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Abstract— This paper presents a method to design guidance
and control laws for small Vertical Take Off and Landing
Unmanned Aerial Vehicles when no measurement of linear
velocity nor angular velocity is available. The control strategy
is based on the introduction of virtual states in the state
equation of the system and allows the design of stabilizing
feedback controllers without using any observer. Simulation
results are provided for a six degrees of freedom model of a
small rotorcraft-based Unmanned Aerial Vehicle.

I. INTRODUCTION

Miniature rotorcraft-based Unmanned Aerial Vehicles

(UAVs) have received a growing interest in both industrial

and academic research. Thanks to their hover capability,

they are prone to be useful for many civil missions such

as video supervision of road traffic, surveillance of urban

districts or building inspection for maintenance.

Design of guidance navigation and control algorithms

for the autonomous flight of small rotorcraft-based UAVs

is a challenging research area because of their nonlinear

dynamics and their high sensitivity to aerodynamic

perturbations. Various control strategies such as backstepping

[12], adaptive backstepping [14], nonlinear model predictive

control [11] or the combination of adaptive and model

predictive control [1] have been successfully applied to

UAV models. Nevertheless most of them require full state

knowledge for feedback control design.

For robotic systems it may be useful, for cost or payload

reasons, to limit the number of embedded sensors. Therefore

measurement of the full state may not be available. Classical

solution to overcome consists in using observer. Such a

solution was adopted in [6] where the problem of trajectory

tracking for a planar Vertical Take Off and Landing (VTOL)

aircraft with only positions and attitude angle measurement

is treated by designing a full-order observer. Another

approach that can be used to avoid computational burden or

complexity due to the introduction of an observer is partial

state feedback. Early work on partial state feedback has

been done in the context of rigid-link robot manipulators

when no velocity measurement is available. In [3] the

velocity measurement is replaced by a velocity-related

signal generated by a linear filter based only on link

position measurement. An extension of this work can be

found in [5] where a nonlinear filter is used. The same

method has been applied to solve the problem of attitude

tracking of rigid bodies with unknown inertia. A linear filter

is employed in [17] to generate a velocity-related signal.

In this work, a kinematic representation using modified

Rodrigues parameters has been chosen. In [4], a unit

quaternion based representation is adopted and a nonlinear

filter generates a signal replacing the angular velocity

measurement in the feedback controller. A unit quaternion

representation is also used in [15] where a linear feedback

controller depending on an estimation error quaternion is

designed to solve the problem of a rigid spacecraft attitude

control.

As can be seen in the simulation or experimental results

provided in some of the aforementioned works, oscillating

closed loop behavior can be considered as the main

drawback of partial state feedback strategies.

In this paper we deal with the problem of guidance

and control of a six degrees of freedom UAV model when

no measurement of the linear velocity nor of the angular

velocity is available. The method we present in this paper

is based on the introduction of virtual states in the state

equation of the system; no observer design is required. In

addition, the closed loop oscillations are sensibly attenuated

by the proposed approach. Contrary to the previous works,

the kinematic representation we use exploits the SO(3)
group and its manifold.

Section 2 presents the system dynamics of a VTOL

UAV and the cascaded structure of the controller. The

design of the position controller is detailed in section 3

whereas the attitude controller is presented in section 4.

Stability analysis of the closed loop system is given in

section 5 and simulations results are provided in section 6.

Concluding remarks are finally given in the last part of this

paper.

II. UAV MODEL AND CONTROL STRATEGY

A. VTOL UAV model

The VTOL UAV model is represented by a rigid body of

mass m and of tensor of inertia I = diag(I1, I2, I3) with I1,

I2 and I3 strictly positive. We define an inertial reference

frame (I) associated with the vector basis (e1, e2, e3) and

a body frame (B) attached to the UAV and associated with

the vector basis (eb1, e
b
2, e

b
3) (see Fig. 1). The position and

the linear velocity of the UAV in (I) are respectively denoted
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ξ = [x y z]
T

and v = [vx vy vz]
T

. The orientation of the

UAV is given by the orientation matrix R ∈ SO(3) from

(I) to (B), usually parameterized by Euler’s pseudo angles

ψ, θ, φ (yaw, pitch, roll):

R =





cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ
cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ
−sθ sφ cθ cφ cθ



 (1)

with the trigonometric shorthand notations cα = cos(α) and

sα = sin(α), ∀α ∈ R. Let Ω = [ωp ωq ωr]
T

be the angular

velocity of the UAV defined in (B).

