
Calibration Free Image Point Path Planning Simultaneously
Ensuring Visibility and Controlling Camera Path

Florian Schramm\, Franck Geffard?, Guillaume Morel\ and Alain Micaelli?

Université Pierre et Marie Curie, Paris6
\Laboratoire de Robotique de Paris, FRE 2507

Fontenay-Aux-Roses, France
firstname.surname@robot.jussieu.fr

Commissariat à l’Energie Atomique (CEA)
?LIST – DTSI

Fontenay-Aux-Roses, France
firstname.surname@cea.fr

Abstract— This paper proposes a novel planing algorithm
for image based visual servoing (IBVS). IBVS is conceptually
simple but prone to fail in case of large displacements. Hence,
the objective is to provide pathes for reference points in the
image plane, such that the camera is steered from initial position
to desired position. The novel scheme guarantees that the
camera is always oriented such that the object of interest is in
the field of view and that any reference point set corresponds
indeed to a feasible camera pose. No camera calibration is
necessary. As a novelty, this work is planning a camera motion,
hence yielding compact pathes in robot work space.
The proposed planner is compared to others by experiments.

I. INTRODUCTION

Eye-in-hand image-based visual servoing (IBVS) [1] con-
sists in controlling robot motion by a visual sensor mounted
on the end-effector. With this approach, a desired image
is first recorded when the camera is placed at a desired
location with respect to the observed object. Then, from
any initial location where the object can be seen by the
camera, the controller shall provide convergence towards the
desired image. A number of theoretical and experimental
studies have evaluated its properties : (I) In the case of
large control errors [2], IBVS produces unnecessary robot
motion, since control is addressed in image space. This
may lead to a task failure. (II) IBVS is not globally stable
and can be proven to be stable only in a (yet unknown)
neighbourhood of the desired location [3], [4]. Such short-
comings have motivated interpolating the initial image and
the final desired image. This reference path can then be fed to
the real time controller, which is left to control small errors,
thus increasing robustness.

A major difficulty is that the path planned for n image
features must correspond to a camera path in SE(3), where
usually n > 6. However, computing a path in SE(3) would
require a 3D reconstruction and hence an accurate calibration
and an accurate objet model. Rather, we will focus on path
planners that do not rely on any precise information, while
guaranteeing that the planned path corresponds to a (although
unknown) Euclidean path.

Moreover, during any robot motion, the target object must
be visible for the camera. Otherwise the servoing will fail.

In the sequel we focus on 6dof manipulation tasks where
the end-effector is possibly operating nearby the target.

Related Work

A classical method for integrating constraints in path plan-
ning are potential functions. [5] assigns repulsive forces to
image borders in image space and joint limits in workspace.
Other approaches switches directly the control law [6], [7],
[8], [9], mainly between IBVS and position based visual
servoing (PBVS). IBVS is known to be helpful in order to
keep features visible whereas there is no control of associated
camera path, and conversely for PBVS. However, all these
controllers yield unpredictable overall pathes, getting even-
tually trapped at a local minimum of the planning criterium.

A natural planning scheme is given in [10], [11]: rotation is
planned to decay exponentially on a geodesic. Translational
control is set up such that the centre of either the object either
the camera follows a straight line in the image space. The
first allows for pulling the camera further back, thus ensuring
visibility, whereas the later reorients the camera, thus not
ensuring visibility. However, both approaches require an
accurate calibrated camera.

The need for an object model can be circumvented by
reconstructing a partial pose, called the Homography matrix,
computed from the initial and the desired view, subject to
an accurate calibration. In this way, [12] interpolates N
discrete intermediary views where rotational interpolation is
performed by means of the matrix exponential map, and the
resulting path is guaranteed to be feasible.

Based on the partial pose reconstruction (hence model-
free), more recent work [13], [14], [15] addresses also the
visibility issue, essentially by proposing some circular cam-
era path, centred at the object. Yet all these controllers need
some further manual adjustment to determine the curvature
of the path.

