
Efficient 6-DOF SLAM with Treemap as a Generic Backend

Udo Frese
SFB/TR 8 Spatial Cognition

Universität Bremen
D-28334 Bremen, Germany

ufrese@informatik.uni-bremen.de

Abstract— Treemap is a generic SLAM algorithm that has
been successfully used to estimate extremely large 2D maps
closing a loop over a million landmarks in 442ms. We are
currently working on an open-source implementation that can
handle most variants of SLAM. In this paper we discuss the
generic part of the algorithm constituting the treemap backend
and the variant specific parts acting as a driver. We present
their interplay from a software-engineering point of view and
show results for the case of 6-DOF feature based SLAM, closing
a simulated loop over 106657 3D features in 209ms.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
a central topic in mobile robotics research for almost two
decades by now [1]. Most of the literature is concerned with
generating a 2D map with a sensor moving in the plane (3-
DOF). Only in the last few years the problem of generating
a 3-D map with a sensor moving in 3D space (6-DOF) has
received considerable attention [2]–[5]. Such a system has
important applications, for instance rescuing victims from
the remains of a collapsed building. So we expect that 6-
DOF SLAM will be a growing research area, in particular
with the recently emerging 3D cameras.

Many 2D SLAM articles address the problem of efficiency
in estimating large maps (see [6] for an overview). It be-
comes critical when the map is by orders of magnitude larger
than the sensor range because then issues such as closing
large loops come up. 3D maps always contain a lot of data,
so are large from a storage space perspective, but up to now
little attention has been paid to large loops and similar issues
that make 2D SLAM difficult. Rather, in 6-DOF SLAM the
efficiency discussion has mainly focused on the first stages
of processing in particular on 3D scan matching [7].

We contributed the treemap algorithm [8] to the efficiency
discussion in 2D SLAM. It is designed for computing
least square estimates for very large maps efficiently. Using
treemap we were able to demonstrate closing a simulated
loop with one million landmarks in 442ms [9]. On the
one hand, the treemap algorithm is sophisticated but also
complicated. On the other hand, it is fairly general mainly
estimating random variables of arbitrary meaning. Hence our
current project is to develop an open source implementation
that – as an implementation – can be used to perform most
variants of SLAM including 2D, 3D, features and/or poses,

Part of this article has appeared on the local workshop “Robotic 3D
Environment Cognition” in Bremen.

and visual SLAM. It consists of the generic treemap backend
that is used by all variants plus a variant specific driver that
implements the specific observation model.

First, the paper contributes this general approach for
facilitating software reuse in SLAM research covering both
algorithmic and software-engineering questions. Second, it
reports first results showing a simulated 6-DOF SLAM
experiment (3D features, no odometry) that uses the same
implementation as our previous million-landmarks (2D fea-
tures, odometry, marginalized poses) experiment. By building
on the efficiency of treemap as a backend, we where able to
close a loop over n = 106657 3D features in 209ms. To
our knowledge no comparable result has been reported in
6-DOF SLAM so far. As with the previous 2D experiment
we use simulations and concentrate on the least square esti-
mation algorithm because sensor preprocessing and feature
extraction depends much more on the specific sensor and
setting and will unlikely be reusable. Data association is
also not addressed here, i.e. the simulation provides the
correct identity of all features. We are confident though to
incorporate it in future, because treemap, as a direct equation
solver, can provide covariance information.

