

Abstract - This paper deals with the concept of a control
architecture for robot cells that enables Plug’n’Produce
according to Plug’n’Play in the office world. To achieve this, a
software module called “Interconnector Module” takes as input
descriptions of devices and processes. These descriptions are
then automatically evaluated in order to offer the user
commands to use the functionality of the robot cell in its
current setup. The evaluation consists of several steps that are
processed in different sub-modules of the Interconnector
Module. In this paper the concept of this Interconnector
Module is introduced.

I. INTRODUCTION
The main field of application for robots today is mass

production [1]. The tasks robots have to fulfil in mass
production are mostly highly repetitive and do not change
over an extended period of time. Therefore, the main
requirements for robots used in mass production are short
cycle times. The goal of SMErobotTM [2] is to broaden the
field of applications for robots from mass production to
small lot size production, as it is typically encountered in
small and medium sized enterprises (SMEs). Because of
small lot sizes, fast adaptability of robot and surrounding
cell to new products and processes is much more important
for SMEs than short cycle times. To make this possible the
programming of applications for robot cells and the
integration of new devices into these robot cells has to be
much easier than today.

II. APPROACH AND SCOPE OF THIS PAPER
In the office world it is very easy to install and use new

devices. For example, to install a printer to your PC, you just
plug it in. The entire configuration is then done
automatically and your application will offer you the service
“print”. This automatic configuration is called
“Plug’n’Play”. Carried forward to a production environment
this would mean that you would connect e.g. a robot to a cell
controller and it would offer you the command “move_to”
on a HMI. Even more advanced, it could mean that you
connect e.g. a robot and a gripper to a cell controller and the
cell controller would recognize the new possibilities enabled
through the combination of two or more devices and offer
you the command “pick and place”. To achieve this,
the cell controller needs to know about the functionality of

This work has been funded by the European Commission’s Sixth
Framework Program under grant no. 011838 as part of the
Integrated Project SMErobotTM.

the connected devices and must be able to draw conclusions
which services it can offer to a user. The approach pursued
in this paper is based on device descriptions evaluated by an
Interconnector module in order to offer commands
representing the functionality of the robot cell to a user.

The ability - provided by the Interconnector Module - to
add devices to a robot cell and to use the functionality of
these devices without the need of configuration is called
“Plug’n’Produce”, according to “Plug’n’Play” in the office
world. Plug’n’Produce (P’n’P) can be broken down into
several layers depending on the amount of configuration that
is done automatically. These layers can be seen in figure 1.

Figure 1: Plug’n’Produce layers

This paper introduces a concept to offer the user of a
robot cell in SME-environments an easy means of
programming a cell without the need to care about
communication and configuration. Therefore, the focus of
this paper lies on the Application-P’n’P-layer. Of course,
this layer depends on the Configuration- and the
Communication-P’n’P-layers in order to get to know which
devices are available, to communicate with these devices
and to get to know the descriptions of these devices [3].
However, the realization of the two lower layers will not be
within the scope of this paper.

III. STATE OF THE ART
State of the art of describing device categories with

certain, common functionalities are device profiles that exist
for different protocols like EDDL [4], XIRP [5] or UPnP
 [6]. These device profiles define communication interfaces
that have to be supported by a device in order to belong to a
certain device category. The functionality of the device can

Control Architecture for Robot Cells to Enable Plug’n’Produce
Martin Naumann, Kai Wegener, and Rolf Dieter Schraft, Fraunhofer IPA, Germany.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA10.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 287

partly be inferred from the communication interface, but it is
not itself part of a device profile. Therefore, device profiles
do not contain enough information to allow detailed
assumptions about the differences/similarities of the
functionalities of devices.

In the domain of knowledge representation, languages
have been developed that can be used to describe
functionalities of devices in form of a taxonomy plus
additional attributes. The most popular of these languages,
OWL (Web Ontology language) [7], was developed as a key
technology of the Semantic Web [8], trying to add meaning
to the information that is today merely displayed in the
internet.

In the context of home entertainment systems, a function
planning module was developed within the SmartKom
project [9]. This module tries to serve complex user requests
by first determining which devices are necessary and then
determining how to control devices based on abstract
descriptions of the functionalities of devices [9].

In this paper, the concept of device descriptions
augmented by a component describing the device’s
functionality with the help of a knowledge representation
language will be used to infer and use the functionality of a
robot cell according to the function planning module of the
SmartKom project thus enabling Application-P’n’P.

