAP, ∆∗. �

Next we modify the design methodology developed in
Section III so that it applies to the design of generalized
algebraic DAP’s.

A MIP formulation for the design of generalized
algebraic DAP’s We start the discussion of this paragraph by
noticing that the scaling effect implied by Eqs 2, 3 pertains
also to the defining elements of the committee machine.

6In fact, the concept utilized in this work corresponds more directly to
that of the “two-layered machine” in [14]. Yet, we opted for the term
“(generalized) committee machine” since it is more expressive of the
dynamics underlying the logic of the resulting policies.
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Hence, Eqs 2, 3 will constitute part of the new formulation,
and furthermore, they will be complemented by the following
set:

∀i = 1, . . . ,K, −1 ≤ π(i) ≤ 1 (25)
−1 ≤ θ ≤ 1 (26)

Similarly, Constraints 4–6, that characterize the satisfac-
tion of the linear inequalities A(i, ·) · sl ≤ b(i), l =
1, . . . , |Sr|, i = 1, . . . ,K, by state sl, as well as Con-
straints 10–20, that characterize the policy correctness and
the pricing of the indicator variables zq

l and yq
l , will not

be affected by change of the policy logic, and the same
remark applies to the characterization of the problem ob-
jective function by Eq. 21. Next, we modify Constraints 7–9
of the previous formulation, so that they express the new
admissibility condition of the committee machine.

Given the variables xi
l , that are priced according to Con-

straints 4–6, the admissibility of a state sl, l = 1, . . . , |Sr|,
by the generalized algebraic DAP ∆(A, b, π, θ) can be ex-
pressed by a set of binary variables, xl, that are priced as
follows:

∀l = 1, . . . , |Sr|,

θ −
K∑

i=1

π(i) · xi
l ≤ ε · (xl − 1) + Λ · xl (27)

θ −
K∑

i=1

π(i) · xi
l ≥ ε · xl + Λ · (xl − 1) (28)

xl ∈ {0, 1} (29)

Eqs 27–29 are similar in spirit to Eqs 4–6; in particular, the
parameters ε and Λ, appearing in Eqs 27 and 28, play a role
similar to that of the parameters ε and U in Eqs 4 and 5.
However, one problem with the constraint set of Eqs 27–29
is that it is nonlinear, since it involves the products π(i) ·xi

l .
This issue can be remedied by replacing the products π(i)·xi

l

in Eqs 27 and 28 with the dummy variables τ i
l that are priced

according to the following constraints:

∀l = 1, . . . , |Sr|, ∀i = 1, . . . ,K,

−xi
l ≤ τ i

l ≤ xi
l (30)

(xi
l − 1) ≤ τ i

l − π(i) ≤ (1− xi
l) (31)

Clearly, when xi
l = 0, τ i

l is forced to zero by Constraint 30,
while Constraint 31 becomes identical to Constraint 25. On
the other hand, when xi

l = 1, Constraint 31 forces τ i
l = π(i),

and then, Constraint 30 becomes equivalent to Constraint 25.
Hence, the variables τ i

l are properly priced in all cases and
no additional side-effects are caused by their introduction.

The next theorem constitutes the counterpart of Theo-
rem 1, for the case of generalized algebraic DAP’s, and
its correctness is an immediate consequence of the previous
discussion.

Theorem 3: For any given D/C-RAS Φ and a value K
characterizing the (maximum) number of the linear inequal-
ities to be employed by the designed generalized algebraic
DAP, the MIP formulation of Eqs 2–6, 10–21 and 25–31,

where the products π(i) · xi
l in Eqs 27 and 28 have been

replaced by the variables τ i
l , will return the best possible

generalized algebraic DAP ∆(A, b, π, θ), according to the
performance criterion established by the function wl, l =
1, . . . , |Sr|. �

V. CONCLUSIONS

The key contribution of this paper was the extension of the
MIP-based methodology for the design of correct algebraic
DAP’s for sequential RAS, that was originally developed in
[11], so that the optimal DAP, ∆∗, is always within the scope
of the potential solutions. We also notice, for completeness,
that the presented method can be easily adjusted, in a spirit
similar to that of [11], in order to account for uncontrollable
behavior and/or to cope with the large-scale nature of the
underlying state spaces; the relevant details can be traced in
[11] and they are left to the reader.
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