II. LOCAL AND GLOBAL CHALLENGES

Many challenges currently addressed in 6-DOF SLAM
concern the first stages of sensor processing: matching 3D
scans, finding reliable features, matching them, rejecting
outliers, filtering range images or handling bearing-only
initialization. These problems are local in the sense that they
affect only that part of the map that is currently observed
by the sensor. In contrast there is also the question how this
local information and its uncertainty affects the global map.
The most prominent situation is certainly closing a loop.
Then the local information that closes the loop leads to back-
propagation of the error along the loop. The key point, as
we have argued in [6, §12], is that the local uncertainty is
small but complex and depends on the actual sensor and
the detailed circumstances of observation, whereas the global
uncertainty is mostly the composition of local uncertainties.
In particular orientation error of the robot leads to correlated
position error of the robot and all features later on. This
error depends on the magnitude of the orientation error and
on the map’s geometry. It is mostly independent from local
details that lead to that orientation error. Hence the large

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE7.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4814

M M

M

Fig. 1. Data flow of the probabilistic computations performed by treemap.

scale map error is large, rather simple and dominated by the
map’s geometry.

This insight motivates our treemap approach. In the past
it has motivated the design of the treemap algorithm itself
that exploits this locality. And now it motivates our idea
that many different SLAM variants (2D / 3D, features and/or
poses, with/without odometry) can be solved by a specific
local preprocessing plus treemap as a global least-square
backend. From this motivation our goal is:

Whenever you can formulate your SLAM approach
in a least-square framework such that it works for
small maps, you can use treemap as a backend to
make it work for large maps.

The paper is organized as follows. Section III briefly
sketches the treemap algorithm. Section IV discusses the
different SLAM variants. Section V reports on the proposed
architecture for achieving re-usability on the software level,
section VI discusses the different levels of approximation
and finally section VII presents 6-DOF experiments closing
a 106657 feature loop in 209ms.

III. THE TREEMAP ALGORITHM

This section briefly sketches the treemap algorithm [8],
[9]. However, for the purpose of this paper treemap is just a
black box that incrementally receives a set of local Gaussians
and computes the mean of the product of these Gaussians1.
Treemap is related to TJTF [10] and in some aspects to
Dellaert’s multifrontal QR-approach [11] and Atlas [12].

Imagine the robot is in a building that is virtually divided
into two parts A and B. Consider: If the robot is in part
A, what is the information needed about B? Only few of
B’s features are involved in observations with the robot in
A. All other features are of no interest at the moment. So
intuitively, we need everything observations in B can tell on
features also observed from A. Or probabilistically speaking:
the marginal distribution of features observed from both A

1Thanks to the anonymous reviewers for noting this “modular” view.

and B conditioned on observations in B. This idea is applied
recursively deviding the map into a tree of subregions.

These marginal distributions are computed along the
tree (Fig. 1). The computation starts at the leaves which
store the local Gaussians input to treemap (black upwards
arrows). In each leaf features are marginalized out (M©) that
are not involved outside that leaf any more. Their information
is stored as a conditional at the leaf, the marginal is passed
to the parent. There it is multiplied (�), i.e. integrated, with
the corresponding marginal of the other child. Again features
only involved below this node are marginalized out (M©).
Their information is stored at the node as a conditional while
the marginal is again passed upwards.

To compute an estimate (grey downwards arrows) the
mean of the features marginalized out at the root is computed
and passed to the root’s children. There it is combined with
the stored conditional (�) to compute the mean of the feaures
marginalized out there and passed downwards again.

The key points for treemap’s efficiency are a) many small
matrices instead of one large; b) when a new local Gaussian,
i.e. a new leaf, is added, only the distributions from this
leaf up to the root need to be updated; c) the downward
propagation step is essentially a matrix vector product and
hence extremely fast. All this depends on the maps topology,
requiring that it can be recursively devided into halves with
little overlap. This is usually true for buildings, as in the
simulation conducted here, but not for a large open plane
(“mowing the lawn”). To find such a recursive subdivision
treemap executes an optimization algorithm in parallel that
tries to improve the tree by moving subtrees around.

IV. DIFFERENT SLAM VARIANTS

This section discusses different popular variants of SLAM,
the random variables involved, their degrees of freedom,
whether old robot poses are marginalized out (“forgotton”),
and special considerations necessary. An overview is shown
in table I. It can be seen that there are many different variants
making it very worthwhile to have a single backend imple-
mentation with as little variant specific code as possible.
The discussion also serves to point out which estimation
techniques a generic SLAM algorithm should support.

