2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrC11.4

Nearly Analytical Pose Estimation

John E. Mclnroy, Senior Member, IEEE,

Abstract— This paper develops a new, nearly analytical
method for pose estimation. Two steps are required: (1) Solution
of a least squares matrix problem, followed by projection of
the solution onto the nearest scaled subunitary matrix, and (2)
Solution of a least squares vector problem, followed by pro-
jection onto the three dimensional Special Orthogonal group,
SO(3). Although the method can be iterated when necessary, it
achieves accuracy to standard stopping criteria with on average
only one iteration; thus it can be considered nearly analytical.
The method is compared to numerical methods and is shown to
be much faster than earlier iterative methods. Both perspective
and affine cameras models are treated.

Index Terms— pose estimation, visual servoing

I. INTRODUCTION

Pose estimation is the calculation of a body’s position
and orientation from an image. Iterative, nonlinear numerical
optimizations can provide fully optimal solutions which are
therefore of the highest possible accuracy. There are many
examples of such methods. Since this paper is concerned
with rapid techniques, [1] is a fast iterative technique based
on object, rather than image, iterations. Global convergence
is found. Both [2] and [3] use iteratively re-weighted least
squares techniques for tracking rapidly. These approaches are
based on linearization using the Lie group’s infinitestimal
generator; thus they are suitable for tracking small changes
in pose between images. Let SO(3) denote the three dimen-
sional Special Orthogonal group modeling three dimensional
rotation. Cyclic coordinate descent, which alternately finds
the optimal rotation, R € SO(3), then Euclidean terms such
as the translation, then recalculates R and so forth is used
for camera calibration [4], [5]. Image moments are used to
iteratively obtain fast pose measurements of planar objects in
[6]. Closed form solutions which use only monocular images
(two dimensional data) are available for n = 3 or n = 4
correspondence points. The roots of a fourth or fifth order
polynomial contain the solution ([7] provides one example
algorithm and references for other algorithms). For a small
set of points when n > 4, non-iterative techniques methods
are found in [8], [9], and [10]. The solution in [10] solves
a quadratic problem through an over-parameterization, then
multiple linear SVDs. The number of variables generated can
be high. For instance, the constraint R” R = I requires 45
variables for the three dimensional element of R.

Despite the availability of many algorithms, there remains
a need for a rapid, optimal, dependable algorithm. For both
affine and perspective imaging, this paper develops a new
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method that is nearly closed form, yet provides optimal
estimates even when n > 4. It does so by solving two
distinct, unconstrained least squares problems: the first is for
large rotations, while the second is for small rotations. These
initial answers are then projected onto SO(3).

II. CAMERA MODELS

This section briefly presents both the affine and perspective
camera models, then states the pose estimation problem for
each model.

Let p; € R? denote the i*" point on an object, and
d; € R? denote its image. Without loss of generality, assume
the standard camera model with camera axis along the “z”
dimension, so that the missing component of data is the third
(or “z”) component. The pin-hole model of a camera then
yields the following perspective transformation [1]:

_ fR(Rpi+t)

" (T(Rpi +t)
where f is the camera’s focal length, P, = [I5 0], R is the
rotation matrix from the object frame to the camera frame, ¢
is the translation vector from the object frame to the camera
frame, and ¢ = [0 0 1]%.

Affine imaging systems [11] are a limiting case of per-
spective cameras for the situation wherein the depths of
the correspondence points are much larger than the size of
the object. All correspondence points are then scaled by
approximately the same value, and the data loss becomes
a linear loss of one dimension (along the sensing axis). This
occurs when (T Rp; << (Tt, for all i. Then (1) becomes
the affine camera model
d — [P (Rp; +1)

1 CTt

The affine pose estimation problem can be phrased as
follows:

Given p; €R3, d; e R, w; € Ry, i=1...n, P, =[I5 0],
find the minimum of

- Py[Rp; +t
7=y w 2R g
=1

(D

2)

over g = (R,p) € SE(3) (R € SO(3), t € R®). Here w; are
nonnegative real weights proportional to the quality of the
it" measurement.