We assume that a translational force F and a control

torque Γ are applied to the UAV. The translational force

combines thrust, lift, drag and gravity components. In

quasi-stationary flight we can reasonably assume that the

aerodynamic forces are always in direction eb3, since the lift

force predominates the other components [8]. The gravity

component mge3 can be separated from the combined

aerodynamic forces and the dynamics of the VTOL UAV

can be written as1:






ξ̇ = v

mv̇ = −T Re3 +mge3

Ṙ = RΩ×

IΩ̇ = −Ω × IΩ + Γ

(2)

where the inputs are the scalar T ∈ R representing the

magnitude of the external forces applied in direction eb3, and

the control torque Γ = [Γ1 Γ2 Γ3]
T

defined in (B).

B. Control strategy

Designing a controller for the UAV model (2) can be

realized by a classical backstepping approach applied to

the whole dynamical system. In that case, the input vector
−T

m
Re3 must be dynamically extended [7], [13]. To avoid

such a dynamical extension, we take advantage of the cas-

caded structure of the system to design separate controllers

for the two following connected subsystems: the translational

dynamics and the orientation dynamics. Such a hierarchical

control strategy is frequently used in guidance and control al-

gorithms [14], [16]. It leads to time scale separation between

1For any vector a ∈ R
3 we denote a× its associated skew symmetric

matrix verifying ∀b ∈ R
3, a×b = a × b, for the vector cross-product ×.

Fig. 1. Reference frames

the translational dynamics and the orientation dynamics.

The position controller computes the input T and the desired

orientation Rd of the UAV. The attitude controller determines

the control torque Γ such that the orientation R converges

to the desired one Rd.

To get position and linear velocity measurements, the vehicle

may be equipped with a GPS. Note however that the use of

a GPS can be useful in outdoor flight and in a free envi-

ronment. In constrained environment, the preferred approach

consists in using a vision sensor to estimate the position of

the vehicle with respect to the environment, and therefore no

measurement of the linear velocity v is available.

We also assume that the UAV is equipped with inclinometers

and a compass to provide orientation measurements. We

assume that no measurement of the angular velocity Ω is

available.

Since the use of observers may increase complexity and

introduce computation delay, especially for the orientation

dynamics, we will design feedback control laws without

using any observer.

III. POSITION CONTROLLER

Let us consider the translational dynamics. Assume that

R = Rd. We introduce two virtual states q, w ∈ R
3 and a

virtual control δ ∈ R
3 such that:







ξ̇ = v

v̇ = −
T

m
Rde3 + ge3

q̇ = −w

ẇ = δ

(3)

Lemma 1

Consider the system dynamics (3). The following control

vector

T Rde3 = mge3 +
m

kv
{kx ξ + k1(ξ − q) + k2(ξ − q + w)}

(4)

along with the virtual control

δ = −
1

k2

{k2w + k1(ξ − q) + k2(w + ξ − q)} (5)

where kx, kv , k1 and k2 are strictly positive gains,

exponentially stabilizes the translational dynamics (3).

Proof

Let us introduce the following coefficients:

α = −
kx + k1 + k2

kv
β =

k1 + k2

kv

γ = −
k2

kv
ǫ =

k1 + k2

k2

(6)

The closed loop system can be written in matrix form






ξ̇

v̇

q̇

ẇ







=







0 1 0 0
α 0 β γ

0 0 0 −1
−ǫ 0 ǫ −2







︸ ︷︷ ︸

Φ







ξ

v

q

w







(7)
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Let us show that Φ is Hurwitz. Its characteristic polynomial

is given by:

P (s) = s4 + 2s3 + (ǫ− α)s2 + (ǫγ − 2α)s− ǫ(α+ β) (8)

