
 
 

 

  

Abstract—In this paper, the methodology for automatically 
generating an expressive performance on the anthropomorphic 
flutist robot is detailed. A feed-forward network trained with 
the error back-propagation algorithm was implemented to 
model the performance’s expressiveness of a professional flutist. 
In particular, the note duration and vibrato were considered as 
performance rules (sources of variation) to enhance the robot’s 
performance expressiveness. From the mechanical point of view, 
the vibrato and lung systems were re-designed to effectively 
control the proposed music performance rules. An experimental 
setup was proposed to verify the effectiveness of generating a 
new score with expressiveness from a model created based on 
the performance of a professional flutist. As a result, the flutist 
robot was able of automatically producing an expressive 
performance similar to the human one from a nominal score. 

I. INTRODUCTION 
HE fact that music can be used as a means for expression 
and communication is often acknowledged. Yet this is 

one of the least understood aspects of music, at least as far as 
scientific explanation goes. Performers introduce some 
deviations from nominal values specified in the score, which 
characterizes their own performance. It is known that several 
performances of the same score often differ significantly, 
depending on performer’s expressive intentions.  

Studies in music performance use the word expressiveness 
to indicate the systematic presence of deviations from the 
musical notation as a communication means between 
musician and listener [1]. Such deviations represent the added 
value of a performance and are part of the reason that music is 
interesting to listen to and sounds alive. In fact, a score played 
with the exact values indicated in it lacks of musical meaning 
and is perceived dull as a text read without any prosodic 
inflexion. Indeed, human performers never respect tempo, 
timing, and loudness notations (some deviations are always 
introduced). A performance which is played accordingly to 
appropriate rules imposed by a specific musical praxis will be 
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called natural. In order to understand how humans can 
express emotions while performing music; several 
researchers have tried to emulate the human music 
performance by proposing computational models [2] and by 
developing mechanical systems which nearly simulate the 
physiology of the organs involved on the performance of 
musical instruments [3-5]. 

From the computational point of view, the analysis of such 
systematic deviations has led to the formulation of different 
models that try to describe their structures and aim at 
explaining where, how, and why a performer modifies 
(sometimes in an unconscious way) what is indicated by the 
notation of the score. In recent years, several researchers on 
the computer music field have focused on the Artificial 
Intelligence (AI) approaches for developing automatic 
performance systems in order to capture the knowledge 
applied when performing a score by means of rules. In order 
to develop an automatic performance system, mostly two 
approaches have been proposed: the analysis-by-synthesis 
and the analysis-by-measurement [6]. Such kind of 
approaches mainly converts a music score into an expressive 
musical performance by applying rules (typically including 
time, sound and timbre deviations). Every rule tries to predict 
some deviation that a human performer inserts by 
quantitatively describing the deviations to be applied to a 
musical score. As a result, more attractive and human-like 
performances can be generated and simulated.  

From the engineering point of view, several researchers 
have been developing musical performance robots that nearly 
imitate the function of the organs for playing musical 
instruments. In particular, authors have been developing an 
anthropomorphic flutist robot which imitates the human flute 
playing by emulating the human motor control required to 
play the flute [3]. The main idea of this approach is to emulate 
human dexterity and to coordinate the movements of each of 
the organs involved during the flute playing by mechanical 
means. For this purpose, the synchronization of all the 
simulated organs of the flutist robot is realized by reading the 
timing clock signal from the MIDI data generated from a PC 
sequencer and by generating an interrupt every 5ms on the PC 
controller [7]. Even that the Waseda Flutist robot has 
demonstrated to be able of nearly imitating the performance 
of an intermediate flutist, the robot’s performance still lacks 
of a human-like expressiveness which is desirable for 
achieving a more natural performance. Up to now, we have 
focused on using the analysis-by-measurement method to 
enhance the expressiveness of the flutist robot’s performance; 
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where the performance of a professional flutist is analyzed 
(based on the Fast Fourier Transform [8]) to extract musical 
parameters such as pitch, volume, tempo, etc. However, this 
approach cannot provide enough information to describe how 
performers actually add expression to their performances. In 
addition, every time the flutist robot is programmed to 
perform a new score, the recording from such score 
performed by professional flutist is required. 