Indeed the model-freeness makes it appealing to use the
exponential map for interpolating the rotation. Yet the angle
and the axes of rotation as elements of the euclidean space
are recovered by an estimate of camera calibration. It is
well known that reconstructed position (epipole, rotation
axes) is sensitive to input variations, due to their strong
intern structure. Our approach is conceptually different: we
interpolate the uncalibrated Homography (the collineation
matrix); no reconstruction of any sensible pose parameter is
necessary and the planning is invariant to camera calibration.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB2.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2074

Respective elementary relations are recalled in sec. II.
Previously presented feasible and calibration-free path plan-
ners are given in sec. III-A. Then, in sec. III-B, the main
contribution of this paper is presented. It computes an
additional camera translation such that planned image points
are guaranteed to be visible where camera displacement is
controlled by being basically a straight line interpolation. Ex-
perimental results are given in sec. IV and some concluding
remarks in sec. V.

II. MODELLING

A. Constraint for two views with a Pinhole Camera

Consider a camera and its frame Fc, centered at the optical
center Oc, where ~ez coincides with the optical axis. The
camera performs a perspective projection, mapping a 3D
point Pi, which coordinates in Fc are xc

i = [Xc
i Y c

i Zc
i]T,

into homogeneous image coordinates pi = [ui vi 1]T ,

Zc
i pi = Kxc

i , K ∈ R3×3, (1)

where the regular matrix K groups the intrinsic camera
parameters [16].

Let F0 and F1 be coordinate frames attached to the camera
in its initial and final locations, respectively. A rigid target
object of unknown shape is characterized by m points Pi on
its surface. The m points Pi are visible in both the initial
and final images. Each point Pi has coordinates x0

i , x1
i in

F0 and F1 respectively, related by

x0
i = R0→1x1

i + t0→1, (2)

where R0→1 is the rotation matrix from F0 to F1 and t0→1

is the corresponding translation vector. Image coordinates p1
i

and p0
i can be related by combining (1) and (2):

Z0
i p

0
i = G1 Z1

i p
1
i + g1 , (3)

with affine motion parameters G0→1 = KR0→1K−1 and
g0→1 = Kt0→1. Eq. (3) can be seen as generalizing the
rigid body constraint to an affine (non-orthogonal) 3D space.

The key idea of this work is to provide trajectories for
(pi, Zi) in this 3D space, hence invariant to camera cali-
bration, in such a way that the associated Euclidean motion
exists. To do so, one decomposes the parameters G0→1 and
g0→1 into a canonical form, which is easy to reparameterize.

B. Retrieving Point Depth

Assumption 1: (see also [17],[18]) From the image coor-
dinates of m points Pi, matched in the initial, p0

i , and the
final image, p1

i , the matrix G0→1 can be computed, while
the depth fields Z1

i , Z0
i and the vector g0→1 can be estimated

up to an unknown constant scale factor ζ, without requiring
any model of the camera, nor any model of the object. �
Several algorithms in the literature allow for such an identi-
fication without requiring any calibration information. A key
issue in this matter is to distinguish between the rotation and
translation displacements in order to identify the correspond-
ing entities separately. For example, in [17], matched points
at the infinity, only affected by the rotational displacement,
are used to reconstruct G0→1 from p0

i and p1
i . Alternatively,

standard matched points extracted from three images can be
used, two of them being separated by a pure translation [18].

C. Interpolation of the collineation matrix G0→1

Matrix G0→1 (cf. eq. 3) depends on matrices K and
R0→1. Since camera calibration K is constant, interpolation
of G0→1 comes down to an interpolation of R0→1. It is well
known that an eigen-decomposition of a rotation matrix,

R0→1 = UΛΛΛ(θ)U∗

is written in terms of rotation angle θ in the matrix ΛΛΛ of
eigenvalues and rotation axes u1 in the matrix U, regrouping
the eigenvectors. It is always possible to arrange the elements
of U and ΛΛΛ(θ) such that

ΛΛΛ(θ) :=

1 0 0
0 ejθ 0
0 0 e−jθ

 and U :=
[
u1 u2 u∗2

]
.

Hence, a continuous interpolation of R0→1 is given by

R0→τ = UΛΛΛ(τθ)U∗, τ ∈ [0, 1].