The perspective pose estimation problem is similar:
Given p; € R3, cz; ER?2, w; €Ry,i=1...n, P, =[ 0],
find the minimum of

J = willfPo[Rpi +1] = ¢T[Rpy +]dil[> @)

i=1
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over g = (R, p) € SE(3) (R € SO(3), t € R3).

To date, minimization of either (3) or (4) has involved a
nonlinear numerical optimization. This paper will derive a
much faster method via a sequence of analytic solutions.

III. THE CLOSEST SCALED SUBUNITARY ELEMENT TO AN
ARBITARY MATRIX

This section derives methods for estimating a generaliza-
tion of unitary matrices, termed scaled subunitary matrices.
They will be used for estimating pose.

Definitions:

o Mjxm(R) denotes the set of [ x m dimension matrices
with real coefficients.

o Usc(R) denotes the set of scaled subunitary matrices.
That is, Use(R) = {sN|s € R, N € Mixm(R), 1 <
m, NNT = T}.

e - is the cross product matrix

The following Lemma will be used extensively to find the
closest element of SO(3) to a given arbitrary matrix. It is a
generalization to non-square matrices of the basic concepts
presented, for instance, in [12].

Lemma /: If A € M;x,,(R) where [ < m, the closest
scaled subunitary matrix to A (in the least squares sense) is
cR € Us(R), with

1) The SVD of A is A = UXVT, where ¥ = [ 0], 5

is diagonal with elements Xg = diag(o1 o2 ...07), V3
consists of the first [ columns of V.

2) = Oang = (22:1 i)/l

3) R=UV{T
The distance between the matrices is

|A = cR|l2 =

, the standard deviation of the nonzero singular values of A.
The proof is available upon request. Lemma 1 will now be
used to find the scaled subunitary transformation which best
relates two data matrices, P and D.

Proposition 2: Let P € R™*" D € R*™ be given,
where null(P7) = 0 and D = QP for some scaled subunitary
Q. Then the minimizer of ||AP — D||% over A € Ug.(R) is
given by solving the linear, unconstrained equations AP =
D over M,,xn(R). That is, A = DP%, where P' is the
pseudo inverse of P. Then, find the closest scaled subunitary
matrix to A from Lemma 1
Proof: The minimum of ||[AP — D||3 is 0 when AP = D.
Since D = QP, AP = D = QP. This implies that A =
QPPT. Since null(PT)=0, PPT = I, thus A = Q, and
the global minimum of O can be attained. Let the SVD of
A = U 0]VT = Q. Since Q € U,.(R), QQT = kI
for some k € R. Thus UX2UT = k*I and %y = kI. Then
A=Q=UxV! =kUVl =kR. k=01 =" =0y,
therefore k£ = 0444.
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Proposition 2 simply shows that when no error is present
(ie. D = QP, Q € Us(R)), minimization in the uncon-
strained linear space of matrices My, (R) and then finding
its closest element in Us.(R) is equivalent to the far more
difficult problem of solving the constrained minimization.
This involves a little sleight of hand—since no error is present,
the initial unconstrained solution is already in Us.(R). The
theorem presents this temporary unnecessary step to set
the stage for realistic, imperfect data matrices, D # QP.
Theorem 3 shows that, when error is present, this method
yields a second order approximation.

Theorem 3: Let P € R™*" D € R'*" be given, where
null(PT) = 0. A second order approximation to the problem

J. = mingeu,, ®||BP — D|f o)

can be found by analytically solving the unconstrained, linear
problem

Ji = minaen, .. ®)||AP — Dl (6)

A second order approximation to (5) is then the closest
element in U, (R) to the A minimizing (6).

Proof: From Lemma 1, the closest element in U,.(R) to
the minimizing A, A = DP', is cR = OavgU V', where
the SVD of A = U[S, 0]JVT, and V; contains the first
columns of V. The cost when using this estimate is

Jest = ||cRP — D|3 (7)

To complete the proof, it must be shown that this cost is a
second order or better approximation of the optimal cost, .J,.
That is, for some constant matrix G, Jes < Ji + ||EG|[3
where F is an error matrix modelling the difference between
A and cR.