Therefore, in order to enhance the performance’s 
expressiveness of the flutist robot, an analysis-by-synthesis 
approach was implemented to model a human performance. 
In particular, an Artificial Neural Network (ANN) has been 
implemented to model the musical expressiveness of a 
professional flutist. By using such a model, a set of 
performance rules can be extracted to produce an expressive 
musical performance. Specifically, the note duration and 
vibrato were considered as principal sources of variation 
required for an expressive performance.  

The extracted performance rules where then implemented 
on the performance control system of the Waseda Flutist 
Robot No.4 Refined III (WF-4RIII). This new version of the 
flutist robot improved the vibrato and lung systems to 
effectively control the musical parameters extracted from the 
resultant performance rules. From the mechanical point of 
view; the lung system was re-designed to enable a better 
control of the air while breathing (to effectively add 
deviations on the tempo), and the vibrato system was 
re-designed to emulate more closely a human-like vocal cord 
(to effectively control the amplitude and frequency of the 
vibration added to the air beam).  

This paper is organized as follows. In Section II, the way of 
modeling an expressive performance of a professional flutist 
using ANN is detailed. In the following section, the 
improvements of the mechanical system of WF-4RIII are 
described. Finally, a set of experiments were carried out to 
verify if the flutist robot could effectively enhance the 
expressiveness of its performance. 

II. MODELING HUMAN MUSIC PERFORMANCE 

A. Analysis of Human Performance 
From the computer music field, the research on music 

performance has been quite intensive in the 20th century, 
particularly in its last decades. As a result, several automatic 
performance systems have been developed to convert a music 
score into an expressive musical performance. As it was 
previously mentioned, mainly two strategies have been used 
for the design of such performance systems:  
analysis-by-synthesis and analysis-by-measurement. 

Rules based on an analysis-by-measurement method are 
derived from measurements of real performances; usually 
recorded on audio CDs or played with MIDI-enabled 
instruments connected to a computer [9]. Often the data are 
processed statistically, such that the rules reflect typical rather 
than individual deviations from a deadpan performance, even 

though individual deviations may be musically highly 
relevant. 

The second method implies that the intuitive, nonverbal 
knowledge and the experience of an expert musician are 
translated into performance rules. These rules explicitly 
describe musically relevant factors. The most important is the 
KTH rule system [10]. Machine learning is also another 
active research stream. Katayose [11] used some artificial 
intelligence inductive algorithms to infer performance rules 
from recorded performances. Similar approaches were 
proposed by Arcos [12] and Suzuki [13]. Several 
methodologies of approximation of human performances 
were developed using, a fuzzy logic approach [14], multiple 
regression analysis [15], or neural network techniques [16]. 

Up to now, the implementation of Artificial Intelligence 
(AI) approaches has demonstrated to be capable of generating 
high-quality human-like monophonic performances based on 
examples of human performers [2]. However, all of these 
systems have tested only by computer systems or 
midi-enabled instruments which limited the unique 
experience of a live performance. Therefore, we proposed to 
implement an AI approach to the performance control system 
of the WF-4RIII which can provided the unique experience of 
a live performance. In particular, a feed-forward neural 
network was implemented to model the musical 
expressiveness from a performance of a professional flutist. 
From such a model, a set of musical performance rules can be 
created and then used by the flutist robot in order to produce 
an expressive performance; even from a different nominal 
score (Figure 1). In this paper, the musical performance rules 
considered are: the note duration and vibrato (duration and 
frequency). In order to train the ANN, the teaching signal was 
obtained by analyzing the considered musical parameters 
from a recording of a professional flutist performance. In the 
following sub-sections, the way of analyzing the human 
performance is described. 

B. Note duration 
As one of the principal characteristics of an expressive 

performance, the deviations of tempo are added by 
performers to express emotions. For this purpose, we have 

 
Fig. 1.  The flutist robot may produce an expressive performance by 
extracting the performance rules modeled from a professional flutist. 
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proposed to analyze the duration of a note from the 
performance of a professional flutist. In order to analyze such 
musical parameter, we have recorded an expressive 
performance of a professional flutist. The recording was 
sampled at 44100k Hz with a resolution of 16 bits. Such 
recording was then analyzed by the short-time Fourier 
transform (STFT). We experimentally found that a frame size 
of 4096 points (frequency resolution of 10.77 Hz) with a 
Hanning window obtained a good compromise between 
resolution and processing speed. 