Consequently, an interpolation of G0→1 is given by

G0→τ = KUΛΛΛ(τθ)U∗K−1, τ ∈ [0, 1],

where K, U and θ satisfy G0→1 = KR0→1K−1. In
practice, rotation R0→1 and calibration K are not known
at a sufficient accuracy in order to interpolate G0→1 by the
last equation.

On an other hand, since G0→1 and R0→1 are similar,
their eigenvalues are equal. Thus, an interpolation of G0→1,
resulting in a geodesic, is possible,

G(τ) := G0→τ = VΛΛΛ(τθ))V−1, τ ∈ [0, 1], (4)

where the diagonal matrix ΛΛΛ(θ) regroups again the eigen-
values of G0→1 and V a set of associated eigenvectors.
Note that the eigen-decomposition of G0→1, G0→1 =
VΛΛΛ(θ)V−1 does not require any knowledge of K nor
R0→1.

III. IMAGE BASED TRAJECTORY PLANNING

Now we can precisely state our objective :
For image points wi(τ) := pi(τ)Zi(τ), compute
reference pathes wi(τ) ∈ R3m, τ ∈ [0, 1], which
are feasible, visible and compatible.

The following definitions are hereby used :
Definition 3.1 (compatible with boundary conditions):

This means wi(0) :=w0
i =p0

i Z
0
i and wi(1) :=w1

i =p1
i Z

1
i .

Definition 3.2 (feasible): A continuous path wi(τ) for m
image points is called feasible if there exists a continuous
camera motion R(τ), t(τ) and a constant camera K such
that for any τ , the point set pi(τ) can be described as a
projection of 3D points xi(τ) of a given rigid object.

Definition 3.3 (visible): Given a FOV by its opposite cor-
ners (u,v) and (u,v) in pixel coordinates, a path wi(τ) =
Zi(τ)[ui(τ) vi(τ) 1]T is said to be visible, if ∀τ ∈ [0, 1] :

u ≤ ui(τ) ≤ u and v ≤ vi(τ) ≤ v, i ∈ {1, . . . ,m}

ThB2.2

2075

(a) Camera path. (b) Image Point Pathes.

Fig. 1: Algorithm A: Path is straight line for camera.

Remark 1: Note that wi(τ) := pi(τ)Zi(τ) can always be
separated into pi(τ) and Zi(τ) using pi,3 = 1.

Remark 2: In the sequel, we suppose ζ = 1. We revisit
this issue when commenting the experiments in sec. IV.

A path can be ensured to be feasible choosing G(τ), g(τ)
as parameters. Point pathes wi(τ) are then determined by

wi(τ) :=
(
G(τ)

)−1(
w0

i − g(τ)
)

Compliance with boundary conditions is given, when
G(τ) and g(τ) satisfy

G(0) = I3, g(0) = 03,

G(1) = G0→1, g(1) = g0→1.

Algorithms will differ from each other only in planning
the translation g0→1.

In the next, two known concepts of calibration free path
planning for image points are reviewed, before introducing
our new planning scheme.

A. Previously Described Methods

1) Straight Line for Camera Centre (Algorithm A):
[12] proposes to interpolate g0→1 linearly:

gA(τ) := τg0→1

Image point pathes are then computed by :

pi(τ)Zi(τ) :=
(
G(τ)

)−1(
p0

i Z
0
i − gA(τ)

)
(5)

This yields a very satisfactory behaviour of planned camera
motion (fig. 1a), namely a straight line for the optical centre
in target space. On the other hand, there is no control in the
image space and resulting point pathes tend to run out of
the field of view even for modest camera motion (fig. 1b).
Despite its simplicity, this approach is not very useful in
practice.

2) Straight Line for Image Point (Algorithm B): It is well
known [1] for visual servoing that controlling point features
directly in the image plane (instead of in robot work space)
increases chances to keep the target within the field of view.
Following these lines, we have proposed recently to compute
g(τ) := gB(τ) such that the projection of an arbitrary
selected image point Ps ∈ {P1, . . . ,Pm} performs a straight
line path on the image plane [19]:

ps(τ) := p0
s + τ

(
p1

s − p0
s

)
,

Zs(τ) := Z0
s + τ

(
Z1

s − Z0
s

)
,

(a) Camera path. (b) Image Point Pathes.

