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Abstract— This paper relates recent advances in the design of
feedback laws for the 3D movement of an Eel-like robot. Such a
robot is under construction in the context of a national French
robotic project. The proposed feedback enables the tracking of
a desired 3D position of the Eel head as well as the stabilization
of the rolling angle. A velocity controller is also proposed. The
controller is tested on a recently developed complete 3D model
in order to assess its efficiency in tackling 3D manoeuvres.

I. INTRODUCTION

This paper presents current researches on the control of

an eel-like robot. This is done in the context of a multi-

disciplinary French national research project called ROBEA-

ANGUILLE1. The aim of this project is to design, construct

and control the 3D motion of an eel-like robot. The pro-

totype under construction is obtained by connecting many

parallel platforms. The eel’s body will then be covered by

a deformable “skin” in order to achieve high performances

swimming. As it has been underlined by many researchers

in the robotic biomimetic field, understanding the dynamics

of such robots may be of a great interest in improving the

manoeuvrability of under-water vehicles [18], [9], [12], [10],

[6], [14], [17], [1].

A 3D continuous model of the target prototype has been

recently proposed in [2] using the geometrically exact theory

of beams in finite deformations [15]. This model is used here

to validate the proposed 3D control feedback.

The main works more in the spirit of this paper are due

to [10] (and the related works) where the 2D movement of

an eel-like robot has been studied. The rolling cart analogy

is used in order to derive state feedback that track some

reference trajectories. Another interesting approach was pro-

posed in [11], [12], [19] where averaging formulas have been

derived to describe the mean behavior over a cycle. Recent

work has been developed in [8] where a control design

based on Lyapunov methods was used for planning motion.

A design procedure for a biomimetic robot-fish based on

improved kinematic propulsive model has been described in

[20] where the basic motion control laws were presented. For

a detailed review of existing works on control of swimming,

the reader can refer to [6].

This work was support by the French National Center for Scientific
Research (CNRS) in the context of the ROBEA-project.

M. Alamir, M. El Rafei, N. Marchand and G. Hafidi
are with the Automatic control department of GIPSA-Lab
mazen.alamir@inpg.fr, nicolas.marchand@inpg.fr,
ghizlane.hafidi@supelec.fr ,
maher.el-rafei@lag.ensieg.inpg.fr

M. Porez and F. Boyer are with the Institut de Recherche
en Cybernétique de Nantes. frederic.boyer@emn.fr,
mathieu.porez@irccyn.ec-nantes.fr

1http://www.irccyn.ec-nantes.fr/hebergement/ROBEA/

However, few researches has studied the control methods

for 3D motion of fish robots. In our work, a complete control

scheme for 3D movement of the robot’s continuous model

[2] is proposed. Basically, the motion and the velocity in the

transverse plane are controlled by monitoring the oscillatory

gait characteristics while the altitude changes and the rolling

stabilization task are handled by means of two pectoral fins

that are attached to the eel’s head (see figure 2) (practical

applications of pectoral fins are more detailed in [7], [1]).

Our basic concern while developing the control strategy was

the simplicity and the robustness against modeling errors. To

achieve this, very simple feedback laws have been derived

that are quite independent of the structure of the simulator

equations. The latter is only used to assess the performance

of the proposed feedback laws. In other words, since the

controller uses too few information about the simulation

model, it is likely to work on the real system (probably after

some tuning phase) even if it differs from the simulation

model used here to assess its performance.

This paper is organized as follows : First, the mathematical

model used in the simulator is briefly described in section II.

Since the latter is quite complex, only the related guidelines

are briefly mentioned. Section III clearly states the 3D
control problem. The different “components” of the feedback

law are then presented in section IV, namely, the control of

the head position in the transverse plane, the control of the

robot altitude as well as the rolling angle stabilization. The

control of the robot mean velocity is discussed in section V

before some 3D scenarios are proposed in section VI. The

paper ends by some concluding remarks together with the

road map for future works.

