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Abstract— In this article, we propose a fast on-line closed
loop identification method of continuous-time combined with
an output feedback controller of the Generalized Proportional
Integral type (GPI), for the control of an uncertain flexible
robotic arm with unknown mass at the tip, including a Coulomb
friction term in the motor dynamics. A fast, non-asymptotic,
algebraic identification method is used to identify the unknown
system parameter and update the designed certainty equiva-
lence GPI controller. In order to verify this method several
informative experiments are shown.

I. INTRODUCTION

Flexible arm manipulators span a wide range of appli-
cations: space robots, nuclear maintenance, micro-surgery,
contouring control, pattern recognition and many others.
A survey of the literature dealing with applications and
challenging problems related to flexible manipulators may
be found in [1]. The main problem of flexible manipulators
is their vibration due to low stiffness. In order to cancel
that vibration methodologies are required. These combine
on-line identification techniques with control schemes in a
suitable way. Therefore, we first introduce the background
on identification and then the control scheme is proposed.

Identification of continuous-time system parameters has
been studied from different points of view. The works led by
Young in [2] and the books of Sinha and Unbehauen in [3],
[4] describe most of the available techniques. The different
approaches are usually classified into two categories: i) Indi-
rect approaches: we need an equivalent discrete-time model
to fit the data. After that, we transfer the estimated discrete-
time parameters to continuous time. ii) Direct approaches:
We try to estimate the original continuous-time parameters
from the discrete-time data via approximations for the signals
and operators in the continuous-time model. In the case
of the indirect method a classical well-known theory is
developed (see [11]). Nevertheless, these approaches often
require a high numeric burden, without even guaranteeing
convergence. Furthermore, the estimated parameters may not
be correlated with the physical properties of the system.

Unfortunately, on the one hand, identification of robotic
systems is generally focused on indirect approaches, see
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[12], [14]. On the other hand the existing identification
techniques included in the direct approach suffer from poor
speed performance. The objective of this paper is the fast
on-line closed loop identification of continuous-time of the
natural frequency of a one-degree-of-freedom flexible manip-
ulator beam. This technique is combined with a generalized
proportional integrator controller. This was first proposed by
Marquez in [13]; but it was internally unstable although the
closed loop system was asymptotically stable. We propose,
by further manipulation of the integral reconstructor an
internally stable control scheme. The authors have based their
work on the fast identification techniques that were recently
proposed by Fliess and his co-workers in [7]. (See also [8])
for the state and constant estimation of parameters in a fast
and reliable way in feedback control systems. Let us recall
that those techniques are not asymptotic, and do not need
any statistical knowledge of the noises corrupting the data.
Furthermore, this methodology has been successfully applied
in [10] for signal processing.

II. IDENTIFICATION

A. Model description

Consider the following simplified model of a very light-
weight flexible link, with its entire mass concentrated at
the tip, actuated by a DC motor, as shown in Fig. 1. The
dynamics of the system are given by:

mL2θ̈t = c(θm −θt) (1)

ku = J ¨̂θm + ν ˙̂θm + Γ̂c + Γ̂coup (2)

Γ̂coup =
c
n

(θm −θt) (3)

where m is the unknown mass in the tip position. L and c
are the length of the flexible arm and the stiffness of the
bar respectively, and are assumed to be perfectly known, J
is the inertia of the motor, ν the viscous friction coefficient,
Γ̂c is the unknown Coulomb friction torque, Γ̂coup is the
measured coupling torque between the motor and the link,
k is the known electromechanical constant of the motor, u
is the motor input voltage, θ̈m stands for the acceleration of
the motor gear, θ̇m is the velocity of the motor gear. The
constant factor n is the reduction ratio of the motor gear;
thus θm = θ̂m/n. θ̂m is the angular position of the motor and
θt is the unmeasured angular position of the tip.

