
 
 

 

  

Abstract - This paper deals with the concept of a control 
architecture for robot cells that enables Plug’n’Produce 
according to Plug’n’Play in the office world. To achieve this, a 
software module called “Interconnector Module” takes as input 
descriptions of devices and processes. These descriptions are 
then automatically evaluated in order to offer the user 
commands to use the functionality of the robot cell in its 
current setup. The evaluation consists of several steps that are 
processed in different sub-modules of the Interconnector 
Module. In this paper the concept of this Interconnector 
Module is introduced. 

I. INTRODUCTION 
The main field of application for robots today is mass 

production  [1]. The tasks robots have to fulfil in mass 
production are mostly highly repetitive and do not change 
over an extended period of time. Therefore, the main 
requirements for robots used in mass production are short 
cycle times. The goal of SMErobotTM  [2] is to broaden the 
field of applications for robots from mass production to 
small lot size production, as it is typically encountered in 
small and medium sized enterprises (SMEs). Because of 
small lot sizes, fast adaptability of robot and surrounding 
cell to new products and processes is much more important 
for SMEs than short cycle times. To make this possible the 
programming of applications for robot cells and the 
integration of new devices into these robot cells has to be 
much easier than today. 

II. APPROACH AND SCOPE OF THIS PAPER 
In the office world it is very easy to install and use new 

devices. For example, to install a printer to your PC, you just 
plug it in. The entire configuration is then done 
automatically and your application will offer you the service 
“print”. This automatic configuration is called 
“Plug’n’Play”. Carried forward to a production environment 
this would mean that you would connect e.g. a robot to a cell 
controller and it would offer you the command “move_to” 
on a HMI. Even more advanced, it could mean that you 
connect e.g. a robot and a gripper to a cell controller and the 
cell controller would recognize the new possibilities enabled 
through the combination of two or more devices and offer 
you the command “pick and place”. To achieve this, 
the cell controller needs to know about the functionality of 
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the connected devices and must be able to draw conclusions 
which services it can offer to a user. The approach pursued 
in this paper is based on device descriptions evaluated by an 
Interconnector module in order to offer commands 
representing the functionality of the robot cell to a user. 

The ability - provided by the Interconnector Module - to 
add devices to a robot cell and to use the functionality of 
these devices without the need of configuration is called 
“Plug’n’Produce”, according to “Plug’n’Play” in the office 
world. Plug’n’Produce (P’n’P) can be broken down into 
several layers depending on the amount of configuration that 
is done automatically. These layers can be seen in figure 1. 

 

 
Figure 1: Plug’n’Produce layers 
 

This paper introduces a concept to offer the user of a 
robot cell in SME-environments an easy means of 
programming a cell without the need to care about 
communication and configuration. Therefore, the focus of 
this paper lies on the Application-P’n’P-layer. Of course, 
this layer depends on the Configuration- and the 
Communication-P’n’P-layers in order to get to know which 
devices are available, to communicate with these devices 
and to get to know the descriptions of these devices  [3]. 
However, the realization of the two lower layers will not be 
within the scope of this paper. 

III. STATE OF THE ART 
State of the art of describing device categories with 

certain, common functionalities are device profiles that exist 
for different protocols like EDDL  [4], XIRP  [5] or UPnP 
 [6]. These device profiles define communication interfaces 
that have to be supported by a device in order to belong to a 
certain device category. The functionality of the device can 
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partly be inferred from the communication interface, but it is 
not itself part of a device profile. Therefore, device profiles 
do not contain enough information to allow detailed 
assumptions about the differences/similarities of the 
functionalities of devices. 

In the domain of knowledge representation, languages 
have been developed that can be used to describe 
functionalities of devices in form of a taxonomy plus 
additional attributes. The most popular of these languages, 
OWL (Web Ontology language)  [7], was developed as a key 
technology of the Semantic Web  [8], trying to add meaning 
to the information that is today merely displayed in the 
internet. 

In the context of home entertainment systems, a function 
planning module was developed within the SmartKom 
project  [9]. This module tries to serve complex user requests 
by first determining which devices are necessary and then 
determining how to control devices based on abstract 
descriptions of the functionalities of devices  [9]. 