II. THE MATHEMATICAL MODEL OF THE

CONTINUOUS EEL-LIKE ROBOT

Fig. 1. Frames and parametrization of the continuous eel robot model

For a complete description of the underlying mathematical
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model, the reader is referred to the basic paper [2]. Only the

main features of the model in the non stretchable case are

mentioned here in order to give an idea about the model

complexity and how the 3D features are handled.

Figure 1 illustrates the basic notations used in the de-

scription of the mathematical model. Let X designates the

material abscissa along the eel’s mean line and G(X) the

center mass of X section. Under the assumption of non-

stretchable body, the configuration of the robot at instant

t (after deformation) is completely defined by the value at

each X ∈ [0, 1] of the rotation matrix R(t, X) mapping the

X mobile basis before deformation on to after (see figure 1).

Once given the rotation matrix and the position of the

head , namely R0(t) = R(t, 0) and r0(t) = r(t, 0), the

deformation of the body is completely defined by ∂R
∂X that

can be written as follows :

∂R

∂X
= RK̂ ; R(t, 0) = R0, (1)

where K̂(t, X) is a skew symmetric tensor associated to an

axial vector K(t, X). Note that (1) is nothing but a change in

the description variables since K̂ = RT ∂R
∂X becomes the new

d.o.f that defines the deformation of the eel’s body. Note that

the last two components of K, namely K2 and K3 stand for

the curvatures of the beam in the two planes (G, t1, t3)(t, X)
and (G, t1, t2)(t,X) while the first component K1 stands for

the torsion strain field.

It is important to note immediately that in the present

paper, the vector field K(·, ·) is a part of the control input

(together with the angles of the pectoral fins described later

in the paper). This assumes that the distributed actuators

are conveniently used to produce the corresponding body

deformation in within the allowable powers and excursions.

The choice of the controller/setpoints parameters that makes

this possible is not explicitly discussed in the present paper.

One may easily imagine how this can be made by a kind of

performance tuning approach.

Using the above notations, the non stretching assumption

can be expressed as follows :

r
′
:=

∂r

∂X
= t1(t,X) ; r(t, 0) = r0(t). (2)

Let us now introduce the field of angular velocities ω̂(t, X) :

ω̂ = ṘRT (that is Ṙ = ω̂R). (3)

The field ω̂ can also be represented by its axial vector ω. It

can be proved (see [4]) that :

∂ω

∂X
= RK̇ ; ω(t, 0) = ω0(t). (4)

This means that, given the control K(·, ·) and the config-

uration R(·, ·), the integration of (4) in space enables the

computation of ω, hence ω̂ and therefore Ṙ thanks to (3).

On the other hand, by differentiating (2) in time, it comes

that :

∂ṙ

∂X
= ω × t1 ; ṙ(t, 0) = ṙ0(t),

that can be integrated in order to reconstruct ṙ(t,X) for all

X ∈ [0, 1]. Similarly, further derivations enables to write

the second derivatives r̈ and ω̇ as functions of the head

accelerations r̈0 and ω̇0, the velocities ṙ0, ω0 and the time

derivatives of the strains field K. This can be shortly written

as follows :(
r̈
ω̇

)
(t, X) = Γ

(
t, X,K(·, ·), ṙ0, ω0, r̈0, ω̇0

)
. (5)

Note that the map Γ uses the control profile K(·, ·) in

time and space through time derivations and integration over

space as it has been done above for the computation of the

velocities ṙ and ω. Note that (5) expresses only kinematic

constraints. In order to built the dynamic model, the external

forces due to the contact with the fluid have to be computed.

Assuming that the gravity forces are compensated by internal

“air tanks”, the only external forces are those due to the

interaction of the body and the pectoral fins with the fluid.

