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Abstract— In this paper, we address the problem of automatic
grasp generation for robotic hands where experience and shape
primitives are used in synergy so to provide a basis not only for
grasp generation but also for a grasp evaluation process when
the exact pose of the object is not available. One of the main
challenges in automatic grasping is the choice of the object
approach vector, which is dependent both on the object shape
and pose as well as the grasp type. Using the proposed method,
the approach vector is chosen not only based on the sensory
input but also on experience that some approach vectors will
provide useful tactile information that finally results in stable
grasps. A methodology for developing and evaluating grasp
controllers is presented where the focus lies on obtaining stable
grasps under imperfect vision. The method is used in a tele-
operation or a Programming by Demonstration setting where
a human demonstrates to a robot how to grasp an object. The
system first recognizes the object and grasp type which can
then be used by the robot to perform the same action using a
mapped version of the human grasping posture.

I. INTRODUCTION

In the field of Programming by Demonstration (PbD),
[1], [2], the user teaches the robot new tasks by simply
demonstrating them. The robot can initially imitate human
behavior and then improve through continuous interaction
with the environment. For task learning by instruction, com-
plex systems that involve object grasping and manipulation,
visual and haptic feedback may be necessary. The robot has
to be instructed what and how to manipulate, [3]. If the
kinematics of robot arm/hand system is the same as for the
human, a one-to-one mapping approach may be considered.
This is, however, seldom the case. The problems arising are
not only related to the mapping between different kinematic
chains for the arm/hand systems but also to the quality of
the object pose estimation provided by the vision system.

Considering specifically object manipulation tasks, the
work on automatic grasp synthesis and planning is of sig-
nificant relevance, [4], [5], [6], [7]. The main issue here is
the automatic generation of stable grasps assuming that the
model of the robot hand is available and that certain assump-
tions about the shape of the object can be made. Example of
assumptions may be that the full and exact pose of the object
is known in combination with its (approximate) shape, [4].
Another common assumption is that the outer contour of the
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object can be extracted and a planar grasp applied, [6]. The
work on contact-level grasps synthesis concentrates mainly
on finding a fixed number of contact locations with no regard
to hand geometry, [8], [9]. Taking into account both the hand
kinematics as well as some a-priori knowledge about the
feasible grasps has been acknowledged as a more flexible
and natural approach towards automatic grasp planning. The
method proposed in [4] presents a system for automatic grasp
planning for a Barrett hand by modeling an object as a set
of shape primitives, such as spheres, cylinders, cones and
boxes in a combination with a set of rules to generate a
set of grasp starting positions and pregrasp shapes. Similar
to our work, [10], [11] also base the choice of grasp on
a human demonstration. However, the problem considered
is somewhat different. In our work, we do not assume that
the objects are placed at the exact location as during the
demonstration. Therefore, only the grasp type information
can be used, not the approach direction of the human hand.
Hence, the robot has to find a suitable approach vector either
by calculation or by performing an exhaustive search. The
latter alternative is used in this paper.

The contribution of the work presented in this paper arises
from the following problems stated above:
i) A grasp is related to object pose as well as its shape and not
only to a set of points generated along its outer contour. This
means that we do not assume that the initial hand position
is such that only simple grasps (e.g. planar grasps) can be
executed as proposed in [6]. In addition, grasps relying only
on a set of contact points may be impossible to generate
online since the available sensory feedback may not be able
to detect the same points once the pose of the object has
changed.
ii) We use experience provided by the human teacher to
model a set of most likely hand preshapes with respect to
the object. Similar idea was investigated in [4] but only
one robotic hand and four grasp preshapes were considered.
We evaluate both Barrett [12] and Robonaut [13] hands and
grasp preshapes are generated based on recognition of human
grasps which makes them more natural. This is, of course,
of interest for humanoid robots where the current trend is to
resemble human behavior as close as possible.
iii) Finally, we also evaluate the quality of different grasp
types with respect to inaccuracies in pose estimation. This is

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE4.6

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4715



an important issue that commonly occurs in robotic systems.
The reasons may be that the calibration of the vision system
or hand-eye system is not exact or that a detailed model of
the object is not available. We evaluate how large position
estimation error different grasp types can handle.