B. Algebraic estimation of the natural frequency

In order to make the equation deduction more under-
standable we suppose that signals are noise free. Consider
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Fig. 1. Diagram of a single link flexible arm.

equation (3)
θt = θm − n

c
Γ̂coup (4)

If we substitute (4) in (1) we have:

d2θm

dt2 − n
c

¨̂Γcoup =
n
c

ω2
0 Γ̂coup (5)

where ω0 =
(
c/mL2

)1/2
is the unknown natural frequency

of the bar due to the lack of precise knowledge of m. We
assume, however, that c and L are perfectly known. The main
goal is to obtain ω2

0 as fast as possible. We only need to
measure θm and Γ̂coup. The Laplace transform of (5) is:

c
n

(
s2θm − sθm(0)− θ̇(0)

)
−

(
s2Γ̂coup − sΓ̂coup(0)− ˙̂Γcoup(0)

)
=

[
ω2

0

]
Γ̂coup

Taking two derivatives with respect to the complex variable
s, we cancel the initial conditions:

d2(s2θm)
ds2 − n

c
d2(s2Γ̂coup)

ds2 = ω2
0

n
c

d2(Γ̂coup)
ds2 (6)

If we define ξ = θm(t)− n
c Γ̂coup(t) we can rewrite (6) as

follows:
d2(s2ξ )

ds2 = ω2
0

n
c

d2(Γ̂coup)
ds2 (7)

Employing the chain rule, we obtain:

s2 d2(ξ )
ds2 + 4s

dξ
ds

+ 2ξ = ω2
0

n
c

d2(Γ̂coup)
ds2 (8)

Consequently, in order to avoid multiplications by positive
powers of s, which in the time domain are translated as un-
desirable time derivatives, we multiply the above expression
by s−2. After rearrangement we obtain:

ω2
0 =

c
n

d2(ξ )
ds2 + 4s−1 dξ

ds
+ 2s−2ξ

s−2 d2(Γ̂coup)
ds2

(9)

Let L denote the usual operational calculus transform acting
on exponentially bounded signals with bounded left support.
Recall that L −1s(·) = d

dt (·), L −1 dν

dsν (·) = (−1)ν tν(·) and
L −1 1

s (·) =
∫ t

0(·)(σ)dσ . Taking this into account we can
translate (9) into the time domain, being:

ω2
0 =

c
n

[
t2ξ (t)−4

∫ t
0 σξ (σ)dσ + 2

∫ t
0

∫ σ
0 ξ (λ )dλ dσ

]
∫ t

0

∫ σ
0 λ 2Γ̂(λ )dλ dσ

(10)

The time realization of (10) can be written in a State Space
framework via time variant linear (unstable) filters:

ne(t) = t2ξ (t)+ z1

ż1 = z2 −4tξ (t)
ż2 = 2ξ (t)

de(t) = z3

ż3 = z4

ż4 = t2Γ̂coup(t)
(11)

The natural frequency estimator ω2
0 is given by:

[ω2
0 ]est =

{
arbitrary for t ∈ [0,∆)
c
n

[
ne(t)
de(t)

]
for t ∈ [∆,+∞) (12)

where ∆ is an arbitrary small real number. It should be
noted that for the time t = 0, ne(t) and de(t) both are zero.
Therefore, the quotient is undefined for a small period of
time. It is supposed that after a time t = ∆ > 0 the quotient
is reliably computed. Notice that t = ∆ depends on the
arithmetic processor precision and on the data acquisition
card.

Since the available signals θm and Γ̂coup are noisy the
estimation precision yielded by the estimator in (11)-(12) will
depend on the Signal to Noise Ratio (SNR). We assume that
θm and Γ̂coup are perturbed by an added noise with unknown
statistical properties. In order to enhance the SNR we filter
the numerator and denominator, simultaneously, by the same
low-pass filter. Taking advantage of the estimator rational
form in (10), the quotient will not be affected by the filters.
This invariance is emphasized with the use of the different
notations in frequency and time domain, such as:

ω2
0 =

F(s)ne(t)
F(s)de(t)

(13)

with F(s) given by the following transfer function:

F(s) =
ω2

n

s2 + 2ζωn + ω2
n

ne(t) = t2ξ (t)−4
∫ t

0
σξ (σ)dσ + . . .

