
Dynamic Programming for Creating Cooperative Behavior of
Two Soccer Robots —Part 1: Computation of State-Action Map

Ryuichi Ueda, Kohei Sakamoto, Kazutaka Takeshita and Tamio Arai

Abstract— To solve decision making problems of multi-agent
systems, researchers have devised complicated methods, which
are expected to solve curse of dimensionality. In this paper, we
go to the opposite extreme. We generate cooperative behavior
of two soccer robots with a simple dynamic programming (DP),
which was proposed in ’50s. Through the example, the ability
of DP on a recent computer is measured and evaluated both
qualitatively and quantitatively. We then show that the simple
structure of DP is useful in obtaining behavior of robots in
a convincing way. In the implementation of DP, space that
is spanned by eight variables for decision making is divided
into 610 million states. DP solves the optimal actions of two
robots in every division and creates a look-up table, which is
called a state-action map. The ability of this state-action map
is measured by simulation and the result is discussed.

I. INTRODUCTION

In almost all of studies on cooperative robotics, the curse
of dimensionality [1] is discussed implicitly and explicitly.
In many studies of multi-agent systems, some kinds of
basic behavior are planned for each robot beforehand, and
cooperative behavior is planned as their combination. For
example, there are many cases of such studies [2], [3], [4],
[5] in RoboCup (robot soccer world cup [6]). In these cases,
a problem is divided into each subproblems of each robot.
State space of all robots are also divided into subspace of
each robot. Those studies have made it possible to create
various types of cooperative behavior of robots.

From the viewpoint of optimal control, however, excessive
assist for emergence of cooperation is not optimal. In many
cases, those methods find at most some behavioral patterns
that are easy to understand for people.

In this paper, we daringly try creating a huge control policy
without techniques on the study of multi-robot systems. Dy-
namic programming (DP), which was proposed by Bellman
[1] in ’50s, is applied to a cooperative task of two robots.
An algorithm of DP for a finite Markov decision process
(a finite MDP) [7] is applied to a continuous system with
discretization.

The concrete purposes of this study are as follows.

• We verify that a reasonable result of DP can be obtained
within feasible time, and that the result makes two
robots cooperate effectively.

• A concept of virtual state transitions is introduced.

This research is partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Young Scientists (B) (No. 17760199).

R. Ueda, K. Sakamoto, K. Takeshita, and T. Arai are with Department
of Precision Engineering, School of Engineering, The University of Tokyo
ryuichi@robot.t.u-tokyo.ac.jp

• We discuss and deal with a problem on the approx-
imation of the continuous system with a finite MDP,
especially in the case of multi-agent systems.

• The computational cost of DP is evaluated.
• The result of DP is evaluated by simulation.
In Sec. II, a scoring task with two robots is defined. Our

implementation of DP is explained in Sec. III minutely. The
novel concept, virtual state transitions, is introduced in this
section. The obtained result is evaluated by simulation in
Sec. IV. We conclude this paper in Sec. V.

II. SCORING TASK WITH TWO SOCCER ROBOT

A. RoboCup Four Legged Robot League

We assume an environment, which was used in RoboCup
four-legged robot league until RoboCup 2003, for simulation.
The size of the soccer field but two inside areas of goals
is 4.2[m] by 2.7[m] as shown in Fig.1. Each goalmouth is
600[mm] across. Note that the field is surrounded by a sloped
wall.

The current soccer field in the league is larger than the old
one, and we would be better off using the new one. In this
paper, however, we use the old one so as not to lead to poor
continuity with our past works [8], [9], [10], [11]. Though
a computation result is evaluated only in simulation in this
paper, results of dynamic programming have been applied to
actual robots in the past works.

ERS-210, shown in Fig.2, has been used in this league.
We assume the use of this robot in simulation. An ERS-210
has three DoF in each leg and in the head. It has a MIPS
192[MHz] as its CPU and 32[MB] RAM. On its nose, there
is a color CMOS camera.

B. Scoring Task with Two Robot on Simulation

There are two teammate ERS-210s on the field as shown
in Fig. 1. Their task is to bring the ball into the sky-blue
goal as soon as possible. As explained later, they can choose
some kinds of walking actions and kicking actions. We want
to compute and record the optimal pair of their actions for
every state of the game. This task is named the scoring task.
We never call it the cooperative scoring task because they
do not have to cooperate with each other unnecessarily.