By computing the STFT, the note duration can be easily 
obtained by comparing the volume of the fundamental 
frequency between two adjacent frames. In Fig. 2, the 
diagram flux used to determine the duration of a note is 
shown. Basically, when a note is found, the amplitude of the 
fundamental frequency is obtained and then compared with 
the amplitude of the fundamental frequency of contiguous 
frames to detect when the note has changed.   

C. Vibrato: Duration and Frequency 
Similar to the note duration, the vibrato plays a key role on 

producing an expressive performance. The vibrato gives a 
pleasing flexibility, tenderness and richness to the tone. In 
flute playing, it is mainly used to add warmth and 
expressiveness to notes. Basically, the principal parameters of 
the vibrato are the rate and width of modulation. The first 
parameter is related to how fast the vibrato is being played 
while the second one is referred to how sharp/flat or how far 
from the note is being played.  

Therefore, we proposed to extract the vibrato duration and 
frequency from the performance of a professional flutist. In 
order to compute them, a notch filter was applied to the 
original sound to reduce its noise. Then, for each note the 
frequency specified in cents was calculated using (1). 

By computing the frequency specified in cents of each note 
of a score, one can easily analyze the duration and frequency 
of each harmonic of a note (in our case, up to the 3rd harmonic 
was considered). As an example, in Fig. 3, the analysis of the 
duration and frequency of the vibrato of note A4 is shown. 

As a result from the analysis of the note duration and 
vibrato, the professional flutist performance can be analyzed; 
from where most of the musical parameters can be obtained 
(such as pitch, note volume, note off, note on and vibrato 
duration/frequency). In the following section, the method for 
modeling the human performance is described. 

 

( ).2log1200 averagefofcentf =                  (1) 

D. Artificial Neural Networks 
In order to create an expressive performance, a 

feed-forward neural network trained with the error 
back-propagation algorithm was implemented using Borland 
Builder C++. Feed-forward neural networks are the most 
widely used models in many practical applications [16]. Such 
kind of network is divided into layers: input, hidden and 
output (Figure 4a). The input layer consists of just the inputs 
to the network. The hidden layer consists of any number of 
neurons placed in parallel. Each neuron (Figure 4b) performs 
a weighted summation of the inputs, which is then passed 
through a non-linear function know as an activation or 
transfer function. Mathematically the functionality of a 
hidden neuron is described as (2); where ui is the internal state 
of the neuron, hi is a threshold value and the number of inputs 
as n. The internal state ui is represented as in (3); where xj 
represents the inputs to neuron and wi,j are the weights 
between neurons i and j. In order to compute the final 
network output, the transfer function f is defined as in (4). 
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In our application, we modeled an expressive performance 

from a professional flutist; where the note duration and 
vibrato (duration and frequency) were considered as relevant 
performance rules in producing local deviation during the 
flute performance. The model was created by using a nominal 
score as input and the considered performance rules as 
outputs (Figure 4a). In order to train the ANN, the 

 
Fig. 2.  Algorithm used to determine the note duration. 

 
Fig. 3.  Analysis of the Vibrato from the performance of a human player. 
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back-propagation algorithm was considered. This kind of 
supervised learning incorporates an external teacher, so that 
each output unit is told what its desired response to input 
signals ought to be. During learning, the weight vectors (Wij) 
are updated using (4); where E(t) is the error between the 
output value and desired one and η is the learning rate. The 
ANN was trained to learn the extracted performance rules 
obtained from the analysis of the professional flutist 
performance. One of the critical issues while designing a 
neural network is the generalization; which helps preventing 
overfitting. Overfitting occurs when a network has 
memorized the trained set but has not learned to generalize 
the new inputs. In this paper; as a first approach, we have 
avoided such situation by defining a small number of hidden 
layer units and by limiting the number of learning steps (less 
than 10,000).  
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III. WASEDA FLUTIST ROBOT NO. 4 REFINED III 
The WF-4RIII was developed this year and it has a total of 

43-DOFs which reproduced the lips, neck, lung, arms, fingers, 
vibrato and eyes required for the flute playing performance 
(Figure 5). Compared with the previous version, the WF-4RII 
[17], this new version has the same number of degrees of 
freedom and it has mainly improved the design of the vibrato 
and lung system in order to implement the performance rules 
previously described so that an effective control of the note 
duration and vibrato can be achieved. 

