
Enhancing Software Modularity and Extensibility:
A Case for using Generic Data Representations

Gregory Broten
Defence Research and Development Canada – Suffield

{greg.broten}@drdc-rddc.gc.ca

Abstract— Portable, modular and extensible software allows
robotics researchers to pool their resources by sharing algo-
rithms, thus advancing research in the field of robotics at a
faster rate than is possible under a non-collaborative model. The
development and use of frameworks and middleware, allowing re-
searchers to encapsulate robotic capabilities within a component
structure, has traditionally been the focus of robotics software
engineering research. Although components greatly enhance the
software mechanism’s portability, modularity and extensibility,
they do not directly address the algorithmic issues confronting
developers of robotics software. Software algorithms, implement-
ing specific robotic capabilities, require input data and produce
output results. As a rule, these input/output data representations
are closely tied to a given algorithmic implementation and hence
impose limitations on modularity and extensibility. This paper
investigates the use of generic data representations to enhance
software modularity and extensibility. Experiments, conducted
on the DRDC Raptor Unmanned Ground Vehicle, compared
the performance of algorithms based upon both generic and
algorithm specific data representations. This research has de-
termined that the performance penalty, resulting from generic
data representations usage, is manageable by robotic platforms
using current off-the-shelf computing platforms.

I. INTRODUCTION

The holy grail of software engineering is portable, modular
and extensible ”software”, which can be easily and seamlessly
transported to, and integrated into, new applications. Software
researchers have made significant progress towards this goal
through a component based approach1 using frameworks and
middleware [1], [2], [3], [4], [5], [6]. Components are the key
idea behind this approach and Szyperski defines components
as ”binary units of independent production, acquisition, and
deployment that interact to form a functioning system” [7].
Thus, a component is an independent entity that is capable of
executing without requiring the services of a complete system
and is often considered to be a separate process that runs under
its own workspace. Through the use of components, a system
can be decoupled into its constituent elements. This decoupling
results in portable and modular software that exhibits plug-
and-play characteristics.

Frameworks define standard design patterns that lead to
common or generic component implementations [8]. These
design patterns are based upon generic communications pat-
terns, such as send, query or push, through which components
share objects [9]. Middleware provides standard mechanisms

1Often referred to as Component Based Software Engineering (CBSE).

for moving the data encapsulated by an object between compo-
nents and this is usually accomplished in a network transparent
and platform independent manner.

Thus, the combination of components, frameworks, and
middleware allows researchers to create a component repos-
itory where they can share their algorithms. Under ideal
circumstances, a researcher could download available com-
ponents from such a repository and easily integrate them onto
his given robotic platform. Such a process would eliminate the
need to re-implement existing and commonly used algorithms.
This process of making algorithms transparently accessible
to other researchers requires more than common component
mechanisms, it also requires data abstractions that implement
generic representations.

This paper investigates generic data representation for
robotic systems. Section II of this paper introduces the
idea of generic data representations. Section III describes
the generic data representations used on DRDC’s Raptor
unmanned ground vehicle (UGV). The performance results
using generic data representations are presented in Section IV.
Finally, our conclusions are presented in Section V.

II. GENERIC DATA REPRESENTATIONS

A. Motivation

The growing acceptance and adoption of components,
frameworks, and middleware is a major step towards realizing
unfettered software modularity and extensibility. These three
concepts implement the software mechanisms that theoreti-
cally allow researchers to easily share algorithms, but algo-
rithmic modularity and extensibility requires more than this.
It requires that algorithmic implementations are independent
from both the input and output data structures.

B. Software Development Process

All algorithms require input data and the results of algo-
rithms are also stored in data structures. Unfettered modularity
and extensibility demands that algorithmic implementations
be independent from these input and data structures. Figure
1 shows the standard flow of data, from sensing through to
processing, in a robotic system. The data flows in this diagram
show an obvious implementation strategy, which starts at the
sensing devices and proceeds towards the application.

Such an implementation plan initially focuses on the sens-
ing device’s requirements. The requirements of the applica-
tion/algorithm are considered after the device driver software

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA10.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 299

Device

Device Driver

Application/Algorithm

Sensing

Raw Data

Input Data Structure

Device

Output Data Structure

World

Output Data Structure

World

Decision

Device Driver

Sensing

Raw Data

Input Data Structure

Output Data Structure

Fig. 1. Standard Data Flow.

has been completed. This approach immediately leads re-
searchers down the path towards “algorithmic dependence”.