A robot can observe its position and orientation, which are
collectively called a pose. Then it can measure the position of
the ball when the ball can be observed by its camera. Though
some errors or uncertainty are contained in the measurements
in the real world, we do not consider them in this paper. They
can exchange the measurements by using their wireless LAN

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA1.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1

devices. We assume that time for the exchanges are much
shorter than the cycle of decision making.

For purposes of illustration, we define a field coordinate
system, Σf, and a robot coordinate system, Σr, as shown in
Fig.3. The measurement of a pose of a robot is obtained as
the form of (x, y, θ) on Σf, where |x| ≤ 2100[mm] and
|y| ≤ 1350[mm]. A measurement of the ball position is
represented by polar coordinates (r, ϕ) from the origin of
Σr. r is the distance between the robot and the ball. ϕ is
then the direction of the ball from the robot. We assume that
the robot can observe the ball when 150 ≤ r < 3150[mm]
and |ϕ| ≤ 95[deg]. We use millimeters and degrees for units
of distance and angle respectively after this. The speed of
the ball cannot be measured.

III. DYNAMIC PROGRAMMING FOR SCORING TASK

A. Finite Markov Decision Process and Value Iteration

The scoring task is approximated to one of the finite
Markov decision processes (finite MDPs) [7]. The scoring
task is represented and approximated by the following for-
mulation.

• An agent, which is the pair of robots in the scoring
task, decides its action based on some state parameters
(x1, x2, . . . , xn) = x. These parameters relate to the
state of the agent and its surroundings. The space that
is spanned by them is called state space X .

• X is divided into N discrete states: s1, s2, . . . , sN . The
set of the discrete states is represented by S. Some of
them belong to the set of final states Sf.

• The agent chooses an action from A =
{a1, a2, . . . , am} every decision making chance.

• Behavior of the agent is defined by state transition
probabilities Pa

ss′ . This symbol denotes the probability
that a continuous state x is transferred from s to s′

by action a. Pa
ss′ never changes in a Markov decision

process.
• A reward Ra

ss′ ∈ � is set for each set of s, s′ and a.
The reward is based on the purpose of the agent.

Fig. 1. The Field of RoboCup Four Legged Robot League

Fig. 2. ERS-210 Fig. 3. Coordinate Systems

The agent chooses actions so as to maximize the sum of
rewards from a state to a final state. In this finite MDP, we
can assume the existence of the optimal mapping from every
state to an action: π∗ : S → A. The agent can maximize the
summation only by the repetition of recognition of state s
and execution of action a = π∗(s).

π∗ is called the optimal policy. π∗ is recorded on a
memory array that contains every action π∗(s) from s1 to
sN in this paper. We call this array a state-action map (or a
map).

The expected sum of rewards from s to a final state with
π∗ is symbolized as V ∗(s). It satisfies Bellman optimality
equation [7], [1]:

V ∗(s) = max
a

∑
s′
Pa

ss′ [Ra
ss′ + V ∗(s′)]. (1)

V ∗ : S → � is called the optimal state-value function. π∗ is
obtained from V ∗ as

π∗(s) = argmax
a

∑
s′
Pa

ss′ [Ra
ss′ + V ∗(s′)]. (2)

Value iteration is one of the popular methods of DP and it
is used for obtaining V ∗ and π∗ in this paper. This algorithm
iterates the following procedure:

V (s)←− max
a

∑
s′
Pa

ss′ [Ra
ss′ + V (s′)] (∀s ∈ S − Sf) (3)

toward a value function V , which is initialized arbitrarily.
The value function comes to V ∗ by the iteration of the above
procedure.

B. State Space for Scoring Task

We choose eight state variables: x1, y1, θ1, x2, y2, θ2, r, ϕ.
A robot is called Robot1 and the other is called Robot2.
Their poses are represented by (x1, y1, θ1) and (x2, y2, θ2)
respectively. (r, ϕ) is a measurement of the ball from Robot2.

When both of the robots can observe the ball, one of them
is regarded as Robot2. Robot2 is chosen by the following
rule.

• Only one robot can observe the ball (−150 ≤ r < 3150
and |ϕ| ≤ 95), the robot can be Robot2.

• If both of them can observe it, the robot whose r is
smaller than that of the other is chosen as Robot2.

When Robot1 and Robot2 trade their names each other, it
means that a change of coordinate occurs.

We do not consider the case where the robots cannot
observe the ball here. Their behavior in the case is coded
by hand as explained later.