. . .+ 2
∫ t

0

∫ σ

0
ξ (λ )dλ dσ

de(t) =
∫ t

0

∫ σ

0
λ 2y(λ )dλ dσ (14)

where identical low-pass filters were used, with cut-off
frequency, ωn, and the damping coefficient ζ . The filtered
numerator and denominator, defined by n f (t) and d f (t)
respectively, are given by the solution of the following
system, being the signals ne(t) and de(t) of (11) the inputs:

n f (t) = z5

d f (t) = z7

ż5 = z6

ż6 = −2ζωnz6 −ω2
n (z5 −ne(t))

ż7 = z8

ż8 = −2ζωnz7 −ω2
n (z7 −de(t)) (15)
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Finally, ω2
0 is obtained by:

ω2
0 =




arbitrary t ∈ [0,∆]

n f (t)
d f (t)

t ∈ (∆,+∞)
(16)

Remark 2.1: Invariant low-pass filtering requires a priori
knowledge about the bandwidth of the system. If we do not
have this we can use pure integrations of the form 1/sp,
p ≥ 1.

III. GENERALIZED PROPORTIONAL INTEGRATOR

CONTROLLER

In Laplace transforms notation, the flexible bar transfer
function, obtained from (1), can be written as follows,

Gb(s) =
θt (s)
θm(s)

=
ω2

0

s2 + ω2
0

(17)

As in [5] the coupling torque can be cancelled in the motor
by means of a compensation term. In this case the voltage
applied to the motor is of the form,

u = uc +
Γ̂coup

k
(18)

where uc is the voltage applied before the compensation term.
The system in (2) is then given by:

kuc = J ¨̂θm + ν ˙̂θm + Γ̂c (19)

where Γ̂c is a perturbation produced by Coulomb’s friction,
depending only on the sign of the angular velocity. The
controller to be designed will be robust with respect to these
unknown piecewise constant torque disturbances affecting
the motor dynamics. Thus the perturbation free system to
be considered is the following:

Kuc = Jθ̈m + νθ̇m (20)

To simplify developments, let A = K/J, B = ν/J. The DC
motor transfer function is then written as:

θm(s)
uc(s)

=
A

s(s+ B)
(21)

The regulation of the load position θt (t) to track a given
smooth reference trajectory θ ∗

m(t) is desired. For the syn-
thesis of the feedback law we use only the measured motor
position θm and the measured coupling torque Γ̂coup. One
of the prevailing restrictions throughout our treatment of the
problem is our desire not to measure, or compute on the
basis samplings, the angular velocities of the motor shaft or
of the load.

A. Outer loop controller

Consider the model of the flexible link, given in (1)
and suppose for a moment that we know the value of the
unknown parameter ω0. This subsystem is flat, with flat
output given by θt . (See [9]). The parametrization of θm in
terms of θt is given, in reduction gear terms, by:

θm =
mL2

c
θ̈t + θt =

1

ω2
0

θ̈t + θt (22)

System (22) is a second order system in which we wish
to regulate the tip position of the flexible bar, θt , towards
a given smooth reference trajectory θ ∗

t (t) with θm acting as
an auxiliary control input. Clearly, if an auxiliary open loop
control input exist, θ ∗

m(t) that ideally achieves the tracking
of θ ∗

t (t) for suitable initial conditions, it thus satisfies the
second order dynamics, in reduction gear terms (23).