IV. APPLICATION-P’N’P: OVERVIEW
Application-P’n’P as the highest P’n’P-layer has the goal

to offer the user as easy as possible means of using the
functionality of the connected devices. In the context of
SMErobotTM this means offering the user as easy as possible
means of programming robot cells.

State of the art of programming robot cells is to enter
commands in the dialog of some sort of a programming
system. The entered commands are then uniquely mapped to
the according devices. This is an appropriate way of
programming as long as the user has detailed knowledge
about the control structure of devices as well as about
programming itself. In the context of a SMErobotTM-
application this cannot be granted. Users of robot cells in
SME-environments normally know a lot about the processes
they have to perform in order to achieve their desired result,
but have only minor knowledge about programming devices
(a robot is a special kind of device). Therefore, the
programming of robot cells in SME-environments should be
possible without the need of device programming. Instead,
programming should be focused on the processes the user
wants to execute. In this paper, this will be called “process-
oriented programming” and the corresponding commands
will be called “process commands” as opposed to
traditional “device commands”. Process commands trigger
whole processes like drilling a hole or gripping a part, while
device commands trigger a state change in a single device
like setting a digital output or moving a robot from point A
to point B. Figure 2 illustrates the differences.

Process command Device commands

DrillHole(x=50,y=90,d=30)

MoveTo(50, 90, 70);
SetPort(20);
MoveTo(50, 90, 40);
MoveTo(50, 90, 70);
ResetPort(20);

Figure 2: Process command vs. device commands

Process-oriented programming imposes the following

new requirements on the programming system:
• No manual device integration effort

(Communication- and Configuration-P’n’P)
• Process commands as user input

Therefore, instead of just mapping device commands to the
according devices, the tasks of the programming system are
much more complex:

• Automatic Setup of communication with devices (
Communication-P’n’P)

• Automatic Configuration of devices (Configuration-
P’n’P)

• Evaluation of the functionality of single devices
• Inference of the functionality of the robot cell as a

whole
• Supplying of process commands corresponding to the

robot cell functionality to a HMI
• Generation of device command sequences to execute

the offered process commands
 To fulfill these tasks the “Interconnector Module” is
introduced. The functionality and elements of this
Interconnector Module will be described in detail in the
following chapters. Figure 3 compares the concept of the
Interconnector module with a traditional programming
system. It can be seen that in a traditional programming
system the user has to interact directly with the devices
whereas in a system containing the Interconnector Module,
this Interconnecter Module acts as an intermediate and can
transform device commands into more intuitive process
commands.

Figure 3: Traditional programming system vs.
programming system for process-oriented programming

V. ELEMENTS OF APPLICATION-P’N’P
In order to do its job the Interconnector Module must be

supplied with the following information:

WeA10.1

288

• Device descriptions that contain information about the
available devices

• A library of process descriptions that contain
information about processes that can possibly be
executed by the robot cell.

• An ontology to define and relate the terms of the above
mentioned descriptions.

To evaluate this information the following methods are
required:

• A method to evaluate possible combinations of devices
(e.g. combination of a robot and a gripper mounted to
its flange)

• A method to generate device descriptions for combined
devices out of the device descriptions of single devices

• A method to determine the processes that can be
executed by the robot cell

• A method to generate sequences of device commands
for all processes executable by the robot cell

Figure 4 shows the workflow of the Interconnector Module.
Device descriptions are supplied by the (lower)
Communication- and Configuration-P’n’P-layers. In a first
step, possible device combinations are determined. Next,
device descriptions for these combinations are generated.
These device descriptions are compared to process
descriptions to determine all executable processes. These
executable processes are offered to a user on a HMI. The
user defines a sequence of processes in order to fulfill a
certain task, e.g. making part of a shelf out of a board. Out
of this process sequence, a device command sequence is
generated that can finally be executed by the robot cell.

Figure 4: Workflow of the Interconnector Module

VI. DESCRIPTIONS
As shown above, two types of descriptions are necessary

to achieve Application-P’n’P:
• Device descriptions contained in the memory of a

device that are loaded into the cell controller when the
device is integrated into the robot cell.

• Process descriptions out of a – possibly application
specific – library of process descriptions stored in the
cell controller.

Both description types are divided into sections describing
different aspects of devices/processes. Some of these
sections are mandatory, others are optional. Some can occur
in device as well as in process descriptions, others are
specific for either device or process descriptions.