C. Actions

An action of the agent in this finite MDP is defined as
a pair of Robot1’s action and Robot2’s action. We assume
that they take their actions synchronously. When Robot1 and
Robot2 choose actions fromAR1 = {aR1

i |i = 1, 2, . . . , MR1}
and AR2 = {aR2

j |j = 1, 2, . . . , MR2} respectively, the action
in the finite MDP is defined as their direct product: A =
AR1 ×AR2.

WeA1.1

2

We choose 14 walking actions as shown in Table I
from the actions that were used for experiment with an
actual ERS-210 in [8]. We assume that every robot executes
each action once in a time step. Every walking action is
parameterized by (δx, δy, δθ). They mean the displacement
to right direction, the displacement to the forward direction,
and the displacement of θ value of a robot respectively.

TABLE I
WALKING ACTIONS

name δx[mm] δy[mm] δθ[deg]
only for Robot1 Stay 0.0 0.0 0.0

Backward 0.0 -87.0 0.0
RightSide 114.0 0.0 0.0
LeftSide -107.0 0.0 0.0

for both robots Forward 0.0 113.0 0.0
TurnRight 20.0 5.0 -32.5
TurnLeft -15.0 5.0 28.0

only for Robot2 ShortForward 0.0 66.0 0.0
ShortRollRight 25.0 30.0 18.0
ShortRollLeft -25.0 30.0 -30.0
RightForward15 16.0 84.0 2.0
LeftForward15 -14.0 102.0 -2.6
RightBackward15 36.0 -94.0 0.0
LeftBackward15 -35.0 -95.0 0.0

TABLE II
KICKING ACTIONS

name rafter[mm] ϕafter[deg]
only for Robot2 KickForward 2000 0.0

KickRight 2000 -75.0
KickLeft 2000 75.0

As shown in the table, each robot uses a different set of
actions. The set for Robot2,AR2, is chosen as a suitable set of
actions for approaching to the ball. Moreover, three kicking
actions belong to AR2 are defined as shown in Table II. A
kicking action changes the position of the ball. (rafter, ϕafter)
in the table means the position of the ball (r, ϕ) after the kick
by the robot. The pose of Robot2 does not change after any
kicking action. Robot2 always chooses a kick action when
150 ≤ r < 250[mm] and −35 ≤ ϕ < 35[deg]. In the case of
an actual ERS-210, fine position adjustment is required for
a kick from that range of (r, ϕ). In the simulation, however,
we do not consider it for simplicity.

The actions of Robot1, AR1, are selected as the robot can
run in four directions and turn to both directions. We fix
Robot1’s action to Stay when Robot2 kicks the ball. The
number of actions in A is M = 73 with the above setting.

Though this setting looks like separation of roles of two
robots, it is never a definite role assignment. The robots can
switch their names each other. Robot1 can go to the ball
so as to kick. In this case, Robot1 and Robot2 change their
names when the distance of the ball from Robot1 becomes
nearer than that of Robot2.

D. State Space Discretization and Final State Definition

We discretize the state space X as shown in Table III.
[·]i or [·] denote an interval on each axis. A discrete state
is represented by a combination of the intervals as s =

([x1], [x2], [y1], [y2], [θ1], [θ2], [r], [ϕ]). The number of states
reaches 142·92·152·9·19 = 610, 829, 100 with this definition.

State s is chosen as a final state if it fulfills the two
conditions: 1) Robot2 can kick the ball, and 2) there is
more than 50% of probability of scoring with an appropriate
kicking action. The probability of scoring is computed by
the following Monte Carlo simulation:

1) ζ kinds of (x2, y2, θ2) are chosen from state s at
random.

2) Every kicking action is tried from all of the chosen
poses and the number of goals are counted respectively.

If Robot2 can obtain more than ζ/2 goals by one of the
actions, state s is regarded as a final state.

E. State Transition

A state transition can be represented by

Pa
ss′ = P (s′|s, a) where, a ∈ A, (4)
s = ([x1], [x2], [y1], [y2], [θ1], [θ2], [r], [ϕ]), and
s′ = ([x1]′, [x2]′, [y1]′, [y2]′, [θ1]′, [θ2]′, [r]′, [ϕ]′).

All of the state transition probabilities are calculated and
stored on memory before value iteration; otherwise a prob-
ability of the same state transition is calculated redundantly.

1) Reduction and Decomposition of State Transitions:
By simple arithmetic, however, the combinations of (s, s′, a)
reaches N2M = 610, 829, 1002·73 = 27, 237, 189, 826, 697,
130, 000. Thus, whether this number can be reduced or not
determines the feasibility of DP.