C. Algorithmic Dependence

Historically there has been an unfortunate tendency for
robotics researchers to propagate the raw sensor data
structures, from the device driver, towards their applica-
tion/algorithmic implementation. To illustrate this issue, it is
instructive to look at VFH algorithm [10], [11] from the Player
open source project [5], [12]. The VFH algorithm input data
can come from one of two sources, a horizontally mounted
laser rangefinder or a ranging sonar. Player provides a driver
for the ubiquitous SICK LMS 200 laser rangefinder. Thus, the
SICK laser is commonly used by VFH 2. Shown below is a
partial listing of the structure Player uses to encode the range
data returned from a laser:

1 /* The max # of laser range values */
2 #define PLAYER_LASER_MAX_SAMPLES 1024

3 /* The basic laser data packet. */
4 typedef struct player_laser_data
5 {
6 /* Start & end angles for the scan */
7 float min_angle;

8 /* Number of range readings. */
9 uint32_t ranges_count;

10 /* Range readings [m]. */
11 float ranges[PLAYER_LASER_MAX_SAMPLE];
12 } player_laser_data_t;

As can be readily seen on line 2, the
PLAYER LASER MAX SAMPLES variable defines the
maximum number of laser samples. Although Player allocates
1024 elements for data, the SICK laser usually returns either
181 or 361 data points. Thus, the ranges count variable,

2Player encodes the laser using polar co-ordinates where the angle between
consecutive ranges in implicitly defined by the array size and laser’s FOV.

found on line 9, stores the actual number of laser ranges
received. On line 11, the ranges variable reserves a static
array of floats for the laser data.

The VFH application uses the
PLAYER LASER MAX SAMPLES definition to create
an extended internal representation that includes both range
and bearing information. As shown on line 3 in the code
below, this static allocation is a 2-D array of doubles.

1 // Laser range and bearing values
2 int laser_count;
3 double
laser_ranges[PLAYER_LASER_MAX_SAMPLES][2];

The VFH algorithm uses the
PLAYER LASER MAX SAMPLES definition to initialize
the laser ranges array, as shown below on lines 1 and 2.
Unfortunately, VFH is not consistent, as shown in lines 6
through 14 of the code where an algorithmic calculation is
performed, since it uses the magic number of 181 as a loop
counter.

1 for(i=0; i<PLAYER_LASER_MAX_SAMPLES; i++)
2 this->laser_ranges[i][0] = -1;

3 // vfh seems to be very oriented around
4 // 180 d scans so interpolate to get 180
5 // b += 90.0;
6 for(i = 0; i < 181; i++)
7 {
8 unsigned int index = rint(i/db);
9 assert(index>=0&&index<data.ranges_count);
10 this->laser_ranges[i*2][0] =
11 data.ranges[index] * 1e3;
12 //this->laser_ranges[i*2][1] = index;
13 // b += db;
14 }

The most important conclusion illuminated by these VFH
code snippets is not the coding style, but the fact that the
VFH algorithm is intimately tied to the original SICK laser
data representation.

D. Algorithmic Independence

Modern programming languages, such as C++ using the
Standard C++ Template (STL) library, define dynamic arrays
such as vectors. Although dynamic vectors are less efficient3

than their static cousins, they provide the runtime flexibility
that is essential for modular and extensible software. The
following code snippet, representing the VFH code rewritten
in C++, illustrates the flexibility of C++ vectors. On line 2
is the laser ranges variable, which is defined as a vector of
doubles. The code on line 3 loops using the size of the received
data, while line 4 both allocates storage and initializes the
laser ranges variable. Lines 5 through 9 perform the same
algorithmic calculation, but on data that in now stored in a
STL vector.

1 // Laser range
2 vector<double> laser_ranges;

3Both computationally and in memory requirements.

WeA10.3

300

3 for(i=0; i < data.ranges.size()*2; i++)
4 laser_ranges.push_back(-1);

5 for(i = 0; i < laser_ranges.size(); i++)
6 {
7 unsigned int index = rint(i/db);
8 laser_ranges[i*2]=data.ranges[index]*1e3;
9 }

Dynamic vectors are allocated while an application is exe-
cuting and, hence, do not require compile time definitions and
static allocations. Additionally, they encapsulate vector related
meta information such as the vector size. The above code, with
no compile time dependencies, shows this runtime flexibility.
These properties make dynamic arrays ideal for implementing
modular and extensible software, assuming the performance
penalty is manageable.