This paper is organized as follows. In Section II, the
required system components are briefly described. Section III
presents our grasp mapping strategy, and Section IV and V
covers the grasp controllers and grasp planning. In Section VI
the approach is thoroughly tested, and Section VII concludes
the paper.

II. SYSTEM DESCRIPTION

The development and evaluation of grasping sequences
is considered as a part of a PbD framework. The human
and the robot are both standing in front of a table, on
which a set of objects are placed. The human demonstrates
a task to the robot by moving objects on the table. The
robot recognizes which objects have been moved and where
using visual feedback. Using magnetic trackers placed on
the human hand, the robot is also able to recognize which
grasp type has been used to move a specific object. Based
on this, the robot is able to reproduce the task performed
by the human, [14]. Objects may, but are not required to
be placed at the same location as during the demonstration.
Our more recent work has also evaluated how tasks can be
learned based on multiple demonstrations, [15].

In this study, we design and evaluate a system for auto-
matic grasp generation and planning that can be used in the
above scenario to facilitate grasping of new objects that are
in shape similar to the objects that the robot has already
learned how to grasp. This closely relates to the use of
shape primitives, [4]. Here, we evaluate our approach given
two kinematically different hands, the Barrett hand and the
Robonaut hand.

To execute a task in a PbD framework, the robot first has
to be able to interpret the actions performed by the human
operator, then map them to its own frame of reference and
repeat the task. We shortly review the components currently
used in our system:

1: Object Recognition and Pose Estimation - By
estimating the objects’ poses before and after an action,
the system can identify which object has been moved and
where. For object recognition and pose estimation, we use
Receptive Field Cooccurrence Histograms(RFCH) [16],
[17]. In this study, it is assumed that the objects are placed
directly on the table and the pose is then represented by
three parameters (x, y and φ).
2: Grasp Recognition - A data-glove equipped with a set
of magnetic trackers provides hand postures to to the grasp
recognition system as described in [18]. Also, the position
of the hand is used to segment each movement action. To
make the sequencing and task recognition easier, an object
manipulation action is considered complete if the hand of
the demonstrator moves out of the working area.
3: Grasp Mapping - Depending on the target robot, i.e.
which type of robot hand is used, a fixed defined grasp

mapping scheme maps the human grasps to robot grasps as
presented in Section III.
4: Grasp Execution - The robot selects a grasp controller
depending on the desired grasp type. The controller
will choose the best available approach direction the
maximizes the probability of successful grasp. This choice
is based on a grasp planning method, described in Section V.

The evaluation of the system proposed in this work is
performed using GraspIt! [19], to allow for repetitive exper-
iments and statistical evaluation. The obtained results will
facilitate further development of the robot grasping system
presented previously in [20].

III. GRASP MAPPING

Related to grasp planning at large, it has been argued that
one procedure that can limit the large number of possible
robot hand configurations is to use grasp preshapes. This
is strongly motivated by the fact that even humans when
planning a grasp, unconsciously simplify this by selecting
one of only a few different prehensile postures. These
prehensile postures are those appropriate for the object and
for the task to be performed, [21]. Before grasping the object,
the human grasp type first has to be mapped to a similar robot
grasp type. For this purpose, a mapping scheme showed in
Fig. 1 was defined. It has to be noted here that the names of
the robot grasp types do not refer only to hand postures, but
instead to grasping controllers. A grasping controller takes
into consideration both the final posture of the hand as well
as the object approach strategy used by the human. Hence,
different strategies are used to grasp an object dependent on
the grasp type.

IV. GRASP CONTROLLERS

There are two basic grasp controllers in the system: Power
Grasp and Precision Grasp. There are eight variations of
these, three for the Barrett hand and five for the Robonaut
hand. Among these variations, it is only the initial hand
posture and the finger closing procedure that varies, the
underlying controller is the same. The two basic controllers
are described below.