A. New Vibrato Mechanism 
The previous vibrato mechanism implemented on the 

WF-4RII was composed by a coil voice motor which presses 
directly a tube to add vibrations to the air beam pass through 
this mechanism [17]. However, human uses a more 
complicated mechanism to produce a vibrato. It is believed 
that mainly the vocal cord of human has an important role in 
producing it. In fact, by observing the laryngeal movement 
while playing a wind instrument using laryngo-fiberscope, 
the shape of the vocal cord of flutists differs from the level of 
expertise [18]. As it is shown in Fig. 6, the laryngoscopic 
view of the vocal folds demonstrated the differences among 
them.  

Therefore, we believe that the control of the aperture of the 

glottis plays a key role in producing a human-like vibrato 
which will help in producing a performance with 
expressiveness. Thus, a new vibrato mechanism for the 
WF-4RIII has been designed similar to the shape and human 
vocal cord (Figure 7a).  The vocal cord part was fabricated 
with a theromoplastic rubber Septon by Kuralay Co. Ltd due 
to its high stiffness and flexibility. In order to control the 
amplitude and its frequency of the aperture of the glottis, a 
DC motor linked to a couple of gears (which are attached to 
the vocal fold were used through a link) is used (Figure 7b). 
As a result, the new vibrato system reproduce quite similar 
the vibration of human vocal cords. 

B. New Lung Mechanism 
The previous lung system on the WF-4RII was 

implemented using two vane mechanisms which were 
controlled by an AC motor [17]. The breathing process was 
controlled by a couple of valve mechanisms which were 
located behind the robot. Even that the mechanical noise was 
effectively reduced, still some problems were found. In 
particular, the air conversion efficiency was too low (51%) 
which means some the existence of some loss of air from the 
lungs to the lips. Furthermore, the time required for the 
inhalation was too long (2.36 sec). Such kinds of problems 
make difficult the accurate control of the note duration while 
playing the flute.  

Therefore, a new lung mechanism was designed on the 
WF-4RIII by using a bellow system located inside an acrylic 
container. Each of the bellow has not contact with the 

Fig. 5.  The Waseda Flutist Robot No.4 Refined III 

        

 
 

Fig. 4. a) Graphical representation of feed-forward NN trained with the error back-propagation algorithm; b) Representation of one unit in a NN. 
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container to assure a high airtightness (Figure 8a). In order to 
increase the inhalation speed, a crank mechanism was used 
and controlled by an AC servo motor attached to a link; which 
it moves a shaft connected to the bellow plate (Fig. 8b). A 
rubber was attached along the shaft. This new design enabled 
to improve the airtightness to achieve 85% air conversion 
efficiency and reduce the time required for the inhalation 
process to 0.64 sec. 

IV. EXPERIMENTS & RESULTS 
The experiments presented in this paper are focused in 

verifying the usefulness of implementing performance rules, 
modeled from an expressive performance of a professional 
flutist, to enhance the expressiveness of the WF-4RIII’s 
performance. For that purpose, we would like to investigate if 
such an expressive performance model could be used by the 
flutist robot to automatically predict a new expressive score 
different from the one modeled with the neural network (we 
are assuming a score with similar style).  

The proposed experiment was divided in three steps: at 
first, an expressive performance model was created from the 
recorded performance of a professional flutist. Then, we have 
verified how well the training data fits to the model. Finally; 
we confirmed how well the created model can predict a 
different score with expressiveness.  

Therefore, we have recorded a professional flutist 
performing the Sonata No.4 in C Major composed by Handel; 
from where note duration and vibrato were extracted using 
the proposed algorithms. Such musical parameters were then 
use to train the feed-forward neural network (Figure 4b).  