θ ∗
m(t) =

1

ω2
0

θ̈t
∗(t)+ θ ∗

t (t) (23)

Subtracting (23) from (22), we obtain an expression in terms
of the angular tracking errors:

ëθt = ω2
0 (eθm − eθt ) (24)

where eθm = θm − θ ∗
m(t), eθt = θt − θ ∗

t (t). Suppose for a
moment that we are able to measure the angular position
velocity tracking error, eθt , then the outer loop feedback
incremental controller could be proposed to be the following
PID controller,

eθm = eθt +
1

ω2
0

[
−k2ėθt − k1eθt − k0

∫ t

0
eθt (σ)dσ

]
(25)

In such a case, the closed loop tracking error eθt evolves
governed by,

e(3)
θt

+ k2ëθt + k1ėθt + k0eθt = 0 (26)

The design parameters {k2,k1,k0}, are then chosen so as to
render the closed loop characteristic polynomial, a Hurwitz
polynomial with desirable roots. However, in order to avoid
tracking error velocity measurements, we propose to obtain
an integral reconstructor for the angular velocity error signal
ėθt . We proceed by integrating the expression (24) once; and,
later, by disregarding the constant error due to the tracking
error velocity initial conditions. The estimated error velocity
ˆ̇eθt can be computed in the following manner:

ˆ̇eθt = ėθt (t)− ėθt (0) = ω2
0

∫ t

0
(eθm(σ)− eθt (σ))d(σ) (27)

The integral reconstructor neglects the possibly nonzero
initial condition ėθt (0) and, hence, it exhibits a constant
estimation error. When the reconstructor is used in the
derivative part of the PID controller, the constant error is
suitably compensated thanks to the integral control action of
the PID controller. By substituting the integral reconstructor
ˆ̇eθt (27) for ėθt in the PID controller (25), and after various
rearrangements we obtain:

(θm −θ ∗
m) =

[
γ1s+ γ0

s+ γ2

]
(θ ∗

t −θt) (28)

The tip angular position can not be measured, but it can
certainly be computed from the expression relating to the tip
position with the motor position and the coupling torque (Γ):

Γ = c(θm −θt) = mL2θ̈t = nΓ̂coup (29)

Thus, the angular position θt is readily expressed as,

θt = θm − 1
c

Γ (30)
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Fig. 2 depicts the feedback control scheme under which
the outer loop controller would actually be implemented in
practise. The outer loop system in Fig. 2 is asymptotically
exponentially stable. To specify the parameters, {γ2,γ1,γ0},
we can choose to locate the closed loop poles in the left
half of the complex plane. All three poles can be located at
the same point of the real axis, s = −a, using the following
polynomial equation,

s3 + 3as2 + 3a2s+ a3 = 0 (31)

where the parameter a represents the desired location of the
poles. The characteristic equation of the closed loop system
is,

s3 + γ2s2 + ω2
0 (1 + γ1)s+ ω2

0 (γ2 + γ0) = 0 (32)

By identifying each term of the expression (31) with those
of (32), the design parameters {γ2,γ1,γ0} can be uniquely
specified.

B. Inner loop controller

The angular position θm, generated as an auxiliary control
input in the previous controller design step, is now regarded
as a reference trajectory for the motor controller. We denote
this reference trajectory as θ̂mr.

The dynamics of the DC motor, including the Coulomb
friction term, is given by (19). It is desirable to design the
controller to be robust with respect to this torque disturbance.

The following feedback controller is proposed,

eν =
ν
K

ˆ̇eθm +
J
K

[
−k3 ˆ̇eθm − k2eθm − k1

∫ t

0
eθm(σ)d(σ)

−k0

∫ t

0

∫ t

0
(eθm(σ2))d(σ2)d(σ1)

]
(33)

The following integral reconstructor for the angular ve-
locity error signal ˆ̇eθm is obtained.

ˆ̇eθm =
K
J

∫ t

0
eν(σ)d(σ)− ν

J
eθm (34)

By replacing ˆ̇eθm (34) in (30), and after various rearrange-
ments, the feedback control law is obtained as:

(uc −u∗c) =
[

α2s2 + α1s+ α0

s(s+ α3)

]
(θ ∗

m −θm) (35)

The open loop control u∗c(t) that ideally achieves the open
loop tracking of the inner loop is given by

u∗c(t) =
1
A

θ̈ ∗
m(t)+

B
A

θ̇ ∗
m(t) (36)

The inner loop system in Fig. 2 is asymptotically expo-
nentially stable. To design the parameters {α3,α2,α1,α0}
we can choose to place the closed loop poles in a desired
location of the left half of the complex plane. As with the
outer loop, all poles can be located at the same real value
and α3,α2,α1,α0 can be uniquely obtained by equalizing the
terms of the following two polynomials:

s4 + 4ps3 + 6p2s2 + 4p3s+ p4 = 0 (37)

s4 +(α3 + B)s3 +(α3B + α2A)s2 + α1As+ α0A = 0 (38)

Fig. 2. Flexible link dc motor system controlled by a two stage GPI
controller design.