This number can be reduced by cutoff of state transitions
that fulfill Pa

ss′ < η. In this case, the number of state
transitions is not over 1/η toward a set of (s, a). We choose
η = 0.01 for the scoring task. In this case, the number is
reduced to 610, 829, 100 · 73 · 100 = 4, 459, 052, 430, 000.

When we can decompose state transitions into some in-
dependent events, moreover, each state transition probability
can be represented by the multiplication of the probabilities.
In this case, the amount of memory for recording the state
transitions can be reduced.

We can consider the following events in the task.
(i) displacement of a robot by an walking action

TABLE III
DISCRETIZATION OF THE STATE SPACE

definition of intervals
x1 [x1]i ≡

ˆ
300i − 2100, 300(i + 1) − 2100

´
(i = 0, 1, . . . , 13)

x2 [x2]i ≡
ˆ
300i − 2100, 300(i + 1) − 2100

´
(i = 0, 1, . . . , 13)

y1 [y1]i ≡
ˆ
300i − 1350, 300(i + 1) − 1350

´
(i = 0, 1, . . . , 8)

y2 [y2]i ≡
ˆ
300i − 1350, 300(i + 1) − 1350

´
(i = 0, 1, . . . , 8)

θ1 [θ1]i ≡
ˆ
24i − 180, 24(i + 1) − 180

´
(i = 0, 1, . . . , 14)

θ2 [θ2]i ≡
ˆ
24i − 180, 24(i + 1) − 180

´
(i = 0, 1, . . . , 14)

r [r]i ≡
(ˆ

100i + 150, 100(i + 1) + 150
´

—(1)h
50 (i − 3/2)2 + 675/2, 50 (i − 1/2)2 + 675/2

”
—(2)

(1) : (i = 0, 1, 2), (2) : (i = 3, 4, . . . , 8)
ϕ [ϕ]i ≡

ˆ
10i − 95, 10(i + 1) − 95

´
(i = 0, 1, . . . , 18)

WeA1.1

3

(ii) relative displacement of the ball by Robot2’s walk
(iii) displacement of the ball by Robot2’s kick

When the robot chooses an walking action at (x, y, θ, r, ϕ),
the posterior state (x′, y′, θ′, r′, ϕ′) fulfills⎛
⎝x′ − x

y′ − y
θ′

⎞
⎠ =

⎛
⎝δx cos θ − δy sin θ

δx sin θ + δy cos θ
θ + δθ

⎞
⎠ , and (5)

(
r′

ϕ′

)
=

(√
(r cosϕ− δx)2 + (r sin ϕ− δy)2

arctan[(r sinϕ− δy)/(r cosϕ− δx)]− δθ

)
.

(6)

if any collision of two objects are not considered.
Toward walking action a, Eq. (4) is decomposed into

two kinds of probabilities: Probot and Pball. They denote a
probability for event (i) and that for event (ii) respectively.
Eq. (5) implies that the transition rule on x-axis and y-
axis does not depend on the prior position (x, y) of the
robot. Therefore, Probot becomes a conditional probability
Probot(Δ[xi], Δ[yi], [θi]′

∣∣[θi], aRi) (aRi ∈ ARi, i = 1, 2),
where Δ[x] and Δ[y] denote the relative position of the
pairs: ([xi], [xi]′) and ([yi], [yi]′) respectively. Pball is then
represented by Pball([r]′, [ϕ]′

∣∣[r], [ϕ], aR2) (aR2 ∈ AR2).
Probot and Pball can be obtained by Monte Carlo integra-

tions respectively. Probot and Pball are then recorded on look-
up tables respectively.

A state transition probability toward a set of walking
actions can be calculated from Probot and Pball as

Pa
ss′ = Probot(Δ[x1], Δ[y1], [θi]′

∣∣[θi], aR1) · Probot(Δ[x2],

Δ[y2], [θ2]′
∣∣[θ2], aR2) · Pball([r]′, [ϕ]′

∣∣[r], [ϕ], aR2) (7)

For the event (iii), Pa
ss′ can be represented by

Pa
ss′ =Pkick([r]′, [ϕ]′

∣∣aR2) (aR2: a kicking action) (8)

if we assume that the ball never collides with the wall
or a robot. This equation means that the state transition
depends only on kicking actions. Since we do not consider
the distribution of the ball position after a kick, Pkick is
deterministic in the discrete state space S.