III. DRDC’S GENERIC REPRESENTATIONS

A. The Miro Framework at DRDC

DRDC adapted and extended Miro (MIddleware for
RObots) [4], [13] as the framework for its robotics software de-
velopment. Miro is a distributed, object oriented framework for
mobile robot control. It reduces software development times
and costs by providing data structures, functions, communi-
cations protocols, and synchronization mechanisms specific
to robots. The Miro framework is built upon the TAO/ACE
middleware combinations where TAO (The ACE ORB) [14]
is a CORBA (Common Object Request Broker Architecture)
[15] implementation using ACE (Adaptive Communications
Environment) [16]. The TAO/ACE combination provides com-
ponent interfaces, network transparency, and platform indepen-
dence.

Although Miro was originally developed for soccer robots,
its flexible framework was easily adapted to the outdoor,
unmanned vehicle environment.

B. Representing Generic Range Data

CORBA supports dynamic arrays through its sequence con-
struct. Although the operational aspects of a CORBA sequence
are similar to a C++ vector, a CORBA sequence benefits from
network transparency where as a C++ vector does not 4. Thus,
both Miro and DRDC extensively use the CORBA sequence
as constructs within CORBA objects.

1) Miro Range Representations: Miro defines dynamic
range representations using both 1 and 2 dimensional CORBA
sequences. These constructs are shown in the following code
snippet.

//! A vector of sensor readings.
typedef sequence<long> RangeGroup;
//! A vector of sensor groups.
typedef sequence<RangeGroup> RangeScanIDL;

The RangeGroupIDL represents range data as a dynamic, 1-
D array of long integers, and the RangeScanIDL implements a
variable length 2-D representation. Using these two constructs,

4This means C++ vectors and similar STL constructs cannot be embedded
in CORBA objects.

Miro represents range data in a flexible manner, but these
construct do not lead to unfettered modularity and extensibility
since significance is still attached to the entry order of the array
5.

2) DRDC 3-D Range Representations: Although the Miro
range representations are runtime dynamic, they do not provide
sufficient abstraction to implement transparently modular and
extensible software. To rectify this deficiency, DRDC created
a 3-D range construct that natively supports code modularity
and extensibility. Under this approach, the device driver de-
composes the range into its 3-D constituents; namely, (x,y,z)
positions. This generic range representation is devoid of any
underlying assumptions and is applicable to all ranging devices
whether they be laser rangefinders, triangulation rangefinders,
stereo vision, or sonars.

DRDC implemented two types of 3-D range representations.
The first representation, shown in the following code snippet,
used static, predefined arrays.

//! Optimized 3D Range Sensor.
const long POSE_COLS = 4;
const long POSE_ROWS = 4;
const long LASER_NUM = 361;
const long PLANES_NUM = POSE_COLS;
//! An array of 3d point groups.
typedef double
Range3dLaserIDL[LASER_NUM][PLANES_NUM];

This static implementation uses an array of 2 dimensions
to store the (x,y,z) position and the scaler6. It sacrifices
modularity/extensibility for performance and serves as a basis
for comparison with a second DRDC representation. The
second DRDC implementation, using CORBA sequences,
creates a runtime dynamic 3-D range representation. This
implementation, shown below, uses the Miro RangeScanIDL
2 dimensional sequence to represent range data.

//! The full scan of all sensor groups.
RangeScanIDL range3d;

The positional information is again encoded as (x,y,z, scale).

IV. EXPERIMENTAL RESULTS

From a theoretical perspective, generic data structures offer
numerous advantages, as was detailed in Section II, but is
it practical to implement such representations using currently
available computing platforms? DRDC performed experiments
that quantified the performance of various data representations
and the results of these experiments are given in the following
sections.

A. Setup

For these experiments, DRDC used its Raptor UGV as
shown in Figure 2. The Raptor contains a complete suite of
applications that allow the vehicle to autonomously operate
in low complexity, outdoor environments. Figure 3 is a flow

5A line scanner, like the SICK laser, encodes angular information using the
entry order in the array.

6With the scaler, the position representation is homogeneous transform
compliant.

WeA10.3

301

diagram that shows the various services running on the Raptor
and the data flows between these services.

Fig. 2. Raptor Unmanned Ground Vehicle. Each Raptor used one or more
roof mounted SICK lasers and stereo cameras; Differential GPS and IMU;
and wireless mesh networking routers.