To express these forces and torques, the contact model of

[13], [3] is used. This amounts to integrate the following

quantities along the eel’s body :

dfext

dX
= −

3∑
i=1

C1i[|Vi|Vi]ti −
3∑

i=1

[C2iγi]ti, (6)

dcext

dX
= −

3∑
i=1

C3i[|Ωi|Ωi]ti −
3∑

i=1

[C4iΞi]ti, (7)

where Vi, γi, Ωi and Ξi are the components on ti of ṙ, r̈,

ωi and ω̇i respectively, namely :

ṙ =:
3∑

i=1

Viti ; r̈ =:
3∑

i=1

γiti ; ω =:
3∑

i=1

Ωiti ; ω̇ =:
3∑

i=1

Ξiti

while {Cji} are coefficients depending on the mass per unit

volume of the fluid, the shape and the size of the section

(elliptic in our case) and the Reynolds number of the moving

section in the fluid. Note that the first term of (6) accounts for

the drag/lift forces applied on the section while the second

term accounts for the added mass forces as given by [16].

The same angular related significations hold for the terms

in (7). Note that the external forces and torques obtained

Fig. 2. Pectoral fins positions and the induced forces

from the spacial integration of (6)-(7) are those generated

by the contact forces along the Eel’s body. The expressions

of the external forces and torques due to the pectoral fins
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are to be added. These forces and torques can be obtained

using the same kind of formulations as (6)-(7) that have to

be integrated along the pectoral fins surfaces (see figure 2).

The fins are attached at some point A on the Eel’s head.

Their axis of rotation coı̈ncide with t2(t, XA). The corre-

sponding angles are denoted by αr and αl respectively. More

precisely, αr [resp. αl] vanishes when the right [resp. left]

fin lies in the plane (A, t1(t, XA), t2(t,XA)). Writing the

corresponding expressions similar to (6)-(7) gives the fin’s

related distribution of forces and torques denoted hereafter

by :
∂f j

a

∂s
;

∂cj
a

∂s
; j ∈ {r, l}

where s is the curvilinear abscissa along the axis of the

fin, namely t2(t, XA) while
∂fj

a

∂s ds and
∂cj

a

∂s ds are the in-

finitesimal forces and torques applied on a slice of width ds
perpendicular to this axis.

III. STATEMENT OF THE CONTROL PROBLEM

First of all, in accordance with the behavior of true eels,

only the component K3 of the deformation field is used.

Namely, at any time t, the body mean line entirely lies in

the plane (0, t10(t), t20(t)) :

K1 ≡ 0 ; K2 ≡ 0.

The control problem is schematically depicted on figure 3.

A target position Pd is given that is not necessarily in the

transverse plane (0, t10, t20) of the eel’s mean line. The

controller has to appropriately modify the control input :

u :=
(
K(·, ·) αr αl

)
; (αr, αl) ∈ [−αmax, +αmax]2

in order to steer the head O towards the desired position

Pd. Note however that we are not interested in point-wise

Fig. 3. Schematic 3D view of the control problem. The Eel that lies at
instant t in the plane (0, t10(t), t20(t)) has to join the target position Pd

while trying to keep the vector t20 horizontal, namely t20 · E3 ≈ 0. This
has to be done using the infinite dimensional control input (K(·, ·), αr, αl).

stabilization at Pd since the effectively used Pd will be later

generated by tl-operation mode2 and will be continuously

2http://www.lag.ensieg.inpg.fr/alamir/

moving. This is because the eel robot falls in the class

of systems (including the rolling cart, the snakeboard, etc.)

that cannot be controlled at zero-velocity. In addition to the

control objective consisting in steering the eel’s head to the

desired position Pd, the rolling angle of the body has to

be controlled. When the eel is in arbitrary 3D configuration,

expressing the desired rolling angle is not an easy task. Many

choices can be done. Here, the controller is oriented towards

the regulation of the scalar product :

prol := t20 · E3

around 0. Indeed, this guarantees that when the eel mean line

lies in a horizontal plane, its transverse plane is also horizon-

tal. Moreover, we look for a feedback law enabling the mean

velocity of the head, namely V0 = 1
T

∫ t

t−T
‖ṙ0(τ)‖dτ to be

controlled by appropriately controlling the characteristic of

the body deformation through the control input K(·, ·).
IV. THE PROPOSED FEEDBACK

Recall that K1 ≡ K2 ≡ 0. The undulation law K3 takes

the following form in accordance with biological observa-

tions [5] :

K3(t, X) := u3 · A(X, u2) sin(
X

λ
− t

T
) + u1, (8)

where u3 · A(X, u2) gives the amplitude of the undulation

as a function of the material abscissa X . The control input

u3 ∈ [0, umax
3 ] scales the amplitude in order to control

the velocity as explained later on. On the other hand, the

control input u2 ∈ {−1, 1} defines whether the amplitude of

undulations is bigger at the eel’s tail or the eel’s head. This

is used to enhance acceleration or deceleration according to

the velocity related control requirements.