• Power Grasp - First, the initial hand posture is set
according to the grasp type recognized from the human
demonstrator. Then the hand approaches the object with
the palm towards the object. Once a contact is detected,
all fingers close simultaneously. Dependent on the grasp
type, the joint angle speed may be different for each
joint, causing for example the thumb to close more
slowly. When a fingertip contact is detected, that finger
stops its closure, and once all fingers have stopped, force
is applied and the object is grasped. This controller type
will in general give a contact at the palm that results in
a more stable grasp.

• Precision Grasp - This controller is similar to the
Power Grasp, but with an added dimension. Once a
contact is detected, typically at one of the fingertips, the
hand can retract a predefined distance and then close all
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Robonaut Four−finger Robonaut Platform Robonaut Precision Disc

Four−finger Thumb Light Tool Abducted Thumb Power Sphere Large Diameter Small Diameter Medium Wrap Platform Precision Disc

Barrett Precision DiscRobonaut Wrap

Three−finger Thumb

Barrett Two−finger Thumb Robonaut Thumb WrapBarrett Wrap

Fig. 1. Initial robot hand postures for different grasp types.

fingers simultaneously. This allows the robot to better
combine tactile sensing with computer vision, as we
previously demonstrated in [20].

The grasp approach vector describes the 3D angle that the
robot hand approaches the object with, relative to the object’s
pose. For both controllers above, a contact displacement
controller, such as the one described in [7], would increase
the grasp success rate. After the robot has made an initial
contact with the object, the fingers are displaced by a
small amount in the direction of the negative error gradient.
However, this can be considered as a separate problem and
is outside the scope of this study. Another way of improving
performance is to add a more advanced controller, such as
the one presented in [22]. Here, the estimated pose combined
with tactile sensing is used as feedback to adjust the forces
applied at the finger joints.

V. GRASP PLANNING

In the current system, the planning is performed for dif-
ferent objects and two robot hands in the grasping simulator
GraspIt! [19]. An object, considered as a shape primitive
with known pose, is approached with the robot hand from
a set of initial positions. Then, a grasp quality measure is
used for estimating the quality of the grasp obtained from
every initial position. We use the quality measures provided
by GraspIt!, see [19] for details. All results are stored in a
so called grasp experience database. Our approach to grasp
planning is related to the work described in [19] and [23].
However, those approaches require the object to be composed
of object primitives, explained later in Section V-B. For
each primitive, a set of predefined candidate grasps and
approach directions are evaluated. In this work, we do not
use predefined approach vectors but instead evaluate many
approach vectors for each object. The vectors may target
the center of the object or one of the primitives, but we
believe the information gained from previous grasping of a
primitive has limited value when the primitive is attached
to an object. The most significant contribution compared
to the above papers is that we evaluate how the grasps
perform under imperfect pose estimation. We also evaluate
how the primitive representation affects the results once the
real object is grasped.

In our approach, similar to [4], we use the grasp con-
trollers described earlier in order to resemble the real world

conditions as good as possible. Also, we plan not only for
each object and end-effector, but also for each grasp type.
Naturally, the best approach vector for a power grasp is not
necessarily the best approach vector for a precision grasp.

For power grasps, three parameters (θ, φ, ψ) are varied
describing the approach direction and hand rotation. For pre-
cision grasps, a fourth parameter d, that describes the retract
distance when contact is detected, is added. The number of
evaluated values for the variables are θ=9, φ=17, ψ=9, d=6.
For the precision grasps the search space was hence 8262
grasps which required about an hour of training.

A. Grasp Retrieval

At the run-time, the robot retrieves the approach vector
that has the highest probability of success, from the grasp
experience database. Also, if it is given the option to choose
from several different grasp types, the grasp quality will in
general be even higher. However, because of robot kinematic
constraints and possible non-free paths toward the object, all
approach directions are not suitable at task execution time.
Thus, the robot searches the database only for directions that
are applicable to the situation at hand.