A. 2D SLAM

In 2D SLAM two variants are most popular [1]. The
first is consistent pose estimation where 3-DOF poses are
estimated from 3-DOF links derived from odometry and scan
matching [13]. This is the simplest variant, since no features
are needed and nothing is marginalized out. The second is
the classical variant with 2D point features and 3-DOF poses
where old poses are marginalized out [14]. Marginalization
is implicit in the traditional EKF but destroys sparsity in an
information matrix based approach. Hence, either poses must
be kept at regular intervals or sparsification is required as an
additional approximation (cf. section VI).

If line features, e.g. walls, are mapped instead of point
features, additionally the problem of how to parametrize lines
appears [15]. Some sensors provide no range but bearing

FrE7.5

4815

features poses marginali- sparsification bearing parametri-
zation only zation

[13] Consistent pose estimation 3 DOF
[14] Point feature based 2D SLAM with odometry 2 DOF 3 DOF yes optional
[15] Horizontal line feature based 2D SLAM with odometry 2 DOF 3 DOF yes optional yes
[16] Vertical line feature based 2D visual SLAM 2 DOF 3 DOF yes optional yes

3D consistent pose estimation with inclinometer 4 DOF
Point feature based 3D SLAM with inclinometer 3 DOF 4 DOF yes optional

[2] 6-DOF consistent pose estimation 6 DOF yes
Point feature based 3D SLAM without odometry 3 DOF 6 DOF yes yes

+ inertial rotation 3 DOF 6 DOF yes optional yes
+ inertial translation 3 DOF 9 DOF yes optional yes

[4] Point feature Visual SLAM 3 DOF 6 DOF yes yes yes
+ inertial rotation 3 DOF 6 DOF yes optional yes yes

[17] + inertial translation 3 DOF 9 DOF yes optional yes yes

TABLE I

OVERVIEW OF DIFFERENT SLAM VARIANTS; NUMBER OF DEGREES OF FREEDOM NEEDED FOR FEATURES AND POSES; WHETHER MARGINALIZATION

OR SPARSIFICATION IS USED; WHETHER THE OBSERVATIONS LACK DISTANCE SUCH THAT BEARING ONLY INITIALIZATION IS NEEDED; WHETHER

GENERAL MANIFOLDS (ROTATIONS, LINES) NEED TO BE PARAMETRIZED.

only. A notable example in 2D is a camera detecting vertical
lines. This leads to the additional problem of how to initialize
a feature with unknown distance [16].

B. 3D (4-DOF) SLAM

An intermediate variant between 2D and 3D consists of
3D point features but a robot still moving in 2D. The same
happens if the robot pose is 3D but the orientation with
respect to gravity is measured by inclinometers. In both cases
the robot’s orientation can still be represented by a single
angle making the pose 4-DOF altogether. This kind of SLAM
is basically 2D with an additional Z-coordinate.

C. 3D (6-DOF) SLAM

In full 6-DOF SLAM more variants are possible. Using
3D scan matching [2] one can do 6-DOF consistent pose
estimation. 6-DOF feature based SLAM can for instance be
conducted using a stereo-camera that measures the position
of point features relative to the camera. In contrast to 2D
SLAM usually no odometry is available. This gives rise to
a simple variant, where poses are marginalized out immedi-
ately. Since there is no odometry, sparsity is maintained and
no sparsification is needed. Essentially, this means, that each
set of observations is converted into relative information on
3D point features (cf. experiments in section VII).