LASER STEREO IMU GPS

VEHICLE

SERVER
MODEL

DETECTION FOLLOWING
WAYPOINT

ARBITER
ARC

OBSTACLEHAZARD
AVOIDANCE

PATH
PLANNING

MAPPING
TERRAIN

MAPPING
TRAVERSE.

Fig. 3. Raptor Architecture Flow Diagram. Each box represents a service
implementing a specific capability.

To facilitate the investigation of data representations, the
Raptor was used to log the real world data. The logged data
consisted of raw range data from a SICK laser rangefinder,
GPS position, and IMU orientation. Using the Miro Logplayer,
this data could easily be played back into the modules that
comprise the Raptor system. Given the generic data represen-
tations focus of this research, the range data was logged in
two formats:

• Range data stored as 3-D points in the static
Range3dLaserIDL structure, and

• 3-D range data stored in the dynamic RangeScanIDL
structure.

The experiments were then performed on a Dell Optiplex
GX280 computer running at 3.2 GHz with 1 GB of RAM.
The Miro LogPlayer was used to replay the logged data and
the system’s performance was investigated.

B. CORBA Event Publication Performance

DRDC’s laser device driver converts the raw SICK laser
data representation into a 3-D representation. The DRDC
world representation module requires a 3-D representation,
thus this conversion does not impose an extra burden, but
this representation consumes three times more memory than
the native laser structure and this size difference does impose
a performance penalty. Under the DRDC architecture [8],
the range data is published as an event under the CORBA
notification service and an experiment was performed to
quantify the extra time consumed by the larger generic 3-D
range representation. The results, representing 18,000 CORBA
publications, are shown in Table I.

Range Representation Array Size Time Std.

Native Array 361 × 1 doubles 340 µs 37 µs
3-D Range Array 361 × 4 doubles 371 µs 27 µs

TABLE I

TIME REQUIRED TO PUBLISH RANGE EVENTS

As can be seen in Table I, the 3-D range event consumes
a mere 31 more µs than the native array. Thus, it can be
concluded that the range representation memory requirements
have a minimal impact on the overall performance.

C. Generic vs. Specific Representations

Transparent modularity and extensibility requires generic
data representations that abstract the underlying data by using
runtime dynamic data structures. DRDC performed exper-
iments that quantified a specific application’s performance
using both static and dynamic data structures. To conduct this
comparison, DRDC investigated the performance of the two
range data representations detailed in Section III-B.2.

The laser device driver first converts the raw range data
to a 3-D representation. Then, before this range data can be
used by other applications, it first must be transformed from
its Laser Beam frame into the Map frame. Figure 4 shows the
transformation sequence that must occur before the range data
can be integrated into a world representation by DRDC’s map
application.

Z

X
Y

Right Side

Robot chassis
Top

Front

X

Z

Laser Beam

TL
TMR R

Y

Laser Beam Frame

Z

X

Y

Gravity

Forward Motion

Robot Frame Map Frame

Fig. 4. Co-ordinate Systems and Transformations

WeA10.3

302

This transformation between frames is computing intensive
and must be performed each time range data is received
from the SICK laser. The frame transformations require the
multiplication of a 4 × 4 matrix by a 4 × 361 matrix at the
laser update rate of 26.6 ms. For these experiments, the time
required to complete these transformations was measured and
statistics were gathered for a sample of 18,000 range data
representations. Additionally, these experiments investigated
the transformation times using two different matrix library
implementations.

1) Performance using ATLAS Libraries: The 3-D range
data transformation, from the Laser Beam frame to the Map
frame, is accomplished by multiplying the raw 3-D data by
the RT L × MT R homogeneous transform. Matrices represent
all the entities used in this process. This experiment measured
the time required to perform this matrix algebra using the
ATLAS [17] cblas dgemm function. Three separate ATLAS
based experiments were conducted:

• Static arrays using standard C/C++ array indexing,
• Dynamic sequences using standard CORBA sequence

indexing, and
• Dynamic sequences using CORBA pointers and auto-

incrementing.

CORBA sequences, using the standard [][] index operators,
are known to be less efficient than using pointers to access the
sequence data7; thus, both CORBA approaches were tested.

Representation Description Access Time Std.