Using Routh’s criterion, Φ is Hurwitz if and only if the three

following conditions simultaneously hold:

ǫ− α−
ǫγ − 2α

2
> 0 (9)

ǫγ − 2α+ 4
α+ β

2 − γ
> 0 (10)

−ǫ(α+ β) > 0 (11)

Using ǫγ = −β and writing these conditions in terms of

gains kx, kv , k1 and k2, it yields:

k1 + k2

k2

+
1

2

k1 + k2

kv
> 0 (12)

−
k1 + k2

kv
+ 2

kx + k1 + k2

kv
+ 4

−kx

kv

2 + k2
kv

> 0 (13)

(−
k1 + k2

k2

)(−
kx

kv
) > 0 (14)

Since kx, kv , k1 and k2 are strictly positive, conditions (12)

and (14) are immediately satisfied. Condition (13) can be

restated as:

2kx + k1 + k2

kv
> 4

kx

2kv + k2

Using the positivity of the gains, it becomes:

2kv(k1 + k2) + k2(2kx + k1 + k2) > 0

which is always satisfied, each term being strictly positive.

We can then conclude that Φ is Hurwitz and therefore,

from (7), that the control (4) along with the virtual control

(5) exponentially stabilizes the translational dynamics (3). �

Remark 1

The control input T can be directly computed by taking the

norm of the right hand side of (4):

T =

∥
∥
∥
∥
mge3 +

m

kv
{kxξ + k1(ξ − q) + k2(ξ − q + w)}

∥
∥
∥
∥

(15)

The desired orientation Rd can be obtained using (1) and

Rde3 =
1

T
(mge3+

m

kv
{kxξ + k1(ξ − q) + k2(ξ − q + w)})

(16)

and solving for (ψ, θ, φ) for a given specified yaw trajectory

ψd(t) [9].

To ensure that equation (16) is well defined, let us introduce

the following Lyapunov function for the translational

dynamics:

S =
1

2
kx ‖ξ‖

2
+

1

2
kv ‖v‖

2
+

1

2
k1 ‖ξ − q‖

2

+
1

2
k2 ‖ξ − q + w‖

2

(17)

We also introduce kmin = min (kx, kv, k1, k2) and

kmax = max (kx, k1, k2).

Lemma 2

For any initial condition ξ(0), v(0), with q(0) = ξ(0) and

w(0) = 0 verifying

S(0) <
1

18

g2 k2
v kmin

k2
max

(18)

the input T is strictly positive.

Proof

From equation (15) and triangular inequality we get:

T ≥ mg −
m

kv
kmax {‖ξ‖ + ‖ξ − q‖ + ‖ξ − q + w‖}

T ≥mg − 3
m

kv
kmax { ‖ξ‖

2
+ ‖v‖

2
+ ‖ξ − q‖

2

+ ‖ξ − q + w‖
2
}

1

2

(19)

Using the definitions of S and kmin, we have:

1

2
kmin { ‖ξ‖

2
+ ‖v‖

2
+ ‖ξ − q‖

2
+ ‖ξ − q + w‖

2
} ≤ S

(20)

It can be easily verified that the time derivative of S along

the trajectories of the closed loop translational dynamics is

negative. Therefore S is decreasing and we have S ≤ S(0),
where, taking q(0) = ξ(0) and w(0) = 0, the initial value

S(0) is defined by S(0) = 1

2
kx ‖ξ(0)‖

2
+ 1

2
kv ‖v(0)‖

2
. Using

(19) along with (20) and S ≤ S(0), we get:

T ≥ mg − 3
m

kv
kmax

√

2S(0)

kmin
(21)

Using condition (18), we finally obtain T > 0. �

Therefore, the relation (16) which is used to compute

Rd is well defined for any initial condition ξ(0), v(0), with

q(0) = ξ(0) and w(0) = 0 verifying (18).

Due to the position controller we developed, the closed-

loop translational dynamics is exponentially stable for

R = Rd. However, since the orientation R will not converge

instantaneously to the desired value Rd, an orientation error

term is introduced in the translational dynamics:

mv̇ = −T Rde3 +mge3 − T (R−Rd)e3 (22)

Therefore we have to design an attitude controller allowing

at least asymptotic convergence of R to Rd.