The remaining control input u1 ∈ [−umax
1 , umax

1 ] is used

to control the eel’s movement in the transverse plane as it is

explained in the following section.

A. Controlling the movement in the transverse plane
(0, t10, t20)

The way this is done is based on the following observa-

tion : When the undulation law (8) is used with u1 ≡ 0, a

straight movement in the plane (0, t10, t20) is asymptotically

obtained while constant non vanishing values of u1 lead to

circular trajectories.

Therefore, the control law uses u1 to correct the direction

of the movement in the plane (0, t10, t20) in order to “move
strait towards” the target position P ∗

d . Note that P ∗
d is the

projection parallel to t30 of Pd on the plane (0, t10, t20) (see

figure 3). The feedback uses the following key quantities :

pext := −π3

(−−→
OP ∗

d ∧ t10
)

; psc = −−−→
OP ∗

d · t10
where π3(·) designates the third component of the argument.

With the above notations, the following feedback is defined

on u1 :

u1(t) = F1(
−−→
OP ∗

d (t), t10(t))

:=
{ −βc · p̄ext(t) if p̄sc(t) > 0

umax
1 otherwise

. (9)
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where p̄ext(t) and p̄sc(t) are the mean values of pext and
psc over the past period of undulation, namely :

p̄ext(t) =
1

T

Z t

t−T
pext(τ)dτ ; p̄sc(t) =

1

T

Z t

t−T
psc(τ)dτ (10)

This amounts to stabilize p̄ext to 0 with p̄sc > 0 which

means by definition of pext and psc that −t10 and
−−→
OP ∗

d are

parallel (in average) and in the same direction. Once this is

reached, u1 vanishes and the eel adopts no mean curvature

and moves towards the projected target P ∗
d with a strait mean

line. The conditional use of u1 = umax
1 enables a maximal

curvature to be used when the eel moves in the opposite

direction to the one that would be necessary to move towards

P ∗
d and since this corresponds to a circular trajectory, the

sign of psc necessarily becomes > 0 after a finite time after

which the above argumentation holds.

Note that during three dimensional manoeuvres, the trans-

verse plane (0, t10, t20) moves. This makes the projected

position P ∗
d moving even for fixed target state Pd.

B. Controlling the altitude

While in the preceding section, a feedback is defined that

forces the eel to move towards the projected target position

P ∗
d in the transverse plane (0, t10, t20). The aim of the

present section is to show how the altitude of the head is

controlled by monitoring the pectoral fins angles. This is

done by controlling the following variable :

z := r0(t) · E3 (11)

around the desired value zd := π3(Pd). In order to achieve

this task, it is worth noting that the dynamics of z is governed

by the following equation :

z̈(t) = F3(αr, αl, ṙ0(t), ω0(t)) + δF (12)

where F3(·) is the component of the aerodynamic forces

on E3 while δF stands for effects on z of unknown forces

(those generated by the whole body movement inducing

acceleration at the head level).

The idea is then to design a robust sliding mode controller

for which the switching surface is defined by :

S := ż + λ3(z − zd)

Time derivation together with (12) gives :

Ṡ = F3(αr, αl, ṙ0(t), ω0(t)) + δF + λ3ż

Now, since the lift force is roughly determined by the sum

of the fins angles αs = αr + αl, the last equation suggests

to compute αs according to :

α̂s = arg min
αs∈[−2αmax,+2αmax]

J(αs, ṙ0(t), ω0(t), z, ż) (13)

where J(·) in (13) is given by :

J(·) :=
∣∣∣F3(

αs

2
,
αs

2
, ṙ0(t), ω0(t)) + λ3ż − μsSign(S)