B. Training on Object Primitives

As mentioned earlier, a model of each object is necessary
for training the grasp planner. It is not likely that the robot
will be able to acquire such models automatically especially
if the shape is very complex. However, it is realistic to as-
sume that it will be possible to extract shape primitives using
computer vision or laser technology. The idea is to represent
each object by its appearance (textural properties) and shape
primitives. The appearance is used for recognition, and the
primitives for grasp planning. Several primitives build up an
object and the primitives can be of different basic shapes:
truncated cone, sphere, box, cylinder etc. Recent progress
presented in [24] show a promising method for retrieving
shape primitives using vision, although the method currently
is restricted to objects with uniform color. To evaluate an
object representation using primitives, we have designed a
primitive representation for each object in our scenario, see
Fig. 2. For evaluation purposes, we have modeled objects as
presented in Fig. 2.
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Fig. 2. First row: The real objects. Second row: The modeled objects.
Third row: The object primitives used for training.

VI. EXPERIMENTAL EVALUATION

In this section, we provide both i) qualitative experiments
that show grasps performed by the robot hand given the cur-
rent state of the environment and grasp experience database,
and ii) quantitative experiments that show how small errors
in pose estimation affect the success of the final grasping
result.

Five objects shown in Fig. 2 were modeled and added
to the GraspIt! simulator. The real objects were placed on
a table, Fig. 3 (left). A camera mounted on a side of the
table monitors the world state which consist of five objects
placed at arbitrary positions. In this example, the objects are
placed at the same positions in the robot world as in the
human world. However, as the robot calculates the approach
vector and performs pose estimation, it can also perform the
task when the objects are placed in a different configuration
compared to the human world. This setting, however, causes
problems when object collisions may occur in one world and
not in the other. In [15] we solve this by invoking planning
into the PbD process.

The human teacher, wearing a data-glove with magnetic
trackers, starts by moving one of the objects. The object
moved is recognized by the vision system as well as the grasp
human used to move it. This information is then used to first
generate a suitable robot grasp that controls the movement of
the robot hand in the simulator. References to our previous
work that describe this in detail are provided in Section II.

Fig. 3. Left: The human moves the rice box. The system recognizes what
object has been moved and which grasp is used. Right: The robot grasps
the same object using the mapped version of the recognized grasp.

Fig. 4 shows a few examples of the best grasps obtained

when the robot is free to choose any approach direction.
Fig. 4(h) shows an example of a failed grasp, due to a
simulated error in pose estimation.

The success rate of this system depends on the perfor-
mance of three modules: i) object recognition, ii) grasp
recognition and iii) pose estimation of the grasped object.
As demonstrated in previous papers, [16], [18], the object
recognition rate for only five objects is around 100 %, and
the grasp recognition ratio is about 96 % for ten grasp
types. Therefore, the performance in a simulated environment
may be considered close to perfect, since the exact pose of
each object is considered known. However, this will usually
not be the case if either the robot hand-eye system is not
perfectly calibrated or if the perfect model of the object is
not available. Therefore, we introduce some error in the pose
estimation process and once again evaluated the performance
of the system.

A. Introducing Error in Pose Estimation

To evaluate the performance under imperfect pose estima-
tion, we have simulated errors by providing an object pose
with an offset. As pointed out in [25], the robustness of a
grasp to positioning the end-effector has not been widely
addressed in the literature.

In our experiment, the target object was placed on the
table and the robot performed a grasp 50 times. Each time,
a fixed-length vector with a random orientation was added
to the position provided to the robot. As a result, the robot
interpreted the situation as if the object had been moved.
This was repeated for five different vector lengths: 0, 1, 2, 3
and 4 cm. In total, the robot grasped the object 250 times.

Fig. 5 - 6 show the grasp success rates for various grasps
and objects, under increasing error in position estimation.
Here, a grasp is considered successful if it is a force-closure
grasp. As expected, power grasps are more robust to position
errors than precision grasps. The precision grasps target
details of an object, e.g., the bottle cap or the ear of the
mug. Thus, the grasps are much more sensitive to position
inaccuracies. However, a tactile grasp adjustment algorithm
would increase the grasp success rate and make the precision
grasp quality higher.

It is clear that the Barrett hand is more robust than the
Robonaut hand, likely due to its long fingers. The exception
is the grasping of the mug, to the right in Fig. 5, where the
Robonaut Four-finger Thumb grasp is the best.