IV. ATTITUDE CONTROLLER

Similarly to the translational dynamics, we introduce two

virtual states Q ∈ SO(3), W ∈ R
3 and a virtual control

∆ ∈ R
3 for the orientation dynamics, such that:







Ṙ = RΩ×

IΩ̇ = −Ω × IΩ + Γ

Q̇ = −QW×

Ẇ = ∆

(23)
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For a given desired orientation Rd we define

R̃ = (Rd)TR (24)

Q̃ = QT R̃ (25)

Due to the cascaded structure of the controller, the attitude

controller will have to be tuned so that the deviation R̃

converges to the identity matrix Id of R
3×3 faster than the

position stabilization. Therefore, we assume for control de-

sign that the desired orientation can be considered constant,

i.e. Ṙd = 0 [2], and that the desired angular velocity is zero,

i.e. Ωd = 0.

Using (24) and (25), we rewrite (23) as:







˙̃
R = R̃Ω×

IΩ̇ = −Ω × IΩ + Γ

˙̃
Q = W×Q̃+ Q̃Ω×

Ẇ = ∆

(26)

We denote respectively Pa(A) = A−AT

2
and Ps(A) = A+AT

2

the anti symmetric part and the symmetric part of a given

matrix A ∈ R
n×n. We define by V the operator from

SO(3) to R
3 verifying ∀b ∈ R

3,V(b×) = b and

∀B ∈ SO(3),V(B)× = B.

Let us introduce the following Lyapunov function:

L =
1

2
krtr(Id − R̃) +

1

2
kωΩT IΩ +

1

2
k3tr(Id − Q̃)

+
1

2
k4tr

{

(W× + Pa(Q̃))T (W× + Pa(Q̃))
} (27)

where kr, kω , k3 and k4 are strictly positive scalars. We

denote L(0) the initial value of L.

Lemma 3

Γ =
1

kω
{ − krV(Pa(R̃)) − k3V(Pa(Q̃))

+ k4V(Pa(M)) + k4V(Pa(N)) }
(28)

and the virtual control

∆ = −
1

k4

V (
1

2
k3Pa(Q̃) +

1

2
k4(W×Q̃+ Q̃TW×)

+
1

2
k5(W× + Pa(Q̃)) )

(29)

where

M = (W× + Pa(Q̃))T Q̃ (30)

N = Q̃T (W× + Pa(Q̃))T (31)

and kr, kω , k3, k4 and k5 are strictly positive gains with

kr < k3 (32)

Consider the control Lyapunov function candidate (27).

Then, for any initial condition R̃(0), Ω(0), with Q(0) =
R̃(0) and W (0) = 0, such that

L(0) < 2kr (33)

the control torque (28) along with the virtual control (29)

asymptotically stabilizes the orientation dynamics (26).

Proof

Consider the Lyapunov function L defined by (27). It’s time

derivative along the trajectories of (26) is given by:

L̇ = −
1

2
krtr(

˙̃
R) + kωΩT {−Ω × IΩ + Γ} −

1

2
k3tr( ˙̃

Q)

+ k4tr






(W× + Pa(Q̃))T (∆× +

.
︷ ︸︸ ︷

Pa(Q̃))







where

.
︷ ︸︸ ︷

Pa(Q̃) =
1

2

{

W×Q̃+ Q̃Ω× + Q̃TW× + Ω×Q̃
T
}

(34)

Using (34) and the fact that ΩT (Ω × IΩ) = 0, it yields:

L̇ = −
1

2
krtr(R̃Ω×) + kωΩTΓ −

1

2
k3tr(W×Q̃+ Q̃Ω×)

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2

{

W×Q̃+ Q̃Ω×

+ Q̃TW× + Ω×Q̃
T }) }

Recalling that for any pair of matrices A, B ∈ R
n×n,

tr(Pa(A)Ps(B)) = 0, we get:

L̇ = −
1

2
krtr(Ω×Pa(R̃)) + kωΩTΓ −

1

2
k3tr(W×Pa(Q̃))