Fig. 2: Algorithm B: straight line for selected image point Ps.

and, consequently,

gB(τ) := p0
sZ

0
s −G(τ)ps(τ)Zs(τ).

Point pathes are then computed by :

pi(τ)Zi(τ) :=
(
G(τ)

)−1(
p0

i Z
0
i − gB(τ)

)
(6)

The resulting path is depicted on fig. 2. We have used the
same boundary configurations as for fig. 1. Clearly all point
pathes stay in the field of view (fig. 2b), at the cost of having
lost direct control of the camera 3D motion, which becomes
a geodesic of unknown radius (fig. 2a), eventually heavily
deviating.

B. Novel method (Algorithm C)

In contrast, the new algorithm is explicitly designed such
that the camera performs a straight line path ”at the best
possible”. Deviations from this ideal path will only be
conceded in order to preserve visibility. The central idea of
this paper is thus to start from the solution of Algorithm
A, the ideal straight line path for the camera, and to modify
the translational planning, gA(τ) by an additional translation
∆g(τ), such that the new planning is feasible, visible and
compatible. Reference pathes wi(τ) are then computed by :

wi(τ) =
(
G(τ)

)−1 (
w0

i − gC(τ)
)
, τ ∈ [0, 1], (7)

with gC(τ) := gA(τ)+G(τ)∆g(τ). If Algorithm A yields
a visible configuration for a certain τ , then ∆g(τ) = 0
and solutions of Algorithms C and A are identical. In
the remainderof this section, ∆g(τ) is determined as a
translation with 3 dof.

The problem will be treated separately for the components
of ∆g(τ) along image coordinate axes ~u and ~v. To this end,
3D point wi = [Ziui Zivi Zi]T are projected on the plane
Πu,z , defined by v = 0, and on the plane Πv,z , defined
by u = 0. Homogeneous 2D coordinates of a projected
3D point wi = [w1,i w2,i w3,i]T will be called uwi :=
[w1,i, w3,i, 1]T in the first case and vwi := [w2,i, w3,i, 1]T in
the later. Plane Πu,z with projected points uwi is shown on
fig. 3.

Likewise, the projection of the 3D field of view onto plane
Πu,z is considered. Since plane Πu,z is defined by v = 0,
the projected field of view is described by nothing more than
the smallest and largest active pixel in direction ~u, namely
u and u. The projected 2D field of view has the shape of

ThB2.2

2076

du,3

du,2

du,3

du,2

du,1

du,1

uw2

lu,2

lu,2

uw3

uw1

lu,0 ~e(z)

Field
of view

uw

lu,0

~e(uz)

Fig. 3: Planar Problem in plane Πu,z .

an open radial segment at the optical centre, which can be
described by its radial boundary lines lu,0 and lu,0

lu,0 =
1√

1 + u2

[
1 −u 0

]
, lu,0 =

1√
1 + u2

[
−1 u 0

]
,

defined as 2D homogeneous lines l = [− sinφ − cos φ d],
where φ is the angle of the line normal with the abscissa and
d the line distance from origin. Line normals are defined to
point towards the interior of the 2D FOV (gray area in fig.3).

So far we have determined the 2D FOV stemming from
the basic solution (Algorithm A). In fig. 3 for instance, point
P2 is visible with respect to u and u, but not P1 and P3.
Now we ask: how do we have to translate the camera, ie.
the centre of the 2D field of view, such that all points are
within (translated) radial segment? In fig. 3, by geometric
obviousness, the 2D projection of the new camera centre
would be the homogeneous 2D point uw.