In this paper, the concept of device descriptions 
augmented by a component describing the device’s 
functionality with the help of a knowledge representation 
language will be used to infer and use the functionality of a 
robot cell according to the function planning module of the 
SmartKom project thus enabling Application-P’n’P. 

IV. APPLICATION-P’N’P: OVERVIEW 
Application-P’n’P as the highest P’n’P-layer has the goal 

to offer the user as easy as possible means of using the 
functionality of the connected devices. In the context of 
SMErobotTM this means offering the user as easy as possible 
means of programming robot cells. 

State of the art of programming robot cells is to enter 
commands in the dialog of some sort of a programming 
system. The entered commands are then uniquely mapped to 
the according devices. This is an appropriate way of 
programming as long as the user has detailed knowledge 
about the control structure of devices as well as about 
programming itself. In the context of a SMErobotTM-
application this cannot be granted. Users of robot cells in 
SME-environments normally know a lot about the processes 
they have to perform in order to achieve their desired result, 
but have only minor knowledge about programming devices 
(a robot is a special kind of device). Therefore, the 
programming of robot cells in SME-environments should be 
possible without the need of device programming. Instead, 
programming should be focused on the processes the user 
wants to execute. In this paper, this will be called “process-
oriented programming” and the corresponding commands 
will be called “process commands” as opposed to 
traditional “device commands”. Process commands trigger 
whole processes like drilling a hole or gripping a part, while 
device commands trigger a state change in a single device 
like setting a digital output or moving a robot from point A 
to point B. Figure 2 illustrates the differences. 

 
Process command Device commands 

DrillHole(x=50,y=90,d=30) 

MoveTo(50, 90, 70); 
SetPort(20); 
MoveTo(50, 90, 40); 
MoveTo(50, 90, 70); 
ResetPort(20); 

Figure 2: Process command vs. device commands 
 
Process-oriented programming imposes the following 

new requirements on the programming system: 
• No manual device integration effort 

(  Communication- and Configuration-P’n’P) 
• Process commands as user input 

Therefore, instead of just mapping device commands to the 
according devices, the tasks of the programming system are 
much more complex: 

• Automatic Setup of communication with devices (  
Communication-P’n’P) 

• Automatic Configuration of devices ( Configuration-
P’n’P) 

• Evaluation of the functionality of single devices 
• Inference of the functionality of the robot cell as a 

whole 
• Supplying of process commands corresponding to the 

robot cell functionality to a HMI 
• Generation of device command sequences to execute 

the offered process commands 
 To fulfill these tasks the “Interconnector Module” is 
introduced. The functionality and elements of this 
Interconnector Module will be described in detail in the 
following chapters. Figure 3 compares the concept of the 
Interconnector module with a traditional programming 
system. It can be seen that in a traditional programming 
system the user has to interact directly with the devices 
whereas in a system containing the Interconnector Module, 
this Interconnecter Module acts as an intermediate and can 
transform device commands into more intuitive process 
commands. 

 

 
Figure 3: Traditional programming system vs. 
programming system for process-oriented programming 

V. ELEMENTS OF APPLICATION-P’N’P 
In order to do its job the Interconnector Module must be 

supplied with the following information: 
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• Device descriptions that contain information about the 
available devices 

• A library of process descriptions that contain 
information about processes that can possibly be 
executed by the robot cell. 

• An ontology to define and relate the terms of the above 
mentioned descriptions. 

To evaluate this information the following methods are 
required:  

• A method to evaluate possible combinations of devices 
(e.g. combination of a robot and a gripper mounted to 
its flange) 

• A method to generate device descriptions for combined 
devices out of the device descriptions of single devices 

• A method to determine the processes that can be 
executed by the robot cell 

• A method to generate sequences of device commands 
for all processes executable by the robot cell 

Figure 4 shows the workflow of the Interconnector Module. 
Device descriptions are supplied by the (lower) 
Communication- and Configuration-P’n’P-layers. In a first 
step, possible device combinations are determined. Next, 
device descriptions for these combinations are generated. 
These device descriptions are compared to process 
descriptions to determine all executable processes. These 
executable processes are offered to a user on a HMI. The 
user defines a sequence of processes in order to fulfill a 
certain task, e.g. making part of a shelf out of a board. Out 
of this process sequence, a device command sequence is 
generated that can finally be executed by the robot cell. 