TABLE I

DATA OF THE MOTOR-GEAR SET

J (kgm2) ν (Nms) k ( Nm
V ) n A ( N

Vkgs ) B( Ns
kgm )

6.87×10−5 1.041×10−3 0.21 50 61.14 15.15

where the parameter p represents the common location of
all the closed loop poles.

IV. EXPERIMENTATION

In this section the experimental platform and the exper-
iment design are briefly explained. The identification and
control method previously described are applied here to a
one degree of freedom flexible robot.

A. Experimental platform description

Fig. 3 depicts a picture of the experimental platform
constituted by a three legged metallic structure to support
an Harmonic Drive mini servo DC motor RH-8D-6006-
E036AL-SP(N) which has a reduction relation characterized
by n = 50. The frame makes the stable and free rotation of the
motor around the vertical axis of the platform possible. The
motor shaft is capable of turning either right or left around
the Z axis. A servo amplifier is used to supply voltage to
the DC motor. This amplifier accepts control inputs from
the computer in the range of [−10,10] (V). A carbon fiber
flexible beam with a diameter of 3 (mm), a length of 500
(mm) and a stiffness of 1.6 (Nm) is embedded in the motor
shaft. At the other end of the beam there is a load in the
shape of a disc with a diameter of 90 (mm). The load freely
rotates with respect to its vertical axis. This means that the
torque produced by the load inertia does not influence the tip
of the beam. The load floats on the surface of an air table, so
the gravity effect and the friction of the load with the surface
of the table are canceled. The sensor system is integrated by
an encoder embedded in the motor which allows us to know
the motor position with a precision of 7× 10−5 (rad) and
a pair of strain gauges with a gauge factor of 2.16 and a
resistance of 120.2 Ω. The sample time for the processing
of the signals was of 2×10−3 (s).

B. Results

The values of the motor parameters are shown in Table
I. These numerical values are used to implement the inner
loop controller on the actual physical platform.
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Fig. 3. Flexible robot prototype.

The system should be as fast as possible, but care should
be taken of possible saturations of the motor which occur at
10 (V). The poles can be located in a reasonable location
of the negative real axis. If closed loop poles are located in,
say, −95, the transfer function of the controller from (35),
which depends on the location of the poles in closed loop
of the inner loop and the values of the motor parameters A
and B as is shown in (37) and (38) respectively, results in
the following expression,

uc −u∗c
θ ∗

m −θm
=

798s2 + 5.6 ·104s+ 1.3 ·106

s(s+ 365)
(39)

The feed-forward term in (36), which depends on the values
of the motor parameters is computed in accordance with,

u∗c = 0.02θ̈ ∗
m(t)+ 0.25θ̈ ∗

m(t) (40)

The parameter used for the flexible arm are c = 1.6 (Nm)
and L = 0.5 (m), the mass, “m” being unknown. The poles
for the outer loop design are located at −10 in the real axis,
in order to assure that the outer loop is slower than the inner
loop, with a natural frequency of the bar given by an initial,
arbitrary, estimate of ω0i = 9 (rad/s). The transfer function
of the controller (28), which depends on the location of the
closed loop poles of the outer loop and the natural frequency
of the bar as1 is shown in (31) and (32) respectively, is given
by the following expression,

θm −θ ∗
m

θ ∗
t −θt

=
2.7s−17.7

s+ 30
(41)

The open loop reference control input from (23) in terms of
the initial, arbitrary estimate of ω0i is given by,