2) Virtual State Transition: We have decomposed the state
transition probabilities into Probot, Pball, and Pkick. On the
other hand, we have neglected the existence of the following
events that occur in the task.
(1) collision between the ball and the wall around the field
(2) change of Robot1/2 (abbreviation of Robot1 and Robot2)

(3) collision between the ball and a robot
(4) collision between Robot1 and Robot2
(1) and (2) should be especially considered in value iteration.
If (1) is neglected, the ball is regarded as being out of the
field. In this case, a state-value function obtained by value
iteration will contain great errors. When (2) is not considered,
the roles of the robots are fixed. If (3) and (4) are neglected
in value iteration, the efficiency of the state-action map will
decrease.

However, considerations of the above events increase the
dependency of each state variable. If we consider (1), Pkick

depends not only on a kicking action, but also the pose of
Robot2. If Robot2 and Robot1 should be changed after the
kick, the pose of Robot1 should also be considered. Probot

and Pball also depend on all of the eight state variables if (2)
is considered.

To solve this problem, we introduce virtual states and
virtual state transitions. In the case of (1), we decompose
a state transition into the following two processes: 1) the
ball goes out of the field and stops, and 2) the ball returns
from the outside of the field to the inside instantaneously. A
ball out state, as shown in Fig. 4(a), is regarded as a virtual
state. The exportation of the ball is regarded as a virtual state
transition. Since virtual state transitions occur instantaneous,
no reward is given. In the actual world, such a pair of state
transitions never happens.

In a value iteration algorithm, however, we can consider
them if we prepare memory space for recording the value
of virtual states and their state-transition probabilities. There
are 118, 788, 390 ball out states in the set of discrete states
defined in Table III and the memory can be prepared.

In a virtual state transition from ball out state s, interval
[r] of state s moves to an inner interval, which contains a part
of the field, as shown in Fig. 4(a). Since s′ is fixed toward
a ball out state s, Pa

ss′ = Pball out = 1 is the state transition
model for each of them. In this case, a is the teleportation.
We call it a virtual action.

Fig. 4. Virtual States and Virtual State Transitions

We also regard the event (2) as a virtual state transition.
Actions of the robots and a change of Robot1/2 by the
actions is decomposed into a set of two state transitions. We
define reverse states, which are virtual states, as the states
where Robot1/2 should be switched. An example is shown in
Fig. 4(b). In a reverse state, the change of Robot1/2 occurs
instantaneously. We implement a Monte Carlo algorithm
to find a reverse state. In the algorithm, distances of the
ball from Robot1 and Robot2 are compared from various
continuous state x that belongs to s when both of the robots
can observe the ball. If the average distance from Robot1 is
smaller than the other, the state s is regarded as a reverse
state.

Virtual state transition probabilities Prev from reverse
states can be represented as

Prev([r]′, [ϕ]′|Δ[x], Δ[y], [θ1], [θ2], [r], [ϕ]). (9)

Prev can be computed by a Monte Carlo sampling of val-
ues (Δx, Δy, θ1, θ2, r, ϕ) from the intervals (Δ[x], Δ[y],

WeA1.1

4

[θ1], [θ2], [r], [ϕ]). (Δx, Δy) denotes a relative position of
Robot1 and Robot2. In our algorithm for computing Prev,
the sampling is not at random but fixed. Three values (two
boundary values and the mean value) are chosen from Δ[x]
and Δ[y] and two boundary values are chosen from the other
intervals. 45, 242, 367 kinds of virtual state transitions are
recorded on a look-up table by this implementation.

F. Reward
The reward is given as Ra

ss′ = −1[step] when the
robots take their actions respectively. When both of the
robots cannot observe the ball, Ra

ss′ = −∞[step] is given.
Therefore, the purpose of decision making is to reach a final
state as small number of steps as possible without losing the
ball.

G. Value Iteration
We implement the value iteration algorithm on a computer

that has 3.0[GB] RAM, a 300[GB] hard disk drive (HDD)
and 3.2[GHz] Pentium D CPU. The algorithm starts from
the definition of state space S, set of actions A, and reward
Ra

ss′ . After that, two look-up tables of a state-value function
and a state-action map are created on HDD. Each look-up
table is divided into 142 = 196 files with respect to a set of
([x1], [x2]).

Each action is represented by a unique number from 0 to
72. 1 byte is required for recording each of these numbers.
Before value iteration, zero is filled in the state-action map
except the elements of final states, ball out states, and reverse
states. They are given unique numbers: 255, 254, and 253
respectively.