 

 
Figure 4: Workflow of the Interconnector Module 

VI. DESCRIPTIONS  
As shown above, two types of descriptions are necessary 

to achieve Application-P’n’P: 
• Device descriptions contained in the memory of a 

device that are loaded into the cell controller when the 
device is integrated into the robot cell. 

• Process descriptions out of a – possibly application 
specific – library of process descriptions stored in the 
cell controller. 

Both description types are divided into sections describing 
different aspects of devices/processes. Some of these 
sections are mandatory, others are optional. Some can occur 
in device as well as in process descriptions, others are 
specific for either device or process descriptions. 

In the following, these different sections will be 
introduced in detail. 

A. Functional descriptions 
Functional descriptions express the offered functionality 

of devices as well as the required functionality of processes 
in an abstract, symbolic way by introducing the concept of 
skills  [11]. A skill represents a certain functionality of a 
device, e.g. a robot can move its flange, which is described 
by the skill “MoveProgrammable” and can attach another 
device like a drilling tool to its flange, which is described by 
the skill “CanAttach”. 

Description Logics languages  [12] are made to express, 
access and reason about such kind of structured knowledge 
like the above introduced skills. One of the most popular 
Description Logics languages is OWL DL. The OWL 
language (Web Ontology Language) was developed as a 
major technology for the implementation of the Semantic 
Web (see chapter  III). OWL DL is a sublanguage of OWL 
(Full) made especially for the structured representation of 
domain knowledge to automatically reason about this 
knowledge. With the help of OWL DL it is easy to describe 
concepts in the form of class-subclass relations. Classes may 
have properties to describe details and restrictions to define 
if a certain individual is a member of a certain class. 
Subclasses specialize their parent-classes by adding more 
restrictions. 

By means of this language it is possible to express skills 
and their respective properties allowing abstract and general 
as well as detailed and specialized descriptions in a way that 
allows reasoning about the skills. 

Functional descriptions are necessary to evaluate if a 
certain process can be executed by the current setup of the 
robot cell. This is done by matching the skills offered by the 
available devices (expressed in their device descriptions) 
with the skills required by a process (expressed in its process 
description). 

Functional descriptions are a mandatory part of every 
device and process description. 
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B. Device control descriptions 
Device control descriptions modell the control system of a 

device in the form of a state-chart. The state-chart can have 
as many states as necessary, but depending on the functional 
description of a device certain states are mandatory. If the 
functional description of a device contains a certain skill, the 
state-chart must contain the respective state(s), e.g. if the 
functional description of a drilling tool contains the skill 
“CanRotate”, the device control description of this device 
must contain a state “Rotating”. The transitions of the 
state-chart describe the commands that trigger the state 
changes. 

There exist several languages to describe state-charts. One 
of them is SCXML  [13]. SCXML allows the concurrent 
execution of parallel state-charts and their synchronization 
and is therefore well suited for the use in device control 
descriptions. 

Device control descriptions are a mandatory part of 
device descriptions in order to evaluate the necessary 
sequence of commands to reach certain states – that means, 
to execute a certain task. 

C. Process sequence descriptions 
Process sequence descriptions have the purpose of 

describing the sequence of a certain process in an abstract 
way. “In an abstract way” means, that they must describe 
which states must be reached in which order to execute a 
certain process, but they must not describe how these states 
can be reached as this depends on the devices actually used. 
Therefore process sequence descriptions are the counterparts 
of device control descriptions. Device control descriptions 
express how certain states can be reached while process 
sequence descriptions express the required sequence of 
states in order to execute a certain task. Therefore, process 
sequence descriptions are expressed as SCXML-state-charts, 
too. 

Process sequence descriptions are a mandatory part of 
process descriptions. The states contained in a state-chart 
must correspond to the skills contained in the functional 
description of the process description. 

Figure 5 shows a state-chart describing a drilling process 
including a device with the skill “CanMove” and the 
corresponding state “BeAtPos” (  a robot), a device with 
the skill “CanRotate” and the corresponding state 
“Rotating” (  a drilling tool) and a device with the skill 
“CanClamp” and the corresponding state “Clamped” (  
a clamping device). 