θ ∗
m(t) =

1

ω2
0i

θ̈ ∗
t (t)+ θ ∗

t (t) = 12.3 ·10−3θ̈ ∗
t (t)+ θ ∗

t (t) (42)

The desired reference trajectory used for the tracking
problem of the flexible arm is specified as a Bezier’s eighth
order polynomial. The on-line algebraic estimation of the
unknown parameter ω0, in accordance with (11), (15) and
(16), is carried out in ∆ = 0.5 seconds (see Fig. 4). At the
end of this small time interval, the controller is immediately
replaced, or updated, with the accurate parameter estimate,
given by ω0e = 15.2 (rad/s). Fig. 5 depicts the update of

the controller and how, after the update of the controller
(after the dashed line) the tip position θt tracks the desired
trajectory θ ∗

t with no steady state error. The corresponding
transfer function of this new controller is then found to be,

θm −θ ∗
m

θ ∗
t −θt

=
0.3s−25.7

s+ 30
(43)

The open loop reference control input θ ∗
m(t) from (23) in

terms of the new estimate ω0e is given by:

θ ∗
m(t) =

1

ω2
0e

θ̈t
∗(t)+ θ ∗

t (t) = 4.3 ·10−3θ̈t
∗(t)+ θ ∗

t (t) (44)
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Fig. 4. On-line estimation of ω0.
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Fig. 5. Trajectory tracking with on-line estimate ω0.
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Fig. 6. Comparison between trajectory trackings.
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Fig. 6 shows the commanded trajectory θ ∗
t and the re-

sponse of the closed loop system θt2 when the feedback
controller uses a wrong, arbitrary estimate of ω0 given by the
specification: ω0i = 9 (rad/s). The controlled arm response
clearly shows a highly oscillatory response. Nevertheless, the
controller tries to track the trajectory and locate the arm in
the required steady state position. However, with the adaptive
control, the tip position θt does not follows the commanded
trajectory until time 0.5 (s) because of the initial, value of
the natural frequency of the bar ω0i. After 0.5 (s),when
the feedback controller incorporates the on-line estimate ω0e

the error produced up to 0.5 (s) rapidly converges to zero
and thus a quite precise tracking of the desired trajectory is
achieved, Fig. 6, (see also Fig. 5).
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Fig. 7. Control input voltage to the DC motor.
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Fig. 8. Results of the second experiment.

Fig. 7 depicts the input control voltage to the DC motor.
It may be noted that the controller does not work well and
saturates the amplifier at [10,-10] (V) before 0.5 (s). This
is the time when the controller is updated with the on-line
estimate ω0e. After this time, the controller rapidly eliminates
the tracking error, and therefore the input control voltage is
smoothed and does not saturate the amplifier.

A new experiment is carried out to validate the previous re-
sults. Now, a new initial, arbitrary estimate natural frequency
ω0i = 20 (rad/s) is introduced. The real natural frequency is
estimated with the algebraic method in approximately 0.5
seconds and the value estimated is ω0e = 15.2 (rad/s) (see
the first picture of Fig. 8). The controller is updated at this

time with this new accurate parameter estimate as took place
in the experiment above. The second picture of Fig. 8 depicts
the good trajectory tracking. These results are similar to those
obtained in the previous experiment with ω0i = 9 (rad/s).

V. CONCLUSIONS

A fast on-line closed loop continuous-time estimator of
natural frequency of a flexible robot is proposed in con-
nection with a two stage GPI controller design scheme.
This methodology only requires the measurement of the
angular position of the motor and the coupling torque.
Among the advantages of this technique we find that: i)
A direct estimation of the parameters without an undesired
translation between discrete and continuous time domains
is achieved. ii) Independent statistical hypothesis of the
signal is not required, so closed loop operation is easier to
implement. Finally, after the identification has been carried
out we are capable of controlling the system via a GPI
feedback control scheme. This methodology is well-suited
to the important problem of control degradation in flexible
arms as consequence of payload changes.
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