Since null(P7)=0, Yo ! exists and cR can be written as
cR = 04pyUS ' UTA. Let I + FE = 04,,US; 'UT. Then

E =04,,U[%" —1Uut (8)
Since ¢cR = (I + E)A, (7) becomes
Jest = [|(I+ E)AP — DIf;

or
Jest = Jip + 2tr([AP — D][EAP]T) + ||EAP|Z  (9)
Since A = DP', AP = DP'P = DV, V], where

Vp1 contains the nonzero input directions to P (these can
be obtained from the SVD of P). Since VjV,1 = I,
(AP — D)(AP)T = 0, and the middle, first order term of
(9) becomes zero. Thus (9) becomes

Jest = Jlb + ||EAPH% (10)

Because the minimum of (6) is found over the entire vector
space of [ x m matrices, while (5) is restricted to scaled
subunitary [ x m matrices, Jy, < J,. Therefore J o < Ju +
|[EAP|J3

a
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Section V will show that these techniques when applied
to pose estimation yield very accurate answers that are, for
many applications, sufficiently accurate to eliminate the need
for any further search. This surprising result is explained
by Prop. 2 and Theorem 3: (1) The method yields an
exact solution for exact data (by Prop. 2), and (2) The
approximation error is small when noise is present, because
it is a second order approximation, with zero first order error
(by Theorem 3).

IV. ESTIMATION OF POSE USING AFFINE AND
PERSPECTIVE CAMERAS

These new results will now be used to find second order
approximations to the affine and perspective pose estimation
problems.

Theorem 4: Let p; € R3, i = 1,...,n be known points
on an object, and d; € R2, i = 1,...,n be their images
taken by an affine camera with focal length f. Let w; be
real positive weights proportional to the quality of the i*"

measurement (w; € Ry, i=1...n), and P, = [I5 0]. Let
Pi = NWilDi — Pavg)s di = /Wildi — daug)
where
Pavg = Z%li davg = Zn?liwd
D Wi D1 Wi
and B ~ o ~
P=[p1p2 - pul, D=d1 dz ---dy]

Then, if null(PT) = 0, a second order, analytical approxi-
mation to the homogeneous transformation from the object
frame to the camera frame g = (R, t) € SE(3) (R € SO(3),
t € R3) minimizing

P |Rp; +t
J = Z 2R e an

where ¢ = [0 0 1]7 can be found by the following steps:
1) Calculate A = DP, and its SVD, A =
Ul 0][Vi Vo]T. Then 04,y = (01 + 02)/2 where

o g1 0
w5 5]

2) RR=UVI t, ="t =1
3) Bt = lezg - P2Rpavg’
Pt
=]
.17T
4) Let R = { yT }, z = 2y, then
PR
ne| B

If no noise is present, the solution is exact.
Proof: Let Pyt =t,. Then J = Y1 | w
d;||?. Minimizing J with respect to t, gives
tzdavg
f

||fP2Rm+ff

tg, =

- P2Rpa7jg (12)
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Substituting (12) into .J gives J = Y7, |[:L PaRp; — ds||*.
Writing this in terms of matrix norms gives J = ||%P2RI3 —
1~)||2 A second order approximation to the minimum of J
is given by Theorem 3: Find A = DP', and its SVD A =
Ul%o ][V1 Vo]”. Then PR = UV{! and 040y = L, thus
t, = Use (12) to find P>t = t,. This solution will
be exact for noise free data by Prop. 2. Finally, since R €
SO(3), the missing row can be found from the cross product
of the two known rows, i.e. let the rows of P, R be denoted
as 27 and y”. Then z = &y and

we ]

Prop. 2 implies that the solution is exact when the data is
noise free.

d

The perspective transform destroys the affine structure, but
the same essential concepts are used in Theorem 5 to find
second order approximations in the perspective case.

Theorem 5: Let p; € R3, i = 1,...,n be known points
on an object, and d; € R?,i = 1,...,n be their images taken
by a perspective camera with focal length f. Let positive
weights, proportional to how good the i*" measurement is,
be denoted w; € Ry, i=1...n, and P, = [I5 0].