In the following, these different sections will be
introduced in detail.

A. Functional descriptions
Functional descriptions express the offered functionality

of devices as well as the required functionality of processes
in an abstract, symbolic way by introducing the concept of
skills [11]. A skill represents a certain functionality of a
device, e.g. a robot can move its flange, which is described
by the skill “MoveProgrammable” and can attach another
device like a drilling tool to its flange, which is described by
the skill “CanAttach”.

Description Logics languages [12] are made to express,
access and reason about such kind of structured knowledge
like the above introduced skills. One of the most popular
Description Logics languages is OWL DL. The OWL
language (Web Ontology Language) was developed as a
major technology for the implementation of the Semantic
Web (see chapter III). OWL DL is a sublanguage of OWL
(Full) made especially for the structured representation of
domain knowledge to automatically reason about this
knowledge. With the help of OWL DL it is easy to describe
concepts in the form of class-subclass relations. Classes may
have properties to describe details and restrictions to define
if a certain individual is a member of a certain class.
Subclasses specialize their parent-classes by adding more
restrictions.

By means of this language it is possible to express skills
and their respective properties allowing abstract and general
as well as detailed and specialized descriptions in a way that
allows reasoning about the skills.

Functional descriptions are necessary to evaluate if a
certain process can be executed by the current setup of the
robot cell. This is done by matching the skills offered by the
available devices (expressed in their device descriptions)
with the skills required by a process (expressed in its process
description).

Functional descriptions are a mandatory part of every
device and process description.

WeA10.1

289

B. Device control descriptions
Device control descriptions modell the control system of a

device in the form of a state-chart. The state-chart can have
as many states as necessary, but depending on the functional
description of a device certain states are mandatory. If the
functional description of a device contains a certain skill, the
state-chart must contain the respective state(s), e.g. if the
functional description of a drilling tool contains the skill
“CanRotate”, the device control description of this device
must contain a state “Rotating”. The transitions of the
state-chart describe the commands that trigger the state
changes.

There exist several languages to describe state-charts. One
of them is SCXML [13]. SCXML allows the concurrent
execution of parallel state-charts and their synchronization
and is therefore well suited for the use in device control
descriptions.

Device control descriptions are a mandatory part of
device descriptions in order to evaluate the necessary
sequence of commands to reach certain states – that means,
to execute a certain task.

C. Process sequence descriptions
Process sequence descriptions have the purpose of

describing the sequence of a certain process in an abstract
way. “In an abstract way” means, that they must describe
which states must be reached in which order to execute a
certain process, but they must not describe how these states
can be reached as this depends on the devices actually used.
Therefore process sequence descriptions are the counterparts
of device control descriptions. Device control descriptions
express how certain states can be reached while process
sequence descriptions express the required sequence of
states in order to execute a certain task. Therefore, process
sequence descriptions are expressed as SCXML-state-charts,
too.

Process sequence descriptions are a mandatory part of
process descriptions. The states contained in a state-chart
must correspond to the skills contained in the functional
description of the process description.

Figure 5 shows a state-chart describing a drilling process
including a device with the skill “CanMove” and the
corresponding state “BeAtPos” (a robot), a device with
the skill “CanRotate” and the corresponding state
“Rotating” (a drilling tool) and a device with the skill
“CanClamp” and the corresponding state “Clamped” (
a clamping device).

Figure 5: State-chart describing a drilling process

D. Optional descriptions
Apart from the above mentioned mandatory descriptions,

further optional descriptions (with special purposes) are
possible, e.g.:

• Geometrical descriptions: describe the body structure
of a device. These descriptions could e.g. be used to
simulate the robot cell or as input data for a path
planner/collision avoidance algorithm.

• Kinematical descriptions: describe the kinematical
chain of a device. This type of description is especially
useful for robots in order to check the reachability of
certain points.

In order to use these optional descriptions special
evaluation functions would be necessary.

E. Code fragments embedded into descriptions
For some purposes it could be useful to integrate code

fragments into device or process descriptions for special
purposes. Examples for such code fragments could be
functions integrated into a gripper description that take as
input data CAD-models of an object and return possible
gripping points as a result.

WeA10.1

290

VII. ONTOLOGY
The descriptions from the previous chapter have the

purpose of allowing the Interconnector Module to infer
possible device combinations, to infer processes that can be
executed and to generate device command sequences for
executable processes. All this should be done without
human intervention. Therefore, the Interconnector Module
needs to “understand” the descriptions, meaning it needs to
know about the concepts represented by the terms used in
the description.