∣∣∣ (14)

since when the optimal value of J vanishes and provided

that μs > |δF |, stability follows from :

Ṡ < −(μs − |δF |)Sign(S). (15)

Note that for straightforward practical reasons, the Sign

function is replaced by the following continuous function :

Sε(ρ) :=

⎧⎨
⎩

ρ
ε if |ρ| ≤ ε
1 if ρ = ε
−1 if ρ = −ε

(16)

Note that (13) gives the desired sum α̂r + α̂l. Later on, it

is shown how the rolling angle control law gives a desired

value of the difference α̂d = α̂r − α̂l. The control input

setpoints αr and αl are therefore given by :(
α̂r

α̂l

)
=

(
1 1
1 −1

)−1 (
α̂s

α̂d

)
(17)

the way α̂d is computed in order to control the rolling angle

is described in the following section.

C. Controlling the rolling angle

As it is indicated earlier, the control of the rolling angle

amounts to control prol := t20 · E3 around 0. The evolution

of prol follows basically the following law :

p̈rol ∼ krol · (αr − αl) = krol · αd.

where the difference αd is supposed to belong to

[−βmax, +βmax]. This suggests the following feedback law :

α̂d := βmax tanh
(
−κ1prol − κ2ṗrol

)

:= βmax tanh
(
−κ1prol − κ2π3(ω0 × t20)

)
, (18)

where the use of the tanh function enables the saturation on

αd to be satisfied. Recall that this is used in (17) together

with (13) in order to completely determine the fins angles

αr and αl.

V. CONTROLLING THE MEAN VELOCITY

In this section, it is shown how the oscillatory gait

characteristics can be monitored in order to control the mean

velocity of the robot’s head, namely :

V0(t) =
1
T

∫ t

t−T

‖ṙ0(τ)‖dτ

More precisely, the degrees of freedom used here are u2

and u3 involved in the amplitude of the oscillation given by

u3A(X, u2) in (8). In this section, the following definition

is used for A(X, u2) :

A(X, u2) :=
{ √

X if u2 = +1√
1 − X if u2 = −1

(19)

First, the dynamic of the velocity is identified. For this, start-

up scenarios have been simulated from rest by using different

values of the pair (u2, u3) ∈ {−1, +1} × [0, umax
3 ].

The obtained dynamic model is presented by the following

form :

V̇0 = −(β1u3 + β2)
[
V0 − u2V∞(u3)

]
. (20)

Namely, both the response time and the asymptotic values

depend on u3. The coefficients β1, β2 as well as the function

V∞(u3) are obtained by identification. The identification
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Fig. 4. Identification of the terms V∞(u3), β1 and β2 of the dynamic
model (20) of the mean velocity V0. Comparison between simulated and
computed values.

results are shown on figures 4. Based on the identified model

(20), monitoring u2 and u3 to control the mean velocity

around some desired value V d
0 amounts to solve in the

unknowns :

(λV , u2, u3) ∈ [0,∞] × {−1, +1} × [0, +umax
3 ]

the following nonlinear equation that simply states that the

r.h.s of (20) is equal to −λV (V0 − V d
0 ) :

V0 − u2V∞(u3) =
λV (V0 − V d

0 )
β1u3 + β2

(21)

which is always possible provided that the desired velocity

V d
0 is within the range of achievable velocities. Moreover, it

can be shown that in this case, a simple and efficient golden

section based search enables a solution to be found.

VI. NUMERICAL SIMULATIONS USING THE 3D

CONTINUOUS MODEL [2]

In this section, some numerical simulations are proposed

to assess the efficiency and underline some interesting fea-

tures of the 3D movement control problem.

A. 3D manoeuvres without velocity control

In this section, simulations of a 3D manoeuvre with

constant values for the control inputs u2 and u3 is proposed.

Keeping these control inputs constant means that no feedback

is done to control the mean velocity of the robot. This

means that the robot cannot stop at the desired position.

Once a neighborhood of the desired position is reached, the

controlled robot can only “turn around” it waiting for the

next set-point change. In what follows, some parameters used

in the simulation are given.