When the data is not over-constrained, a second order
approximation of the homogeneous transformation from the
object frame to the camera frame g = (R,t) € SE(3)
(R € SO(3), t € R?) minimizing

J = wi||fP2[Rp; +t] — ¢ (Rp; + t)d;|*

i=1
[0o1)%
1) Calculate the matrices:

where ( = can be found by the following steps:

n

Bi = wi[fP, - di¢"), B= (> _BI'Bi)™!
i=1
pZT 0 0 n
Ni=| 0 pl' 0 |,M=8> BIBiN;
0 0 pf i=1
2) Stack these matrices as follows:

Bi (N, — M)
By (Ny — M)
B, (N, — M)

3) Find the input direction to F, vpg, which gives the
minimal norm output. Since F’ is typically a tall matrix,
with dimension 2n x 9, this can be done by the SVD
of FTF = VFEFVE. Then vgg is the last column of
VE.

4) Partition vgg into three, three element vectors as

e

Vp9 = Ye
Ze
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5) Rearrange these vectors into a matrix, A, and find its

SVD: T
A= | o
ZT

=Uxv?

6) The rotation matrix, R is given by R = UVT.
7) The translation vector, t 1is given by t =
—B 3 (B] BiRp:)
Proof: Minimizing J with respect to ¢ gives

t=—0) (B B:Rp:)

i=1

(13)

The i*" error term of J is

ei = wi(f P2 — di¢")[Rp; + ]
Substituting in (13) yields

e = wi(f Py — di¢")[Rp; — B> (B B;Rp;)]  (14)
j=1
This equation is linear in the unknown matrix, R. Let the

rows of R be denoted as
T

X T
R=|y" | andformv= | y (15)
2T z
Note that
R[5 = [Jv]l3 =3 (16)

Equation (14) can then be rewritten as

e; = Bi[N; — 8 (B} B;Rp;)lv = Bi[N; — MJv
j=1
Stacking these individual errors into a vector gives the
equation

a7)

J can now be rewritten as J = ||€]|3. It is therefore
minimized when v equals the minimum input direction of F,
vpg. Finding the SVD or Schur decomposition of FTF =
VX FV}? provides vg, which is the last column of V. This
vectorized estimate will now be formed back into a matrix,
then its closest unitary neighbor will be found. Let

Te

VF9 = Ye
Ze

Rearrange these vectors into a matrix, A, and find its SVD:

g
A= |yl | =UuxvT
2
The rotation matrix, R is given by R = U VT,

while the translation vector is given from (13), ¢t =
—B31_1 (B BiRps).
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It will now be shown that this approximation has zero first
order additional cost when the data is not overconstrained.
From (17), the cost is J = ||Fv||3. The minimizing input
direction vgg is found by minimizing over the entire real
vector space R®, while the optimum must enforce the ad-
ditional orthonormality constraints on R. Therefore a lower
bound on the cost is given by Jy, = ||Fupg||3. To make
the cost computations consistent, the length of vpg should
be scaled from (16) to be ||vrg||3 = 3. Since R does not
depend on the length of vpg, this does not change the value
of R (or t, which is calculated from R).

The orthogonality constraints are imposed by finding the
closest unitary matrix to A, R = UVT. Vectorizing R by
the process in (15), the cost when using this estimate is
then Jos = ||Fv||3. Let v = ¥ + vpg, where ¥ models
the difference between v and vgg. Then

Jest = ||F (0 + vpo)|l5 = Jiw + 20" FT Fupg + ||F|[3
Since vpg is the minimum input direction of F,

Jest = Jip + 20 min®” Fupg + ||Fo)|3 (18)

where 0,,;, is the minimum singular value of F' and upg
is the minimum output direction of F' (by convention the
9" column of Up). Is is well known that four appropriate
points are sufficient to determine pose, therefore consider
the case where n = 4. F' is then of dimension 8 x 9, which
implies 0,,;, = 0. This is the case where the data is not
overconstrained. Then

Jest = Jip + || F0||3 (19)

Thus the approximation is second order.

d

Both Theorems 4 and 5 minimize J when noise free
(perfect) data is present, which in this case gives J=0. In this
sense, they can be considered to be analytical solutions to the
pose problem. They are not, on the other hand, guaranteed
to minimize J in the more realistic case when noise is
present. Fundamentally, this occurs because minimizing in
an unconstrained space and then finding the closest point in
a constrained space is not in general equal to minimizing
within the constrained space directly. What we have found
very surprising, however, is the high level of accuracy—
thousands of different noise scenarios, many with very large
noise levels, have demonstrated experimentally that the new
method reliably gives rotation matrices very close to the
optimum. Section V will provide more details, but for many
applications, Theorems 4 and 5 yield sufficient accuracy
to consider them a nearly analytical solution: no other
calculations are needed. This stems from the second order
nature of the approximation.