To achieve this, an ontology has to be introduced which
defines all relevant concepts (called “classes”) of the
considered domain, in our case the robotic domain.
Ontologies generally describe [14]:

• Instances of classes, e.g. “robot_XY” as an instance
of the class “Articulated_Robot”.

• Classes, e.g. “Articulated_Robot”, “Flange”,
“Command”, “Skill”.

• Attributes of classes, e.g. “weight”, “color”.
• Relations between classes, e.g.

“Articulated_Robot is a subclass of
Robot” or “every Robot has a Flange”.

Figure 6 shows the taxonomy of a set of classes
representing skills. Not shown are the attributes of the skills,
e.g. the class “SkillFix” has the attribute
“maxObjectWeight” describing the maximum weight of
the object that can be fixed. All three subclasses of
“SkillFix” inherit that attribute, but can possess more
specialized attributes like e.g. “maxObjectDiam” for
“SkillFixCylinder”.

Figure 6: Part of the robot ontology

Example: The functional description of a concentric gripper
contains an instance of “SkillFixCylinder” meaning
that the concentric gripper can fix cylinders. The functional
description of a pick-and-place process contains a device
definition (in form of a class definition) stating that amongst
others a device (with a functional description) containing an
instance of “SkillFix” is required in order to execute the
process. With the help of the ontology it can be inferred that

the concentric gripper is suitable because it has a skill
“SkillFixCylinder” which is a subclass of
“SkillFix” and therefore suitable.

This simple example shows that all domain knowledge –
as trivial as it might be for a human – has to be formally
described (in an ontology) to allow a computer to make use
of this knowledge in order to evaluate device descriptions.

The ontology is also the place where the relation between
skills and states is defined (see chapter VI.B). This is done
by the relation “requiredState” of a skill that defines states
that are mandatory for certain skills, e.g. the skill
“SkillRotate” requires a state “Rotate”.

To define ontologies many languages have been
developed. The most widespread one is OWL introduced in
chapter VI.A in the context of functional descriptions.
Therefore, it will be used for the definition of the robot
domain ontology as well because the purpose of the
ontology is to “understand” the functional descriptions.

VIII. EVALUATION OF DESCRIPTIONS
The evaluation of device and process descriptions has two

goals:
• to infer possible combinations of devices and
• to infer processes that can be executed by the robot

cell.

A. Combination of devices
A combination of devices means that two or more devices

are attached in order to execute a certain process. This could
be necessary because one single device does not have the
functionality required to execute this process, e.g. a robot
alone can only move its flange and a drilling tool alone can
only rotate a drill. But if the drilling tool is attached to the
flange of the robot – if the devices are combined – they can
drill a hole.

The combination of devices is a two step process. First, it
has to be determined which devices can be combined.
Second, a new device description specifying the
functionality of the combined devices has to be generated.
1) Determining possible device combinations

Devices that can attach or can be attached to another
device must have an interface for this purpose. This means,
they must have the special functionality to attach to another
device. This functionality can be represented by a skill,
namely the skill “SkillAttach”. This skill means that a
device has an interface to attach another device. If two
devices have this skill, it is possible to combine them if their
interfaces match. Therefore, it is defined in the ontology that
“SkillAttach” requires an attribute describing on the
one side the interface the device possesses and on the other
side the interface the device requires.

The interface of the device is described as an instance of
the class “DeviceInterface” defined in the ontology.
The interface the device requires is described as the

WeA10.1

291

definition of a subclass of the class “DeviceInterface”,
specifying in detail the needed requirements. With the help
of this interface descriptions it is possible to infer possible
device combinations with a general purpose reasoner like
e.g. Pellet [14] by checking if a “DeviceInterface”
instance satisfies one or more “DeviceInterface”
subclass definitions. If this is the case, these two devices can
be combined.
2) Generating Device descriptions

As soon as it has been determined that two devices can be
combined a new device description that treats these two
devices as one single device has to be generated out of the
device descriptions of the single devices. The integration of
the device descriptions differs for functional descriptions
and for all other kinds of descriptions:

• Functional descriptions: The skills of the functional
descriptions of two devices that are combined are
simply merged into one functional description. The
only exception is the skill “SkillAttach” used to
combine the devices. This skill is omitted in the new
combined description as it is no longer available
(because the devices are already combined).