 
Figure 5: State-chart describing a drilling process 

 

D. Optional descriptions 
Apart from the above mentioned mandatory descriptions, 

further optional descriptions (with special purposes) are 
possible, e.g.: 

• Geometrical descriptions: describe the body structure 
of a device. These descriptions could e.g. be used to 
simulate the robot cell or as input data for a path 
planner/collision avoidance algorithm. 

• Kinematical descriptions: describe the kinematical 
chain of a device. This type of description is especially 
useful for robots in order to check the reachability of 
certain points. 

In order to use these optional descriptions special 
evaluation functions would be necessary. 

E. Code fragments embedded into descriptions 
For some purposes it could be useful to integrate code 

fragments into device or process descriptions for special 
purposes. Examples for such code fragments could be 
functions integrated into a gripper description that take as 
input data CAD-models of an object and return possible 
gripping points as a result. 
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VII. ONTOLOGY  
The descriptions from the previous chapter have the 

purpose of allowing the Interconnector Module to infer 
possible device combinations, to infer processes that can be 
executed and to generate device command sequences for 
executable processes. All this should be done without 
human intervention. Therefore, the Interconnector Module 
needs to “understand” the descriptions, meaning it needs to 
know about the concepts represented by the terms used in 
the description. 

To achieve this, an ontology has to be introduced which 
defines all relevant concepts (called “classes”) of the 
considered domain, in our case the robotic domain. 
Ontologies generally describe  [14]: 

• Instances of classes, e.g. “robot_XY” as an instance 
of the class “Articulated_Robot”. 

• Classes, e.g. “Articulated_Robot”, “Flange”, 
“Command”, “Skill”. 

• Attributes of classes, e.g. “weight”, “color”. 
• Relations between classes, e.g. 

“Articulated_Robot is a subclass of 
Robot” or “every Robot has a Flange”. 

Figure 6 shows the taxonomy of a set of classes 
representing skills. Not shown are the attributes of the skills, 
e.g. the class “SkillFix” has the attribute 
“maxObjectWeight” describing the maximum weight of 
the object that can be fixed. All three subclasses of 
“SkillFix” inherit that attribute, but can possess more 
specialized attributes like e.g. “maxObjectDiam” for 
“SkillFixCylinder”. 
 

 
Figure 6: Part of the robot ontology 
 
Example: The functional description of a concentric gripper 
contains an instance of “SkillFixCylinder” meaning 
that the concentric gripper can fix cylinders. The functional 
description of a pick-and-place process contains a device 
definition (in form of a class definition) stating that amongst 
others a device (with a functional description) containing an 
instance of “SkillFix” is required in order to execute the 
process. With the help of the ontology it can be inferred that 

the concentric gripper is suitable because it has a skill 
“SkillFixCylinder” which is a subclass of 
“SkillFix” and therefore suitable. 
 

This simple example shows that all domain knowledge – 
as trivial as it might be for a human – has to be formally 
described (in an ontology) to allow a computer to make use 
of this knowledge in order to evaluate device descriptions. 

The ontology is also the place where the relation between 
skills and states is defined (see chapter  VI.B). This is done 
by the relation “requiredState” of a skill that defines states 
that are mandatory for certain skills, e.g. the skill 
“SkillRotate” requires a state “Rotate”. 

To define ontologies many languages have been 
developed. The most widespread one is OWL introduced in 
chapter  VI.A in the context of functional descriptions. 
Therefore, it will be used for the definition of the robot 
domain ontology as well because the purpose of the 
ontology is to “understand” the functional descriptions. 

VIII. EVALUATION OF DESCRIPTIONS 
The evaluation of device and process descriptions has two 

goals: 
• to infer possible combinations of devices and 
• to infer processes that can be executed by the robot 

cell. 

A. Combination of devices 
A combination of devices means that two or more devices 

are attached in order to execute a certain process. This could 
be necessary because one single device does not have the 
functionality required to execute this process, e.g. a robot 
alone can only move its flange and a drilling tool alone can 
only rotate a drill. But if the drilling tool is attached to the 
flange of the robot – if the devices are combined – they can 
drill a hole. 