In the look-up table for the state-value function, final states
are given zero as their value. Nonzero values are given
to the other states. A 2-byte unsigned integer is used for
representing a value. −1[step] is equivalent to 100 on the
integer data.

In the next process, Probot, Pball, and Prev are computed
respectively. (Pball out and Pkick are deterministic.) As shown
in Table IV, all of the state transition probabilities can be
represented by much smaller kinds of probabilities than
N2M .

TABLE IV
NUMBER OF STATE TRANSITIONS

probabilities number of combinations
Probot 1, 024
Pball 7, 485
Prev 45, 242, 367

H. Computation of State-Action Map
The value iteration algorithm is then executed. Required

files are loaded on memory, improved by Eq. (3), and
rewritten. Since a Pentium D has two cores, computing
speed is enhanced by multiprocessing. We divide our value
iteration algorithm to Process 1 for [x1]i (i = 0, 1, . . . , 6)
and Process 2 for [x1]i (i = 7, 8, . . . , 13) and execute them
simultaneously.

1) Computation Result: We have obtained a state-action
map by the above implementation. The processes has been
executed for ten days (243 hours). Process 1 and 2 have been
executed 51 and 55 sweeps respectively. A sweep denotes
the execution of Eq. (3) for all s ∈ S − Sf. It took only five
minutes to calculate Probot, Pball, and Prev. The size of the
map, which is called the 8D map hereafter, is 610, 829, 100
bytes because 1 byte data is allocated to each state.

We have recorded the maximum difference of value V (s)
before and after the process Eq. (3) in each sweep. The dif-
ferences are illustrated in Fig. 5. The horizontal axis indicates
the computation time. The vertical axis is a logarithmic one
for the difference of value. Roughly speaking, it takes twice
processing time to reduce the difference to a tenth value as
shown in this graph.

Fig. 5. Reduction of Maximum Change of Value

2) Discussion about Calculation Cost of Value Iteration:
As shown above, we can obtain a huge state-action map
within ten days. If there is one more state variable, the
computation time will jump to 100 days. By definition, such
a basic value iteration cannot deal with an infinite number of
state variables. However, we think that the number of state
variables will be increased one-by-one. Nowadays, there are
two topics, which will accelerate the ability of value iteration,
about commercial CPUs.

One of them is parallelization of CPUs. Though it took
ten days to obtain the 8D map, this time can be reduced by
additional multiprocessing. It would take 20 days if we had
not executed the value iteration algorithm on two processes.
Some kinds of CPU for personal computers have two cores
nowadays and it will increase in future.

The other is the release of 64-bit CPUs for the public. They
make coding of DP easy through the explosion of address
space. The value iteration algorithm in this paper had to read
and write data between RAM and HDD frequently due to the
limitation of the memory space. Such a process becomes the
cause of slow down and bugs. If we use a 64-bit CPU, the
code for value iteration will be simple.

I. Behavior of Robots with The 8D Map

1) Emergence of Cooperative Behavior: We show two
examples of the robots’ behavior obtained by the 8D map.
When both of the robots cannot observe the ball, RobotA
chooses TurnLeft and the other chooses TurnRight so as to
search it.

WeA1.1

5

In Fig. 6(a), two robots, which are called RobotA and
RobotB, started moving from the bottom left corner and in
front of the sky-blue goal respectively. At first, RobotA is
Robot1 and RobotB is Robot2. The ball is put at the center of
the field. In this figure, some important positions of RobotA
and RobotB are numbered as Ai and Bi respectively. The
numbers are synchronized.

Fig. 6. Examples of Cooperative Behavior

Both of the robots go to the ball until the state (A1,B1).
RobotB, however, goes back the way at B1. RobotB hands
over the ball to RobotA at the moment though it is Robot2.
After that, RobotA becomes Robot2 and RobotB changes
into Robot1. As shown this example, Robot2 does not always
go to the ball and the role of a robot is never fixed by whether
the robot is Robot1 or Robot2. At A2, RobotA kicks the ball.
RobotB waits for the kick at B2. After the pass, RobotB
reaches B3, which is a final state. At B3, KickLeft is chosen
as a final shot by an algorithm, which is explained later. The
ball is kicked into the goal and the task is finished.

In a precise sense, the pair of RobotA’s kick at A2 and
RobotB’s wait at B2 is only a way to reduce the number
of steps. However, it is cooperative behavior because the
reduction of steps and the role of each robot emerge. The
kick by RobotA at A2 can be regarded as a pass. In this
case, RobotA is the passer and RobotB is the receiver.