Let us compute its coordinates. We define for each pro-
jected point Pi a view cone Au

i , which describes all possible
locations for the camera centre such that Pi is visible. The
view cone is of the same shape as the field of view, but of
opposite direction and centred at the point Pi. Its interior is
given by

Au
i =

{
uai

∣∣uai = uwi + λl∗u,0 + µl∗u,0, λ ≤ 0, µ ≤ 0
}

where the dual l∗ to the line l is defined as column vector
with l(l∗) = 0 subject to ||l∗|| = ||l||. Alternatively, the
boundaries of each view cone Au

i can be computed by

lu,i = lu,0 +
[
0 0 −du,i

]
, lu,i = lu,0 +

[
0 0 −du,i

]
,

(8)

with distance to the origin given by

du,i = lu,0
uwi, du,i = lu,0

uwi.

gu

gu

gv

gv

~e(z)

~e(vz)

~e(uz)

Au

Av

uw

vw

Fig. 4: Merging the two projected solutions.

Then, the intersection Au represents the smallest view cone
such that all points are visible,

Au :=
m⋂

i=0

Au
i =

{
ua

∣∣ua = uw + λl∗u,0 + µl∗u,0, λ ≤ 0, µ ≤ 0
}

(9a)

defined by its boundary lines lu, lu, and their intersection
uw,

lu = lu,j , such that j = arg min
i

du,i, (9b)

lu = lu,k, such that k = arg min
i

du,i, (9c)
uw = lu ⊗ lu. (9d)

where the operator ⊗ defines projective intersection [16],
followed by point normalisation:

⊗ : x,y → z =
x× y

(x× y)[0 0 1]T
, x,y, z ∈ P 2.

Next, considering for the 3D points wi their 2D projec-
tions vwi onto the plane Πv,z , defined by u = 0, a similar
calculus yields

Av =
{

va
∣∣va = vw + λl∗v,0 + µl∗v,0, λ ≤ 0, µ ≤ 0

}
,

and likewise the homogeneous 2D point vw represents the
necessary amount of translation in the plane Πv,z such that
all point coordinates vi, are in the visible range, vi ∈ [v, v].

Up to now, we have computed separately the eventually
required amount of translation for the planes Πu,z and Πv,z .
Fig. 4 shows in 3D-space the plane Πu,z , given by ~e(uz)

and ~e(z). Plane Πv,z is given by ~e(vz) and ~e(z). Since view
cones Av and Au were the result of a projection along ~e(vz)

and ~e(uz) respectively, they may be characterised by roof-
like surfaces in 3D-space. Clearly, both partial solutions are
coupled by the common axes, ~ez . The correct combination
of both solutions is one of the four marked points in fig. 4,

ThB2.2

2077

Fig. 5: Left:initial image points p0
i , right:reference points p1

i

designing the intersection of ridges with roof surfaces, which
are computed by

vgv =
[
0 1 zu

]
⊗ lv, vgv =

[
0 1 zu

]
⊗ lv, (10a)

ugu =
[
1 0 zv

]
⊗ lu, ugu =

[
1 0 zv

]
⊗ lu. (10b)

For a given ”roof”, we select the point which is nearer to
the origin, since we are interested in a camera displacement
as small as possible:

vg =

{
vgv if ||vgv|| < ||vgv||
vgv otherwise

(11a)

ug =

{
vgu if ||ugu|| < ||ugu||
vgu otherwise

(11b)

Between these remaining two points, each situated on a dif-
ferent ridge, we arbitrarily choose that one with the smaller
component in direction ~ez . Indeed, it does not make sense
to compare measurements among different axes until we
know anything about the metric (squared pixels for instance).
Finally, the solution is completed by taking complementary
coordinates from the two partial solutions:

−∆g :=

[
uwT

[
1
0
0

]
vgT

[
1
0
0

]
uwT

[
0
1
0

]]T
if zu < zv,[

ugT
[

1
0
0

]
vwT

[
1
0
0

]
vwT

[
0
1
0

]]T
otherwise.

Once ∆g(τ) is computed, the new planning algorithm
(7) is completed. It computes image point trajectories pi(τ)
which are guaranteed to be attainable, visible and compatible
with the image boundary conditions.

Remark 3: The new algorithm C performs computations
in a 3D-space and 2D-spaces defined by image coordinate
axes. Hence, they are not euclidian but affine spaces. How-
ever, our algorithm C uses only properties [16] of the affine
space, namely comparing distances along parallel lines.