B. The robot parameters

The exhaustive definition of the model parameters is given

in [2]. Let us mentioned here that the length of the robot

is L = 2.08 m and all the cross sections are ellipsoidal

with evolutive dimension that reproduces a quite realistic

and faithful form (the tail is thinner that the central body).

The pectoral fins are positioned at 0.3 m from the head.

C. Control related parameters

• The undulation period T = 1.2 s [see (8)]

• the wavelength λ = 1.3 m
• The feedback gain βc = 1 [see (9)]

• The saturation level umax
1 = 0.5 [see (9)]

• Sampling period τs = 0.1 s
• The z control parameters (λ3, ε, μs) = (0.12, 0.05, 2.0)

[see (13) and (16)]

• Saturations on the fins angles sum and difference

(αmax, βmax) = (30 deg, 20 deg) [see (13) and (18)]

• The rolling angle feedback gains (κ1, κ2) = (4, 4) [see

(18)]

D. Manoeuvre description

Three set-point changes are successively and simultane-

ously done on the three coordinates of the desired position

Pd. The robot is initially at rest with the head at the origin

“oriented” towards the negative values of x. The desired state

is then defined by the following expression :

0 50 100 150 200 250 300 350
-2

-1

0

1

2

0 50 100 150 200 250 300 350
-10

-5

0

5

10

0 50 100 150 200 250 300 350

-50

0

50

Evolution of the (x, y) head coordinates (m)

Evolution of the (z) head coordinates (m)

Evolution of the rolling angle arcsin(prol) (deg)

Time (seconds)

Fig. 5. Behavior of the controlled robot with (solid line) and without
(dotted line) the rolling angle control under the three successive set-point
changes given by (22).

Pd(t) =

⎧⎪⎨
⎪⎩

(
6,−5, 1

)T
for t ≤ 100 s(

0,−5,−1
)T

for 100 < t ≤ 250 s(
3, 3, 0

)T
for t > 250 s

(22)

Figure 5 shows the behavior of the head’s coordinates

as well as the evolution of the rolling angle arcsin(prol)
when all the controllers are fired (solid line) and when the

rolling angle controller is switched off (dotted thin line).

This enables the coupling feature to be appreciated. Namely,

when the rolling angle is badly controlled, effects on the

altitude regulation can be observed. The evolution of the

control variable (αs, αd, u1) during this scenario is depicted

on figure 6. Note that except for the transient phases that

follows set-point changes, the control input u1 makes the

robot “turn around” the desired position Pd since no velocity

control is applied.
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Fig. 6. Evolutions of the sum and difference of the pectoral fins angles
(αs, αd) as well as the additional curvature u1 during the scenario of
figure 5.

E. Velocity control
In this section, the mean velocity controller developed in

section V is tested. The parameters (umax
3 , λV ) = (5, 0.06)

are used in (21). No controller are used on the other

coordinates, namely u1 = αr = αl = 0. The behavior of

the closed loop system is depicted on figure 7 for different

scenario, namely: a) Successive change in the constant

desired velocity. b) A parabolic desired velocity and c) A

ramp-like desired velocity.
It can be noticed that the quality of the regulation is better

for increasing than for decreasing velocities. This is due to

the fact that the identification of the model (20) is done using

acceleration scenarios. Another reason is that the simulated

Eel is not rigorously symmetric (the cross section smoothly

varies from the head to the tail to reproduce the true eel’s

form).

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300
0

1

2

3

4

5

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

1

2

3

4

5

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300
0

1

2

3

4

5

Evolution of V0 (m/s) Evolution of the control u3

Time (seconds) Time (seconds)

(a)

(b)

(c)

Fig. 7. Evolution of the mean velocity V0 (m/s) under the control law of
section V for three different profiles of the desired velocity.

VII. CONCLUSION

In this paper, preliminary results on the 3D control of

an eel-like robot are presented. The proposed feedback is

quite simple and independent of the detailed structure of

the robot’s model. The controller is validated using the

complex continuous model of [2]. Future work concerns the

implementation on the prototype (under construction). For

this, a systematic identification and tuning strategy needs to

be developed.
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