The bottle and the mug have been trained both using
a primitive model and using the real model (see Fig. 2).
Training on the primitive model does not decrease the grasp
success rate much, especially not for the bottle. However,
the primitive model of the mug is, unlike the real mug, not
hollow, which causes problems for some of the precision
grasps trained on the primitive.

We have also evaluated how an error in rotation estimate
affects the result. For each object and grasp type, we tested
how much the object could be rotated before the grasp failed.
As expected, for symmetric objects like the orange and the
bottle this type of error has no effect. However, for the
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Fig. 4. Examples of grasp executions for various grasp types and objects. From left: (a) Barrett Precision Disc, (b) Barrett Wrap, (c) Barrett Wrap,
(d) Robonaut Precision Disc, (e) Robonaut Thumb Wrap, (f) Robonaut Thumb Wrap, (g) Barrett 2-finger Thumb, (h) Robonaut 4-finger Thumb, (i) Barrett
Failed Wrap. (a)-(h) shows successful grasps, while (i) shows a failed grasp due to a simulated error in pose estimation. The contact friction cones are
plotted in red.
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Fig. 5. Left: Grasping the bottle. Right: Grasping the mug.
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Fig. 6. Left) Grasping the orange, Middle) Grasping the zip disc box, Right) Grasping the rice box.

other objects we found that the difference in rotation error
tolerance is large. Table I shows the rotation tolerance for
various objects and grasp types. For two of the Robonaut
grasps on the mug, the rotation is not a problem, with a
perfect success rate. For one of the Barrett grasps on the
mug, the rotation estimation is absolutely crucial and cannot
withstand a small rotation inaccuracy. Thus, this type of
grasp should be avoided for this object.

VII. CONCLUSIONS

In this paper, we have presented a method for generating
robot grasps based on the shape primitives and human
demonstration. One of the main challenges in automatic
grasping is the choice of approach vector, which is dependent
both on the object and the grasp type. Using the proposed
method, the approach vector is chosen not only based on
perceptional cues, but on experience that some approach
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Object and Grasp Type: Rot. Err. Tolerance (degrees):

Mug, Robonaut Precision Disc 4

Mug, Robonaut Thumb Wrap 180

Mug, Robonaut Four Finger Thumb 180

Zip Disc Box, Robonaut Thumb Wrap 17

Rice Box, Robonaut Thumb Wrap 2

Zip Disc Box, Barrett Wrap 3

Rice Box, Barrett Wrap 17

Mug, Barrett Wrap 12

Mug, Barrett Precision Disc 0

Mug, Barrett Two Finger Thumb 6

TABLE I
THE ROTATION ERROR TOLERANCE FOR DIFFERENT OBJECTS AND

GRASP TYPES.

vectors will provide useful tactile cues that result in stable
grasps. Moreover, a methodology for developing and eval-
uating grasp controllers has been presented. Focus lies on
obtaining stable grasps under imperfect vision, something
that has not been thoroughly investigated in the literature.

As a part of the future work, it will be interesting to
evaluate the proposed strategies in combination with tactile
feedback on the robot hand, [20]. The use of the simulation
results presented here was necessary for generating insight
into the problem as well as performing the statistical eval-
uation for the grasp experience, since i) the world must
be reset after each grasp attempt, and ii) computing the
grasp quality measure requires perfect world knowledge.
The kinematic simulation results presented in this paper are
interesting, but recent experiments indicate that with dynamic
simulation, better results are obtained. This is especially true
for precision grasps, where it is difficult to obtain a stable
grasp without moving the object. Thus, an evaluation using
dynamic simulation would probably improve the results. This
is part of our future work.

Currently, our method assumes that the robot can detect
contact anywhere on the robot hand. A more realistic as-
sumption is that the hand is equipped a set of tactile sensors
and contact can only be detected at one of these, [20].
Considering this in the planning and evaluation stage is a
part of the current work.

The grasp controllers presented here do not use the contact
vector. Recent work presented in [26] show that such sensors
are being developed. Thus, more tactile information will be
available and should be used in the controller. For example,
integration with a contact displacement controller would
further increase the grasp success rate.
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