Range3dLaserIDL Array 361 × 4 Indices 64 µs 11 us
RangeScanIDL CORBA Sequences Indices 98 µs 18 µs
RangeScanIDL CORBA Sequences Pointers 68 µs 12 µs

TABLE II

TIME TO PERFORM RANGE TRANSFORMATION USING ATLAS

Table II shows that all data representations produce fast
transformations, which require little execution time. In com-
parison, an indexed CORBA sequence consumes � 53%
more time than the static Range3dLaserIDL array. A CORBA
sequence, accessed using CORBA pointers, is a more efficient
implementation and required only � 6% more time than the
static array. Using CORBA pointers, along with standard C
auto-incrementing, was significantly more efficient than using
standard CORBA indices on sequences. The switch from stan-
dard CORBA sequence indexing to CORBA sequence pointers
resulted in a � 31% decrease in execution time. Given the
ATLAS cblas dgemm function requires a fixed execution time,
the extra overhead accrued by the RangeScanIDL CORBA
sequence implementation(s) can be attributed to copying the
range data out of the CORBA sequence into the array structure
that is suitable for the ATLAS cblas dgemm function.

2) Performance using BOOST Libraries: The same ex-
periments were conducted using BOOST matrix math [19].

7The CORBA ::get buffer function [18] implements this functionality and
is especially useful for large blocks of data.

Although ATLAS is a very capable implementation, its roots
in FORTAN and C result in complex function calls. The code
snippet, given below, shows that the ATLAS cblas dgemm re-
quires 14 parameters, all of which must be correctly specified.

cblas_dgemm(CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
Miro::POSE_COLS,
Miro::LASER_NUM,
Miro::POSE_COLS,
alpha,
(const double *)pose,
Miro::POSE_ROWS,
(const double *)range3d,
Miro::POSE_COLS,
beta,
(double *)&trans_range,
Miro::LASER_NUM);

In comparison to ATLAS matrix math, the BOOST imple-
mentation is very simple. The equivalent BOOST implemen-
tation reads as one would write the mathematical equation and
is shown below.

HTproduct = prod(pose, transform)

Table III shows the time required to complete the range
transformations using three separate BOOST implementations.

Representation Description Access Time Std.

Range3dLaserIDL Array 361 × 4 Indices 368 µs 51 us
RangeScanIDL CORBA Sequences Indices 527 µs 62 us
RangeScanIDL CORBA Sequences Pointers 509 µs 60 us

TABLE III

TIME TO PERFORM RANGE TRANSFORMATION USING BOOST

Table III shows that using BOOST libraries imposes a
significant performance penalty when compared to the exe-
cution times yielded using the ATLAS libraries. The most
efficient ATLAS implementation is approximately 6 times
faster than the most efficient BOOST implementation. Even
the slowest ATLAS implementation was significantly faster
than the best BOOST performer. As was observed under the
ATLAS experiments, a static array yielded the best BOOST
performance, followed by CORBA pointers on sequences, with
sequences using standard CORBA indexing being the least
efficient. The performance difference between the best and
worst implementation using BOOST libraries was � 43%,
which can be attributed to BOOST’s optimized static array
multiplication method.

3) Discussion: Although the percentage performance dif-
ference between a static array implementation and a sequence
based implementation is significant under ATLAS, the absolute
time difference is relatively insignificant. Specifically, the
transformation of DRDC’s generic range 3-D representation,
using a static array, required 64 µs whereas the implementa-
tion using a CORBA sequence required between 68 µs and 98
µs to complete the transformation. The percentage difference
between the two techniques is, at worst, approximately 50%

WeA10.3

303

but the overall time is only 34 µs. Given the overall time
budget for this application is 26.6 ms, this 34 µs penalty
represents only � 0.1% of the total available time.

V. CONCLUSIONS

Portable, modular and extensible software is a necessary
prerequisite for the wide scale dissemination of robotics algo-
rithms. Using component based software engineering, robotics
researchers have made strides toward this goal, but CBSE
addresses only the software mechanisms aspects of this prob-
lem. A component’s algorithmic implementation, providing
specific functionality, must also be portable, modular, and
extensible. This paper introduces the notion of generic data
representations as a means of decoupling an algorithm from
its input/output data structures and, hence, more modular and
extensible algorithmic implementations.

Runtime dynamic data structures, such a C++ STL vectors
or CORBA sequences, are key tools in decoupling an algo-
rithm from its input/output data representations. Historically,
the real-time requirements of robotic systems and the lack
of available, portable computing power has precluded the use
of such dynamic structures. Experiments were performed that
investigated the performance issues associated with runtime
dynamic data structures. These experiments determined that,
although dynamic data structures incurred significant perfor-
mance penalty when compared to its static brethren, the overall
magnitude of the performance cost was manageable.