When higher accuracy is desired, the basic concept of
minimizing in the unconstrained space and then projecting
onto the constrained space can be modified to find rapid
iterative solutions. A first order approximation of R is
parameterized as A = a + w. The four variables (w € R3,
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o € R) are then found by an unconstrained least squares
minimization of J. R is then estimated by finding the closest
element in SO(3) to al + w.
Theorem 6: Pose estimates found using Theorem 5 can
be improved (i.e. J can be reduced) by the following steps:
1) Using Theorem 5, find an initial estimate of the ho-
mogeneous transformation from the object frame to
the camera frame,

(0)  (0)
(0) _ R t
=[]
Let k = 1, and let superscripts in parenthesis indicate
the k" estimate. The initial data is: pgo) = p;.
2) Transform the object data points to the k*" estimate of
(k) _ p(k—1),,(k—1) (k—1)
the camera frame, p, ” = R D; +1 .
3) Calculate the matrices:
0 = 3" B Bip"). E® = 53 BT Bp(")
i=1 i=1
B; and (3 are already available from the Theorem 5
calculations.
4) Stack these matrices as follows:

Bi(—pS) + E® p) 4 ok

G — By(—py” + BE®  pi? 4 c0)

Bu(—pi) + E® pl) 4 C®)

5) Calculate the minimum input direction of G*), ¢(*),
Let w*®) equal the first three elements of ¢(*), and /(%)
equal the last.

6) Calculate A®) = o] + %*) and its SVD A®) =
UxvT.

7) R® =pvT, ¢*) = — 35" (BT B,RWp{H)

8) Update the homogeneous transform estimate as

k) _ { R(()k) t<1k> }T(k_l)

9) If [|w®|| — 0, stop. Otherwise, k = k + 1 and go to
step 2.

Proof: The essence of this proof is to find an estimate, update
the data to contain that estimate, then estimate again. It will
use the same concept used in Theorem 5, but let A have
only the four variables contained in A = a + w. The data
is updated by letting p\*) = R:=DpF=1) 4 4(k=1) A new
cost function which uses this data is then

J0 =3 willf IR 0] (RO 410 a |

=1

Minimizing J*) with respect to t(*) gives

t®) = -3 (BT B;iR®pM) (20)

i—1
The " error term of J®) is

M = (P2 — di¢T)[RPpH 1 1®)
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Substituting in (20) yields
e =y Bi[RPp® — 33" (BT B, RMpM) 1)
j=1

This equation is linear in the unknown matrix, R(*). Let
R®) = oM [ 4 p®*) | then Equation (21) can be rewritten as

ez(.k) = Vi Bi[(a®T + w(k))pz(k)

=B (B By (@1 +w)p)
j=1

or
el(k) _ Bz‘[*ﬁl(‘k) + E® pl(,k) + C’(’C)]q(k)
where
9 = 132 BT {5 = 8132 5T 5
i=1 i=1
and

(k)
k) | W
= |
Stacking these individual errors into a vector gives the
equation

€
o)
2 = k) = G(k)q(k) (22)
e
J®) can now be rewritten as J(*) = ||&®)||2. It is therefore

minimized when ¢*) equals the minimum input direction
of G®), Lemma 1 can then be used to estimate the rotation,
closest to AK®) = o(F) [ 4k, Finally, the translation can be
estimated from (20) to be t*) = —g 3" (BT B;R*)p*).
The estimate of the rotation will be accurate if the singular
values are all nearly equal. Since the singular values are
[Vl @2+ (a®)2 {/[lw®]2 + (a))2 a®)], they be-
come equal as |[w®)|| — 0.

d

This proof shows how the iterative scheme arises as a first
order approximation of rotation matrices, but no formal proof
yet exists to show why it converges. The next section will
provide thousands of simulations illustrating its convergence.