Another example with the 8D map is shown in Fig. 6(b).
We can see two passes in one trial. RobotB waited for
RobotA’s kick at B1 at the first pass. RobotA then waited
for RobotB’s kick at A2.

2) Countermeasure against Ill-Effect of Discretization:
On the other hand, the cooperative behavior given by the 8D
map is not perfect due to the coarse discretization of the state
space. As shown in Fig. 6(a, b), the receiver waits for the

ball at a distant point. The margin is necessary because poses
of the robots and the position of the ball are unspecified in
the discrete state space.

Another problem is observed in the 8D map. In some
trials, both of the robots stop walking due to infinite virtual
state transitions between two reverse states. That is because
some virtual state transitions change a reverse state to another
reverse state. This kind of deadlock is inevitable under the
discretization.

We think that reduction of the ill-effects can be possible
by additional algorithms, which are coded by hand. We do
not have to chase the completeness of a state-action map.
However, a tenuous ad-hoc method should not be chosen.

Our proposition toward this problem is as follows. When
decision making in continuous state space X has certain
advantage over that in discrete space, we should add some
algorithms that decide actions in X .

We therefore implement the following additional algo-
rithms.
(a) Decision of Shot: When Robot2 judges whether a score

is possible or not by the calculation in X without the 8D
map. When it is possible, Robot2 choose an appropriate
kicking action.

(b) Detection of Reverse State: When a state is a reverse
state in X , a virtual state transition occurs without
relation to the 8D map. When a non-reverse state in X
is regarded as a reverse state in the 8D map, there is no
information for decision making. In this case, a change
of Robot1/2 occurs and new Robot2 chooses Forward in
order to avoid the deadlock.

IV. SIMULATION FOR EVALUATION

We evaluate the 8D map with a simulator. In the evalua-
tion, 10, 000 initial states are chosen. Each trial starts from
one of them. When the number of decisions is over 180
times, the trial is regarded as a failure trial. In simulation,
the wall reflects the ball with some extent of reflection.

A. Effectiveness of Cooperation

At first, we evaluate whether the cooperation by the
8D map is effective or not. We create another state-action
map, called the 5D map here, under the consideration of
(x2, y2, θ2, r, ϕ). A robot with this map repeats a set of some
walking actions and a kicking action so as to score. The
discretization interval of each axis is identical with that of
the 8D map.

We try the following cases: 1) two robots with the 8D
map, 2) two robots with the 5D map, and 3) one robot with
the 5D map. We measure their success rates. Only when the
robot(s) can score from a common initial state in all of three
cases, the sum of rewards is recorded respectively.

We also evaluate another case where the collision of
two robots are considered in simulation. When the distance
between two robots is shorter than 50[mm], we regard this
state as a collision. The trial is then regarded as a failure
trial.

WeA1.1

6

TABLE V
EFFICIENCY OF COOPERATION

cases success rate average success rate
of steps (stop by collision)

8D Map 97.4[%] 36.3[step] 95.9[%]
5D Map (two robots) 93.8[%] 40.9[step] 70.9[%]
5D Map (one robot) 83.2[%] 50.5[step] —

Table V shows the results. When the collisions are not
simulated, both the success rate and the number of steps by
the 8D map are better than those by the 5D map. 4.6[step]
were reduced by the pass behavior. The 8D map is more
effective when the collision of the robots is considered. It
is interesting that the robots with the 8D map tend to move
apart from each other though their collision is not considered
in the value iteration. The reason is simply because the robots
became a passer and a receiver.

B. Effectiveness of the Additional Algorithms

We evaluate the additional algorithms: (a) and (b) men-
tioned at the end of Sec. III. In Table VI, we show the ability
of algorithm (a). It can reduce the number of steps surely
though the reduction of steps is only 0.5[step].

The result in Table VII has two faces. The 8D map
is incomplete without algorithm (b). The percentage only
with the 8D map, 62.7[%], is worse than any result with
the 5D map. On the other hand, if the incompleteness is
compensated by (b), the 8D map can output cooperative
behavior with the high percentage. When (b) is used, there
is no failure by the deadlock at reverse states in the 10, 000
trials. The 2.6[%] of failures at the use of (b) happen when
the ball stops by the wall, or when the ball cannot be found
by the ball search algorithm. In the former cases, robots
cannot approach to the ball for fear that they collide with the
wall. This is the ill-effect of coarse discretization of robots’
positions.