In order to verify how well the created model fits the 
training data, the obtained performance rules were used to 
create the music data which was converted into MIDI format 
so that it can be reproduced on a computer system. Such 
performance was recorded and compared with the 
professional flutist performance. In order to compare the 
differences between both performances, the correlation 
coefficient was computed. The correlation coefficient is a 
quantity that gives the quality of how well the predicted data 
fits to the original data. As a result from the comparison, a 
high correlation coefficient was found for all the considered 
musical parameters (0.86, 0.93 and 0.86 for the note duration, 
vibrato duration and frequency respectively). From this result, 
we can conclude that the implemented ANN could effectively 
be used for modeling the expressiveness of a professional 
flutist. 

Finally, we have used the previously produced expressive 
performance model to automatically predict the required 
deviations from a different score (with similar musical style). 
In this case, the musical score Le Cygne (composed by 
Camille Saint-Saëns) was considered. The nominal score was 
inputted to the expressive performance model and the 
performance rules were automatically created. The outputs 
from the ANN were used to produce the music data which 
was then converted into midi format. The midi file was 
inputted on the WF-4RIII’s control performance system. The 
robot’s performance was recorded and then compared with 
the professional flutist’s performance; where the note 
duration and vibrato parameters were extracted. In addition, 
the midi file was outputted on a midi device connected to a 
computer system and compared with the professional flutist 
performance. 

The musical parameters obtained from both performances 
are shown in Fig. 9. Regarding the note duration, the robot’s 
performance could nearly imitate the behavior found in the 
human one (correlation coefficient = 0.81). Regarding the 
vibrato, some differences between the human and robot 
performances were found; however, still the correlation 
coefficient is acceptable (0.71 and 0.72 respectively). 
Regarding the comparison between the professional flutist 
performance and the one reproduced on a midi device; a high 
correlation coefficient was found for all the considered music 
parameters (0.86, 0.85 and 0.81 for the note duration, vibrato 
duration and frequency respectively). In order to understand 
the differences between the results obtained from the flutist 
robot’s performance and the one reproduced on a midi device, 
a t-test statistical analysis was performed; where no statistical 
difference was detected for the note duration and the vibrato 
duration parameters (p>0.05). Meanwhile, a statistical 
difference was detected regarding the vibrato frequency was 

 
Fig. 6. Laryngoscopic view of the vocal folds from different flutists.  

 

 
 

Fig. 7. a)  New vibrato mechanism; b) 3D mechanism (top view) 
 

Fig. 8. a)  New lung system of WF-4RIII; b) Lung mechanism detail. 
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found (p<0.05). This means that the AI approaches could be 
used to predict an expressive score even when the musical 
rules are used to produce a live performance based on the 
WF-4RIIII without considerable differences.  

From the results presented above, the implementation of 
feed-forward neural network enabled the WF-4RIII to 
automatically predict the required performance rules (note 
duration and vibrato) to produce an expressive performance 
from a nominal score; by using an expressive performance 
model generated from a professional flutist performing a 
different score (having a similar style).  

V. CONCLUSIONS & FUTURE WORK 
In this paper, the development of the WF-4RIII was 

detailed. From the computational point of view, a 
feed-forward neural network trained with the error 
back-propagation algorithm was implemented to create an 
expressive performance model from a professional flutist 
performance. As a result, an expressive performance was 
automatically produced from a nominal score and performed 
by the WF-4RIII. From the mechanical point of view; the 
vibrato and lung mechanism were re-designed to effectively 
control the music performance rules during the robot’s 
performance. In particular, a human-like vocal cord was 

designed and the lung system was designed to improve the 
airtightness and to increase the inhalation speed.  

Although the WF-4RIII was able of automatically 
generating an expressive performance, we require performing 
further improvements on the learning process of the ANN as 
well as on the performance control system. Regarding the 
first issue, we will implement more efficient methods [16] to 
avoid overfitting (i.e. model selection, early stopping, etc). 
Regarding the performance control system, a feedback signal 
must be considered during the learning process, so that the 
flutist robot can also autonomously improve its own 
performance. Therefore, as a future work, we will propose to 
implement the feedback-error-learning based on the 
implemented neural networks. 
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