This approach has a major limitation. Without odometry a
small sensor blackout or too little overlap between observa-
tions will disintegrate the map because no information links
the involved two poses anymore. Inertial sensors can help by
providing relative orientation (gyros) and absolute inclination
(accelerometers) [17]. This is the pendant of classic SLAM
with 3D point features and 6-DOF poses marginalized out
later. Again, either some poses must be kept or sparsification
is needed. Still, with orientation-odometry only, consecutive
observations must share one feature. Yet another variant
uses the accelerometers as translation-odometry. But when
acceleration is integrated the result is relative velocity not
relative position, so the poses must be augmented by 3D
velocity (9-DOF total) [17].

All 6-DOF SLAM variants share the problem of param-
eterizing 3D orientation because there is no singularity free
parameterization of orientation with 3 parameters.

With a monocular camera [4], no distance can be mea-
sured. So, while consistent pose estimation can use the 5-
DOF links arising from matching two images [18], additional
information is needed for the overall scale. In a feature based
approach this leads to the corresponding problem of bearing-
only initialization [19].

D. Nonlinearity

Nonlinearity is yet another question. It is rather orthogonal
to the different variants because all of them are nonlinear.
So it is a matter of sensor noise and map size how large
the linearization error is and whether efforts to reduce it
are needed. Possible options include repeatedly updating
the linearized Gaussians with the current estimate as new
linearization point and rotating Gaussians to specifically
compensate error in the orientation [20].

V. DRIVER - BACKEND ARCHITECTURE

Figure 2 shows the architecture we propose in this paper
consisting of a generic backend and a driver that depends on
the specific SLAM variant and eventually even on the appli-
cation. The driver mainly implements routines for computing
linearized Gaussians from the original measurements and an
approximation policy that sets appropriate control flags.

When a new observation arrives the driver first checks
whether it involves new features or robot poses. If this is
the case it allocates the apropriate number of 1-dimensional
random variables in the backend. It is important, that the
backend only handles plain 1-D Gaussian random variables
because in the different variants features and poses have
widely varying degrees of freedom. Any hard coded block
matrix layout could not handle this. After that, the driver
initializes these new random variables with a rough initial
estimate in a way that depends on the specific sensor.

The next step is to compute a Gaussian by linearizing
the measurement equations and to add it together with the

FrE7.5

4816

MM

M

M M M M

()

Treemap driver
Gaussians

observations

Treemap backend

control flags Gaussian mean

map estimate

Fig. 2. Data flow between treemap backend and driver. The driver adds
new leaves computed from new observations to the tree (here shown for the
leftmost leaf). It further sets flags invalid, integrable for leaves as well as
marginalizable, sparsifyable for random variables to control approximations
conducted by the backend. In turn it receives the Gaussians mean and
converts it into a map estimate.

original nonlinear measurements to the treemap. As long
as the leaf keeps the original measurements the linearized
Gaussian can be recomputed whenever desired by the driver’s
approximation policy to reduce linearization error.

A subtle issue is what linearization point to use when
integrating a measurement the first time. Especially when
closing a loop the prior estimate can be arbitrarily wrong due
to accumulated error and the measurement itself can often
provide a much better linearization point. Once the mea-
surement is integrated the estimate incorporates information
from the measurement itself and all other measurements so
the estimate provides a better linearization point.

After the Gaussian is passed to the treemap backend,
it updates its internal data-structures, i.e. the tree and the
distributions stored there. Then it computes the mean of
the overall Gaussian. The driver then converts the computed
mean into a map estimate. Usually this means just to copy
numbers. However if the driver uses more sophisticated
parameterizations, for instance for lines or rotations, it must
convert from these parameters to the representation passed
to the application.

The driver further implements a specific approximation
policy. It decides when the backend is allowed to integrate
two leaves, marginalize out a random variable, or sparsify
it out. The strategy involved depends on the variant and
eventually on the specific application. It interacts with the
treemap backend by setting flags in leaves and random
variables whereas the actual operations are performed in the
backend. So the driver defines whether an approximation is
allowed and the backend both decides when to do it and
actually conducts the approximation.