IV. EXPERIMENTAL RESULTS

For the experimental setup we used an industrial robot of
type Stäubli RX 90 with a camera Basler 301f in eye-in-hand
configuration in order to validate the planning algorithm C.

As target object we consider a manufactured piece with
two rectangles. The coordinates of the eight corners which
are in two different planes are thought to be controlled by a
classic image based scheme [3]. The initial and reference
images are shown in fig. 5. Respective initial and final
camera positions are separated by 26cm and 134◦. Due to

(a) Image point pathes pC
i (τ). (b) Camera path 5.

Fig. 6: Pathes planned by novel Algorithm C.

(a) Image point pathes (b) Camerapath5 (wo. correction: ◦)

Fig. 7: For comparison: Pathes planned by [19].

the important error on rotation, this is a difficult task for 2D
controller [3] operating in set point mode.

Depth distributions Ẑ0
i = ζZ0

i , Ẑ1
i = ζZ1

i can then
determined by one of the methods mentioned in sec. II-B. In
the experiments, a linear model based depth reconstruction
was used. Now algorithm C can be applied and point pathes
pi(τ) are computed (blue lines in fig. 6a), interpolating
initial position (green circles) and reference position (red
crosses). Contours of the object rectangles are indicated by
dotted lines. Note that in order to make clear the effect of
Algorithm C, we have artificially reduced the FOV by 50
pixels on the bottom and by 100 pixels on the three other
images sides, marked by the pink rectangle. Thus, planned
pathes reach eventually the reduced border, but never leave it.
Fig. 6b shows the resulting camera path. Intermediate camera
orientation is given for τ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} for
the path 5, planned by algorithm C. Deviation from path
◦ (algorithm A) represents the translation correction ∆g,
assuring visibility. Despite the heavy deformation of image
point pathes, camera centre is at most deviated by 10cm.

Note that straight line path A is not visible thus not
useable. Here it is only shown for comparison. Even if
visible, injecting path A into an IBVS will yield a camera
straight line only if depth scale ζ and external calibration
TN are perfectly known. In all experiments, ζ is subject to
an error of about 20% and TN also is only coarsely known.

For comparison, we consider the path planning described
in [19], which yields as well feasible, visible and compatible
image point pathes. This algorithm imposes for a selected
image point a straight line path in image space (fig. 7a).

ThB2.2

2078

Fig. 8: Algorithm C: Pixel error for 26 intermediate point
positions (after convergence). ◦: mean error, 4: max. error

Fig. 9: Object identified during visual servoing along path
planned with Algorithm C at instant τ , seen by the camera.

However, this yields generally larger deformation of the
camera path (fig. 7b); in this example up to 30cm from
straight line for camera centre. Note that the algorithm in
[19] has only one dof for translating the camera whereas the
novel Algorithm C can modify ∆g(τ) with 3 dof.

Finally, let us verify that a path planned by Algorithm C
is indeed feasible. To this end, we select 26 intermediate
configurations pC

i (τk) on the planned path at τk = k/25
for k ∈ [0, 25]. Each of these configurations is successively
servoed by 2D image point visual control [3]. After the
servoing has settled, the error ek is computed, based on
measured points pi(τk) and reference points pC

i (τk) :

ei(k) := ||pC
i (τk)− pi(τk)|| k ∈ [0, 25].

Fig. 8 shows for each instant τ the mean value 1
m

∑m
i=1 ei(k)

(circles ◦), and the maximum value maxi ei(k) (triangles 4).
These errors being small, all the computed intermediate ref-
erence configurations, based on projective interpolation of G,
and g, correspond indeed to feasible camera configurations.
Note that ek = 0 in the case of perfect reconstruction of G,
g, i.e. perfect pinhole projection of the real system.

Fig. 9 shows the target where image points are at most on
the reduced visibility border, but they do never trespass.