• All other descriptions: all other description types are
not merged but just copied into the new description.

B. Executable processes
The determination of executable processes out of a

process library works similar to the combination of devices.
Each functional description of a device contains a device
instance including all the skills of the device. Each
functional description of a process contains one or more
device class definitions (for each device needed) specifying
which skills are necessary. A general purpose reasoner can
infer if a certain device instance satisfies one or more device
class definitions. In this case, the corresponding device can
be used to execute the process(es) containing this(these)
device class definition(s).

IX. GENERATION OF DEVICE COMMAND SEQUENCES
The generation of device commands to execute a specific

task is based on the state-chart of the process sequence
description. The state-chart describes the states the involved
devices have to reach, their order and synchronizations that
must be taken into account. These states of the state-chart
are mapped to states of the state-chart of the device control
descriptions of the involved devices. The mapping is
possible because the states of the process state-chart and the
states of the device state-charts are related by the ontology.
Once the state a device has to reach is known, a path from
its current state to this goal state must be searched in the
state-chart [16]. The commands (that represent the transition
conditions of the state machine) along this path must be
executed in order to reach the goal state. If this path-search
is done for the whole process state-chart, the result is a
sequence of device commands that has to be executed to

fulfill the specific task.

X. CONCLUSION AND OUTLOOK
The presented concept of a robot cell control architecture

allows easy programming of a robot cell and therefore
permits users with little knowledge of (robot) programming
to use robots in a SME-environment. The user still has to do
some programming, but on the process-command level
instead of using device commands.

The concept is based on device and process descriptions
that are evaluated in an Interconnector Module to infer the
functionality of the robot cell and offer the user
corresponding process-commands. The accuracy of the
inferred functionality strongly depends on the descriptions
and the underlying ontology.

Therefore, further work has to be dedicated to
particularize the specification of the device and process
descriptions and the development and/or adaptation of the
algorithms necessary for their evaluation. Simultaneously,
more knowledge must be added to the robot ontology, as
this ontology is the basis for the evaluation of the
descriptions.

As a next step the concept presented in this paper will be
realized for test applications (wood-working, pick and
place). Thereby the strengths and weaknesses of the concept
as well as possible improvements will become obvious.

REFERENCES
[1] Brodtmann, T.; Litzenberger, G.: Presentation slides of

“Pressegespräch VDMA Robotik + Automation”, 2.3.2005.
[2] SMErobot homepage: http://www.smerobot.org
[3] Papas homepage: www.projekt-papas.de
[4] Riedl, M.; Simon, R.; Thron, M.: EDDL – Electronic Device

Description Language. München, Oldenburg Industrieverlag, 2002.
[5] XML-basiertes Kommunikationsprotokoll für Industrieroboter und

prozessorgestützte Peripheriegeräte, Stand 17.10.2005. Information
sheet downloadable from: http://www.vdma.org/xirp

[6] UPnP Device Architecture; Version 1.0; 8.6.2000. Downloadable
from the UPnP-Forum: http://www.upnp.org

[7] OWL Web Ontology Language Overview, 10.4.2004. Downloadable
from W3C: http://www.w3.org/TR/owl-features/

[8] Berners-Lee, T.; Hendler, J.; Lassili, O.: The Semantic Web, Scientific
American, 17.1.2001.

[9] SmartKom homepage: http://www.smartkom.org/
[10] Torge, S.; Hying, C.: Realizing Complex User Wishes With a

Function Planning Module. In: SmartKom: Foundations of
Multimodal Dialogue Systems. Berlin. Heidelberg. Springer Verlag,
2006.

[11] Naumann, M.; Wegener, K.; Schraft, R. D.; Lachello, L.: Robot Cell
Integration by means of Application-P’n’P. In: Proceedings of ISR
2006.

[12] Homepage: www.dl.kr.org
[13] State Chart XML (SCXML): State Machine Notation for Control

Abstraction 1.0, W3C Working Draft , 24.1.2006. Downloadable from
W3C: http://www.w3.org/TR/scxml/

[14] Hans, M.: Eine modulare Kontrollarchitektur für den Hol- und
Bringdienst von Roboterassistenten. Dissertation am IFF der
Universität Stuttgart. Heimsheim. Jost-Jetter Verlag, 2005.

[15] Documentation and download: http://pellet.owldl.com/
[16] La Valle, S. M.: Planning Algorithms. University of Illinois, 2006.

WeA10.1

292