The combination of devices is a two step process. First, it 
has to be determined which devices can be combined. 
Second, a new device description specifying the 
functionality of the combined devices has to be generated. 
1) Determining possible device combinations 

Devices that can attach or can be attached to another 
device must have an interface for this purpose. This means, 
they must have the special functionality to attach to another 
device. This functionality can be represented by a skill, 
namely the skill “SkillAttach”. This skill means that a 
device has an interface to attach another device. If two 
devices have this skill, it is possible to combine them if their 
interfaces match. Therefore, it is defined in the ontology that 
“SkillAttach” requires an attribute describing on the 
one side the interface the device possesses and on the other 
side the interface the device requires. 

The interface of the device is described as an instance of 
the class “DeviceInterface” defined in the ontology. 
The interface the device requires is described as the 
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definition of a subclass of the class “DeviceInterface”, 
specifying in detail the needed requirements. With the help 
of this interface descriptions it is possible to infer possible 
device combinations with a general purpose reasoner like 
e.g. Pellet  [14] by checking if a “DeviceInterface” 
instance satisfies one or more “DeviceInterface” 
subclass definitions. If this is the case, these two devices can 
be combined. 
2) Generating Device descriptions 

As soon as it has been determined that two devices can be 
combined a new device description that treats these two 
devices as one single device has to be generated out of the 
device descriptions of the single devices. The integration of 
the device descriptions differs for functional descriptions 
and for all other kinds of descriptions: 

• Functional descriptions: The skills of the functional 
descriptions of two devices that are combined are 
simply merged into one functional description. The 
only exception is the skill “SkillAttach” used to 
combine the devices. This skill is omitted in the new 
combined description as it is no longer available 
(because the devices are already combined). 

• All other descriptions: all other description types are 
not merged but just copied into the new description. 

B. Executable processes 
The determination of executable processes out of a 

process library works similar to the combination of devices. 
Each functional description of a device contains a device 
instance including all the skills of the device. Each 
functional description of a process contains one or more 
device class definitions (for each device needed) specifying 
which skills are necessary. A general purpose reasoner can 
infer if a certain device instance satisfies one or more device 
class definitions. In this case, the corresponding device can 
be used to execute the process(es) containing this(these) 
device class definition(s). 

IX. GENERATION OF DEVICE COMMAND SEQUENCES 
The generation of device commands to execute a specific 

task is based on the state-chart of the process sequence 
description. The state-chart describes the states the involved 
devices have to reach, their order and synchronizations that 
must be taken into account. These states of the state-chart 
are mapped to states of the state-chart of the device control 
descriptions of the involved devices. The mapping is 
possible because the states of the process state-chart and the 
states of the device state-charts are related by the ontology. 
Once the state a device has to reach is known, a path from 
its current state to this goal state must be searched in the 
state-chart  [16]. The commands (that represent the transition 
conditions of the state machine) along this path must be 
executed in order to reach the goal state. If this path-search 
is done for the whole process state-chart, the result is a 
sequence of device commands that has to be executed to 

fulfill the specific task. 

X. CONCLUSION AND OUTLOOK 
The presented concept of a robot cell control architecture 

allows easy programming of a robot cell and therefore 
permits users with little knowledge of (robot) programming 
to use robots in a SME-environment. The user still has to do 
some programming, but on the process-command level 
instead of using device commands.  

The concept is based on device and process descriptions 
that are evaluated in an Interconnector Module to infer the 
functionality of the robot cell and offer the user 
corresponding process-commands. The accuracy of the 
inferred functionality strongly depends on the descriptions 
and the underlying ontology. 

Therefore, further work has to be dedicated to 
particularize the specification of the device and process 
descriptions and the development and/or adaptation of the 
algorithms necessary for their evaluation. Simultaneously, 
more knowledge must be added to the robot ontology, as 
this ontology is the basis for the evaluation of the 
descriptions. 

As a next step the concept presented in this paper will be 
realized for test applications (wood-working, pick and 
place). Thereby the strengths and weaknesses of the concept 
as well as possible improvements will become obvious. 
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