VI. DIFFERENT LEVELS OF APPROXIMATION

This section describes the different levels of approximation
the treemap backend offers (Fig. 3). Such a variety of ways
to trade computation time vs. accuracy greatly facilitates

e1

a

b

c

d

e2

Fig. 3. Different levels of approximation. a) original nonlinear observations
b) keep nonlinear observations c) linearize d) marginalize out old poses e)
sparsify out old poses by first sacrificing the equality constraint and then
marginalizing them out.

generic usage because different application may have differ-
ent restrictions in both. The original nonlinear observations
are illustrated in Fig. 3a. The circles depict robot poses and
the crosses depict features. The black lines depict odometry
and feature observations respectively.

A. Keep nonlinear observations

Treemap is a linear equation solver, so the original
nonlinear observations are assigned to leaves of the tree
(dashed oval) and converted into linearized Gaussians for
each leaf (Fig. 3b). Some features or robot poses are involved
in several leaves. The treemap bookkeeping knows these are
the same and takes care of this fact when computing the
mean. This is depicted by the ’=’ connections in the figure.
As long as the original nonlinear measurements are kept,
the driver can decide to update the linearization. It then
recomputes the linearized Gaussian and flags the leaf invalid
triggering necessary updates in the backend.

B. Linearize

Conversely if the driver decides it will not recompute a leaf
any more, it can flag the leaf integrable. As a consequence,
the treemap backend can integrate this leaf with another

FrE7.5

4817

leaf representing both together in a single Gaussian (such
as adding information matrices). Any nonlinear information
associated with one of the leaves is discarded, finally fixing
the linearization point (Fig. 3c). With this strategy observing
the same features repeatedly does not lead to a growing
representation. When the driver allows to linearize a leaf, the
backend checks whether computation time can be reduced by
integrating it with another leaf. This is part of the general
process that optimizes the tree representation.

C. Marginalize out old poses

Often the application is not interested in old robot poses.
The driver can then flag a random variable as marginal-
izable indicating that it is not needed any more. If the
random variable is only involved in one leaf it can be
marginalized (Fig. 3d) out with the result replacing the
original Gaussian. This certainly precludes that the driver can
relinerize the Gaussian so the leaf must be flagged integrable.
If a marginalizable random variable is involved in several
leaves the treemap backend actively tries to integrate those
leaves to be able to marginalize it out.

D. Sparsify out old poses

Not all old robot poses can be marginalized out this way
because then all leaves would be integrated into one leaf.
Instead, the optimization algorithm implicitly determines a
trade-off between getting too large leaves and keeping too
many old poses. The result has typically much fewer robot
poses than features posing no computational problem. Up
to this point the only approximation is linearization and
as Eustice et al. noted [21] the result is exactly sparse in
information form.

Still the driver can decide to trade in accuracy for effi-
ciency and flag a remaining robot pose sparsifyable. Fig-
ure 3e discusses the effect. Each occurrence of the robot
pose is marginalized out of its leaf independently which is
equivalent to treating them as two different poses. So the
information that both are the same is sacrificed for the sake
of keeping the tree sparse. This sparsification is the same
as used by TJTF [10] and related to ‘cutting the odometry
sequence’ [22] and ‘relocation’ [23]. Remarkably it does not
introduce overconfidence.

Since sparsification involves loss of information the op-
timization algorithm treats it as a last resort used only if
there is not other way to improve the tree. Even then, it asks
the driver that can implement a policy such as sparsifying
out only every n-th robot pose. Note, that sparsification is
the reason why we didn’t choose a large sparse matrix as
the interface to the treemap backend. Because once all local
Gaussians are added into one matrix, as with SEIF, it is
hard to consistently sparsify without inverting the whole
matrix [24].

We used sparsification in our 2D million-landmarks exper-
iment where we kept 48690 poses, sparsified out 285968 and
marginalized out 3373643. The experiments reported here do
not need sparsification since there is no odometry and hence
all robot poses can be marginalized out.