V. EXPERIMENTAL RESULTS

This section now presents simulation results comparing the
new algorithms to the method of Lu, Hager, and Mjolsness
[1]. Their method is chosen for comparison due to several
reasons. First, its performance did out-shine other methods
we implemented. Second, it uses some similar concepts
(SVDs in particular). Third, it is emerging as a popular
technique. Finally, the authors offer downloadable code from
their website, therefore it can serve as a benchmark.

The results from two types of data sets will be presented.
All data sets pass through the perspective transformation in
(1). The focal length is f = 1, since [1] fixes it there.
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Characteristic

| Affine | Perspect [ AF+iter. | Lu,Hager,Mjol. ]

Characteristic

| Affine | Perspect [ Per+iter. | Lu,Hager,Mjol. |

% Erroneous 0 71.9 0 0 % Erroneous 49.1 9.30 6.95 14.2

Mean Num. Iter. 0 0 1.00 32.7 Mean Num. Iter. 0 0 1.54 422

RMS 6 Error [0] 1.93 40.5 1.19 1.19 RMS 6 Error [°] 41.5 15.2 0.507 1.69

RMS X error [m] | 0.136 1.15 0.081 0.081 RMS X error [m] | 2.85 0.945 0.035 0.045

RMS Y error [m] | 0.129 1.43 0.084 0.084 RMS Y error [m] | 2.76 0.873 0.033 0.038

RMS Z error [m] 13.7 119. 8.12 8.14 RMS Z error [m] | 2.04 1.15 0.061 0.069
TABLE I TABLE 11

THE Z COMPONENT OF THIS DATA SET IS ON THE ORDER OF 100 TIMES
LARGER THAN THE X AND Y COMPONENTS, MAKING THE DATA AFFINE.

The object points, p;, translation, ¢, and axis of rotation ,
w, (R = exp(w)) are chosen with Gaussian distributions.
Four different techniques will be compared: (1) The affine
method (Theorem 4); (2) The perspective method (Theorem
5); (3) The new iterative method (Theorem 6), and (4)
Lu, Hager, and Mjolsness. In this order, they are sorted
from least to most required calculations. Heavy levels of
normally distributed noise are added. Answers more than
60° off are considered to be erroneous answers. Root Mean
Square (RMS) errors in angle and translation are calculated
excluding these erroneous answers, with the percentage of
erroneous answers listed separately. The stopping criteria for
the new iterative method (3) is chosen to match the default
accuracy of method (4).

The differences in the data sets arises by changing the
range of the objects, which appears in the Z component of
t, t,. Table I summarizes the results when ¢, is on the order
of 100 times larger than the X and Y components, making
the affine camera model fit well even though the actual
data comes from the perspective transformation (1). Using
the affine method as an initial starting point, then iterating
(AF+iter) emerges as the clearly superior technique, as it
produces slightly better estimates than Lu’s (4), but requires
on average only 1.00 iterations to equal the accuracy obtained
using an average of 32.7 iterations of Lu’s (4).

Second, Table II summarizes the results when ¢, is first
chosen from the same distribution as the X and Y compo-
nents, but then the absolute value of that ¢, is taken to ensure
positivity. Due to the high noise levels, each of the algorithms
yield erroneous answers, the affine technique almost half of
the times. This is to be expected, since the affine camera
model is no longer a good approximation for this data. The
new iterative method again is the clear winner, using on
average 1.54 iterations to equal the accuracy obtained using
an average of 42.2 iterations of Lu’s (4). However, its initial
starting point is provided by the perspective method (2), since
that camera model applies. Averaging the results of these two
simulations, the new iterative method requires on average
only 1.27 iterations to match the accuracy of 37.4 iterations
using the Lu, Hager, and Mjolsness technique.

VI. CONCLUSIONS

A new pose estimation method which produces an exact
solution for exact data, and a second order approximation
sufficiently accurate for many applications with imperfect

THE Z COMPONENT OF THIS DATA SET IS POSITIVE BUT OTHERWISE
STATISTICALLY THE SAME AS THE X AND Y COMPONENTS

data is derived. A powerful new iterative method relying
on the new concepts is developed and compared to other
iterative schemes. Simulations show that, for the same level
of accuracy, on average only 1.27 iterations are needed for
the new method, versus 37.4 for the popular method in [1].
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