Additionally, this paper investigated using BOOST math-
ematics libraries to simplify and clarify algorithmic imple-
mentations. Although BOOST’s performance was significantly
slower than the ATLAS libraries, its performance did not
preclude its usage.

DRDC’s experience using components highlighted the need
for generic data representations and experiments have shown
that currently available computer systems have the processing
power to support such abstract data representations. Given
the impressive performance results achieved using dynamic
data structures for range data, this approach was subsequently
migrated to DRDC’s terrain map implementation. Whereas
the range data sets were relatively small, the terrain map
data sets are large, representing approximately 150,000 C++
double values. The original map implementation was based
upon a static array and the publication of a map event required
� 4.9 ± 0.57 ms. The publication of the new sequence based
map event was only marginally slower, requiring � 5.9±0.41
ms. This corresponds to a 20% time penalty and does not
adversely effect the overall performance of the system.

The use of generic data representations has allowed DRDC
to implement flexible components that are configured at run-
time. This allows researchers to easily modify the Raptor
UGV’s configuration, thus simplifying the vehicle’s overall
operation. These data representations have also improved
the software’s portability and extensibility by reducing its
reliance on “hard coded” variables that limit an application’s
performance. Modularity has been improved since individual

components both produce and expect to receive runtime dy-
namic data structures.

REFERENCES

[1] C. Cote, D. Letourneau, F. M. J.-M. Valin, Y. Brosseau, C. Raievsky,
M. Lemay, and V. Tran, “Code reusability tools for programming mobile
robots,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004.

[2] CLARAty: An Architecture for Reusable Robotic Software. Orlando,
Florida: SPIE Aerosense Conference, April 2003.

[3] A. Brooks, T. Kaupp, A. Makarenko, A. Oreback, and S. Williams,
“Towards component-based robotics,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, August 2005.

[4] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro - mid-
dleware for mobile robot applications,” IEEE Transactions on Robotics
and Automation, June 2002.

[5] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” Proceedings of
the 11th International Conference on Advanced Robotics, pp. 317–323,
2003.

[6] M. M. N. Roy and S. Thrun, “Perspectives on standardization
in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit,” in Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems, 2003. [Online]. Available:
http://robots.stanford.edu/papers/Montemerlo03b.html

[7] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Reading, MA: Addison-Wesley, 1998.

[8] G. Broten, S. Monckton, J. Giesbrecht, and J. Collier, “Software sysetms
for robotics, an applied research perspective,” International Journal of
Advanced Robotic Systems, vol. Volune 3, 1, no. 2005-204, pp. 11–17,
March 2006.

[9] C. Schelegel, “Communications patterns as key towards component-
based robotics,” International Journal of Advanced Robotic Systems,
vol. Vol. 3, No. 1, pp. 49–54, 2006.

[10] I. Ulrich and J. Borenstein, “Vfh*: Local obstacle avoidance with look-
ahead verification,” in IEEE International Conference on Robotics and
Automation, San Fransico, CA, 2000, pp. 2505–2511.

[11] ——, “Vfh+: Reliable obstacle avoidance for fast mobile robots,” in
IEEE International Conference on Robotics and Automation, Leuven,
Belgium, 1998, pp. 1572–1577.

[12] R. T. Vaughan, B. Gerkey, and A. Howard, “On device abstractions for
portable, reusable robot code,” Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2121 – 2427,
October 2003.

[13] S. Enderle, H. Utz, S. Sablatnog, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro - middleware for autonomous mobile robots,” Inter-
national Federation of Automatic Control, 2001.

[14] TAO Developer’s Guide, Oci tao version 1.3a ed. 12140 Woodcrest
Executive Drive, Suite 250, St. Louis, MO, 63141: Object Computing
Inc., 2003, vol. 1 and 2.

[15] M. Henning and S. Vinoski, Advanced CORBA Programming with C++.
Addison-Wesley, 1999.

[16] S. Huston, J. Johnson, and U. Syyid, The ACE Programmer’s Guide.
Addison-Wesley, 2004.

[17] “Automatically tuned linear algebra software (atlas),” http://math-
atlas.sourceforge.net/, August 2006.

[18] F. Bolton, Pure CORBA: A code intensive premium reference. SAMS,
2002.

[19] “Boost c++ libraries,” http://boost.sourceforge.net/, August 2006.

WeA10.3

304