VII. 6-DOF SLAM EXPERIMENTS

The goal of our current project is to implement all the
different SLAM variants. The treemap backend is already
finished with the described generic interface so we were
able to implement a driver for feature based 2D SLAM [9]
in 690 lines of C++ code and a driver for feature based 6-
DOF SLAM without odometry in 410 lines of code. Actually
the 6-DOF implementation is shorter because no odometry
is involved and we needed some special implementation
effort to limit the memory consumption in our 2D million-
landmarks experiment. This section shows results for the 6-
DOF implementation.

A major point for 6-DOF SLAM is how to parametrize
rotations and how to compute an initial estimate for lineariza-
tion. We extend a technique by Castellanos [15] to 3D and
use the product

Q =Q0

(
cos γ − sin γ 0

sin γ cos γ 0

0 0 1

)(
cos β 0 sin β

0 1 0

− sin β 0 cos β

)(
1 0 0

0 cos α − sin α
0 sin α cos α

)

≈Q0

(
1 −γ β
γ 1 −α
−β α 1

)
(1)

of a fixed orientation Q0 and three Euler rotations the angles
of which are the random variables estimated. Q0 is initialized
with the initial estimate so the Euler angles only parameterize
the small perturbation of the orientation and are far from
singularity. Hence they are always linearized at α = β =

γ = 0 and with the linearization shown above.
This technique would in principle allows to reduce the lin-

earization error caused by error in the robot orientation [20].
The distributions passed from a node’s children can be
rotated according to the current estimate before multiplying
them (Fig. 1, �). We have used this technique for 2D SLAM
before [8] closing a loop with 135

◦ orientation error, however
have not implemented it in the 6-DOF version yet.

Since there is no odometry the initial estimate must be
computed from the observed features. We do so by least-
square matching all observations of features already in the
map using an SVD based closed solution [25]. Then we
initialize new features based on the resulting robot pose.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

tim
e

[m
s]

n [10
3]

Fig. 5. Computation time. The top plot shows the overall computation
time per step over the number of features. The two bottom plots divide this
time, bottom to top, into downward estimation (mainly backsubstitution),
bookkeeping, and upward update (mainly QR-decomposition).

FrE7.5

4818

Fig. 4. 6-DOF SLAM map. before and after closing the large loop (between the two building on the ground level) over all n = 106657 features. The
black ellipses show the region where the loop is closed. The whole mapping process can be seen as 3D animation accompanying the article.

In our simulated experiment the robot moves through a
20 story building with features on the room’s walls (Fig. 4,
accompanying video). Then it crosses a bridge on the 19th

floor into another 20 story building and maps that building
too. Finally it returns to the starting position and closes a
loop over all features. The overall map has n = 106657

features and m = 5319956 observations from p = 488289

poses. Poses are not represented in the map. Computation
time was extremely fast with at most 209ms (Fig. 5).

The tree has 21743 nodes, i.e. 10871 leaves. Since initially
for each pose a new leaf is added, approximately 45 leaves
have been integrated into a single leaf by the treemap
backend, highlighting the importance of this mechanism.

VIII. CONCLUSION AND OUTLOOK

We have demonstrated that the treemap algorithm in the
same generic implementation can be used to solve both
2D and 3D feature based SLAM (without odometry) with
high efficiency. We have discussed the general algorithmic
approach and software architecture that allows to extend
this approach to the remaining SLAM variants. Future work
includes implementing those variants, integrating a solution
to the bearing-only initialization problem and implementing
a 3D variant of the rotation technique used to reduce lin-
earization error. We then plan to publish the implementation
as an open source library.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[2] H. Surmann, A. Nüchter, K. Lingemann, and J. Hertzberg, “6D
SLAM - preliminary report on closing the loop in six dimensions,” in
Proceedings of the 5th Symposium on Intelligent Autonomous Vehicles,
Lissabon, 2004.