TABLE VI
EFFICIENCY OF SHOT DECISION IN X

cases success average
rate of steps

without (a) 97.3[%] 39.3[step]
with (a) 97.4[%] 38.8[step]

TABLE VII
AVOIDANCE OF DEADLOCK

cases success
(with (a)) rate
without (b) 62.7[%]
with (b) 97.4[%]

V. CONCLUSION AND FUTURE WORKS

In this paper, A state-action map for the scoring task with
two robots on RoboCup is created by dynamic programming
(DP). With the map and the two algorithms that decide
actions in the continuous state space, the two simulated
robots can reduce the number of steps for a score with their
cooperative behavior. They can change the roles of a passer
and a receiver flexibly though we never give them a role
assignment in advance.

The concrete data obtained in this study is as follows.

• Time for creating the state-action map, which contains
610 million elements, is ten days with a computer that
has a 3.2[GHz] Pentium D CPU, 3.0[GB] RAM, and
300[GB] HDD.

• 27 · 1018 kinds of state transitions are reduced into
4.5 ·107 kinds of partial state transitions. The reduction
is achieved not only by the cutoff probability η and
decomposition of independent events, but also by the
introduction of virtual state transitions.

• When collisions of the robots are not considered, the
cooperative state-action map (the 8D map) can make
4.6[step] advantage over the non-cooperative state-
action map (the 5D map). When the collision is consid-
ered, there is a 25.0[%] disparity between the success
rate of the 8D map and that of the 5D map. It means
that the 8D map tends to make the robots play at a
distance.

• The deadlock at reverse states can be eliminated by
decision making in the continuous state space. In sim-
ulation, the additional algorithm for reverse states can
enhance the success rate from 62.7[%] to 97.4[%]. It
is a meaningful result for the use of DP in multi-agent
systems.

When we want to use the 8D map for the actual ERS-210s,
some problems should be solved. First of all, the robot must
be able to behave as the map instructs. We have confirmed
that ERS-210 and ERS-7 can approach to the ball based on
a state-action map [8], [12]. The accuracy of kicking actions
will be a serious problem for the robots. Then, the required
amount of memory must be reduced since the 8D map is too
large to be stored on the memory of ERS-210. This problem
is dealt with the next paper of this series.

REFERENCES

[1] R. Bellman, Dynamic Programming. Princeton University Press,
1957.

[2] G. Nitschke, “Emergent cooperation in robocup: A review,” in
RoboCup 2005: Robot Soccer World Cup IX, 2006, pp. 512–520.

[3] M. R. Khojastech et al., “Using Learning Automata in Cooperation
among Agents in a Team,” in Proc. of International RoboCup Sympo-
sium, 2004, pp. CD–ROM.

[4] G. Fraser et al., “Cooperative Planning and Plan Execution in Partially
Observable Dynamic Domains,” in RoboCup 2004: Robot Soccer
World Cup VIII, 2005, pp. 524–531.

[5] H. Fujii, “Cooperative Control Method Using Evaluation Information
on Objective Achievement,” in Proc. of DARS, 2004, pp. 201–210.

[6] T. Laue et al., “SimRobot –A General Physical Robot Simulator and Its
Application in RoboCup,” in In RoboCup 2005: Robot Soccer World
Cup IX, 2006, pp. 173–183.

[7] R. S. Sutton, “Generalization in Reinforcement Learning: Successful
Examples Using Space Coarse Coding,” in Neural Information Pro-
cessing Systems, 1996, pp. 1038–1044.

[8] R. Ueda et al., “Vector Quantization for State-Action Map Compres-
sion,” in Proc. of ICRA, 2003, pp. 2356–2361.

[9] R. Ueda et al., “Mobile Robot Navigation based on Expected State
Value under Uncertainty of Self-localization,” in Proc. of IROS, 2003,
pp. 473–478.

[10] R. Ueda et al., “Expansion Resetting for Recovery from Fatal Error
in Monte Carlo Localization – Comparison with Sensor Resetting
Methods,” in Proc. of IROS, 2004, pp. 2481–2486.

[11] R. Ueda et al., “Real-Time Decision Making with State-Value Function
under Uncertainty of State Estimation,” in Proc. of ICRA, 2005.

[12] K. Takeshita et al., “Fast Vector Quantization for State-Action Map
Compression,” in Proc. of IAS-9, 2006, pp. 694–701.

WeA1.1

7