V. CONCLUSIONS

The proposed algorithm computes point pathes in im-
age space in order to allow for large displacements to be
controlled by image based visual servoing (IBVS). When
correcting the motion to ensure visibility, the proposed
algorithm takes advantage of all 3 translational dof; moreover
it is based on a controlled camera displacement, thus yielding

in general compacter pathes than previous planners like
[19]. This can also be seen by a ”better” exploitation the
sensor range i.e. image space. Contrarily to other schemes,
Homography decomposition is not used to perform sensitive
partial euclidean reconstruction; the algorithm relies only on
properties of affine space. Note that the scheme is a direct
calculus, only using a few elementary operations at run-time,
after the single off-line eigen decomposition of G. Contrarily
to other planners like potential field methods our scheme is a
global planning scheme and thus provides always a solution.
Even if the assumption of a perfect reconstruction of affine
parameters G, g is unrealistic, experimental results show that
standard machine vision is enough to compute pathes near
to feasible ones.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke. A Tutorial on Visual Servo
Control. IEEE Trans. on Robotics and Automation, 12(5):651–670,
1996.

[2] F. Chaumette. Potential problems of stability and convergence in
image-based and position based visual servoing. In D. Kriegman,
G. Hagar, and Morse A., editors, The Confluence of Vision and Control
(LNCS 237), pages 66–78. Springer, Berlin Heidelberg, 1998.

[3] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313–326, 1992.

[4] E. Malis and P. Rives. Robustness of Image-Based Visual Servoing
with Respect to Depth Distribution Errors. In IEEE ICRA, volume 2,
pages 1056–1061, Taipei, Taiwan, 2003.

[5] Y. Mezouar and F. Chaumette. Path planning for robust image-based
control. IEEE Trans. on Robotics and Automation, 18(4):534–544,
2002.

[6] N. R. Gans and S. A. Hutchinson. An asymptotically stable switched
system visual controller for eye in hand robots. In IEEE/RSJ IROS,
pages 735–742, Las Vegas, Nevada, USA, 2003.

[7] K. Hashimoto and T. Noritsugu. Potential switching control in visual
servoing. In IEEE ICRA, pages 2765–2770, USA, 2000.

[8] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino. A switching
control law for keeping features in the field of view in eye-in-hand
viusal servoing. In IEEE ICRA, pages 3929–3934, Taiwan, 2003.

[9] N. Mansard and F. Chaumette. A new redundancy formalism for
avoidance in visual servoing. In IEEE/RSJ IROS, volume 2, pages
1694–1700, Edmonton, Canada, August 2005.

[10] B. Thuilot, P. Martinet, L. Cordesses, and J. Gallice. Position based
viusal servoing: keeping the object in the field of vision. In IEEE
ICRA, pages 1624–1629, Washington DC, USA, May 2002.

[11] V. Kyrki, D. Kragic, and H. I. Christensen. New shortest-path
approaches to visual servoing. In IEEE/RSJ IROS, pages 349–354,
Sendai, Japan, 2004.

[12] Y. Mezouar, A. Remazeilles, P. Gros, and F. Chaumette. Image
interpolation for image-based control under large displacement. In
IEEE ICRA, volume 3, pages 3787–3794, Washington DC, USA, 2002.

[13] B. Allotta and D. Fioravanti. 3D Motion Planning for Image-Based
Visual Servoing Tasks. In IEEE ICRA, pages 2185–2190, Spain, 2005.

[14] G. Chesi and A. Vicino. Visual Servoing for Large Camera Displace-
ments. IEEE Trans. on Robotics, 20(4):724–735, 2004.

[15] M. Iwatsuki and N. Okyiama. A new formulation of visual servoing
based on cylindrical coordinate system. IEEE Trans. on Robotics,
21(2):266–273, 2005.

[16] R. Hartley and A. Zisermann. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[17] Y. Mezouar and F. Chaumette. Optimal Camera Trajectory with Image-
Based Control. Int J of Robotics Research, 22(10/11):781–804, 2003.

[18] E. Malis. Visual servoing invariant to changes in camera intrinsic
parameters. IEEE Trans. on Robotics and Automation, 20(1):72–81,
2004.

[19] F. Schramm and G. Morel. Ensuring Visibility in Calibration-Free Path
Planning for Image-Based Visual Servoing. IEEE Trans. on Robotics,
22(4):848–854, 2006.

ThB2.2

2079