[3] J. V. Miro, G. Dissanayake, and W. Zhou, “Vision-based SLAM
using natural features in indoor environments,” in Proceedings of the
2005 IEEE International Conference on Intelligent Networks, Sensor
Networks and Information Processing, 2005.

[4] A. Davison, Y. Cid, and N. Kita, “Real time SLAM with wide angle,”
in Proc. IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon,
2004.

[5] K. Ohno and S. Tadokoro, “Dense 3D map building based on LRF
data and color image fusion,” in Proceedings of the International
Conference on Intelligent Robots and Systems, 2005, pp. 1774–1779.

[6] U. Frese, “A discussion of simultaneous localization and mapping,”
Autonomous Robots, vol. 20, no. 1, pp. 25–42, 2006.

[7] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, 2001, pp. 145 – 152.

[8] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp.
103–122, 2006.

[9] U. Frese and L. Schröder, “Closing a million-landmarks loop,” in
Proceedings of the IEEE/RSJ Intern. Conf. on Intelligent Robots and
Systems, Beijing, 2006, pp. 5032–5039.

[10] M. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” in Proceedings of the 18th International Joint Conference
on Artificial Intelligence, San Francisco, 2003, pp. 1157–1164.

[11] F. Dellaert, A. Kipp, and P. Krauthausen, “A multifrontal QR fac-
torization approach to distributed inference applied to multi-robot
localization and mapping,” in Proceedings of the American Association
for Artificial Intelligence, 2005.

[12] M. Bosse, P. Newman, J. Leonard, and S. Teller, “SLAM in large-
scale cyclic environments using the Atlas framework,” International
Journal on Robotics Research, vol. 23, no. 12, pp. 1113–1140, 2004.

[13] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333 –
349, 1997.

[14] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, New York, 1988, pp. 167 – 193.

[15] J. Castellanos, J. Montiel, J. Neira, and J. Tardós, “The SPmap:
A probablistic framework for simultaneous localization and map
building,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 948 – 952, Oct. 1999.

[16] M. Deans and M. Herbert, “Experimental comparison of techniques
for localization and mapping using a bearings only sensor,” in Proc.
of the ISER ’00 Seventh International Symposium on Experimental
Robotics, 2000.

[17] J. Kim and S. Sukkarieh, “Uav navigation: Airborne inertial SLAM,”
Tutorial at IROS 2005, 2005.

[18] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Visu-
ally navigating the RMS titanic with SLAM information filters,” in
Proceedings of Robotics Science and Systems, Boston, 2005.

[19] J. Montiel, J. Civera, and A. Davison, “Unified inverse depth
parametrization for monocular SLAM,” in Proceedings of Robotics:
Science and Systems, Pennsylvania, 2006.

[20] J. Folkesson, P. Jensfelt, and H. I. Christensen, “Vision SLAM in
the measurment subspace,” in Procedings of the IEEE International
Conference on Robotics and Automation, Barcelona, 2005.

[21] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed state
filters,” in Proceedings of the Internation Conference on Robotics and
Automation, Barcelona, 2005, pp. 2428–2435.

[22] U. Frese and G. Hirzinger, “Simultaneous localization and mapping
- a discussion,” in Proceedings of the IJCAI Workshop on Reasoning
with Uncertainty in Robotics, Seattle, Aug. 2001, pp. 17 – 26.

[23] M. Walter, R. Eustice, and J. Leonard, “A provably consistent method
for imposing exact sparsity in feature-based SLAM information fil-
ters,” in Proceedings of the 12th International Symposium of Robotics
Research, 2005.

[24] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: Insights into sparsification,” in Proceedings of the International
Conference on Intelligent Robots and Systems, Edmonton, 2005.

[25] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3-d rigid body
transformations: A comparison of four major algorithms,” Machine
Vision and Applications, vol. 9, no. 5/6, pp. 272–290, 1997.

FrE7.5

4819