−
1

2
k3tr(Ω×Pa(Q̃))

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2

{

W×Q̃+ Q̃Ω×

+ Q̃TW× + Ω×Q̃
T }) }

Using the fact that for two given antisymmetric matrices

Aa, Ba ∈ R
n×n we have 1

2
tr(AaBa) = V(ATa )TV(Ba),

we obtain:

L̇ = ΩT
{

krV(Pa(R̃)) + kωΓ + k3V(Pa(Q̃))
}

−
1

2
k3tr(W×Pa(Q̃)) +

1

2
k4tr

{

(W× + Pa(Q̃))T Q̃Ω×

}

+
1

2
k4tr

{

(W× + Pa(Q̃))TΩ×Q̃
T
}

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2
(W×Q̃+ Q̃TW×))

}

Using (30) we have:

1

2
k4tr

{

(W× + Pa(Q̃))T Q̃Ω×

}

=
1

2
k4tr {MΩ×}

= −k4Ω
TV(Pa(M))

In the same way, we use (31) to get:

1

2
k4tr

{

(W× + Pa(Q̃))TΩ×Q̃
T
}

= −k4Ω
TV(Pa(N))
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Therefore, the time derivative of L can be simplified:

L̇ = ΩT { krV(Pa(R̃)) + kωΓ + k3V(Pa(Q̃))

− k4V(Pa(M)) − k4V(Pa(N)) } −
1

2
k3tr(W×Pa(Q̃))

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2
(W×Q̃+ Q̃TW×))

}

Choosing Γ according to (28) leads to:

L̇ = −
1

2
k3tr(W×Pa(Q̃))

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2
(W×Q̃+ Q̃TW×))

}

As WT
× = −W×, and introducing Pa(Q̃) in the first term:

L̇ =
1

2
k3tr((W× − Pa(Q̃) + Pa(Q̃))TPa(Q̃))

+ k4tr

{

(W× + Pa(Q̃))T (∆× +
1

2
(W×Q̃+ Q̃TW×))

}

L̇ = −
1

2
k3tr(Pa(Q̃)TPa(Q̃))

+ tr { (W× + Pa(Q̃))T (
1

2
k3Pa(Q̃) + k4∆×

+
1

2
k4(W×Q̃+ Q̃TW×)) }

Taking ∆ as defined in (29), one has:

L̇ = −
1

2
k3tr

{

Pa(Q̃)TPa(Q̃)
}

−
1

2
k5tr

{

(W× + Pa(Q̃))T (W× + Pa(Q̃))
}

Using the fact that for any antisymmetric matrix Aa ∈ R
n×n,

1

2
tr(ATaAa) = ‖V(Aa)‖

2
, we finally have:

L̇ = −k3

∥
∥
∥V(Pa(Q̃))

∥
∥
∥

2

− k5

∥
∥
∥V(W× + Pa(Q̃))

∥
∥
∥

2

(35)

ensuring that L is strictly decreasing until Pa(Q̃) → 0 and

W× → −Pa(Q̃), i.e. W× → 0.

Denote by (γQ̃, nQ̃) the angle-axis coordinates of Q̃. One

has:

k3(1 − cos(γQ̃)) =
1

2
k3tr(Id − Q̃) ≤ L

Since L is decreasing, we have L ≤ L(0). Using (33) it

yields:

k3(1 − cos(γQ̃)) ≤ L ≤ L(0) < 2kr

Using (32), we get:

1 − cos(γQ̃) < 2
kr

k3

< 2 (36)

From Pa(Q̃) → 0, we have γQ̃ = 0 or γQ̃ = ±π. The

second possibility is excluded by (36). Therefore we have

Q̃ → Id. By (25), it yields R̃ → Q. By continuity and

using La Salle’s principle, we get
˙̃
R → Q̇. Using the first

equation of (26) and the third equation of (23) , one has

R̃Ω× → −QW×. Since R̃ is orthogonal, we get Ω× →
−R̃TQW×. Using W× → 0 it yields Ω× → 0 and then

Ω → 0. Therefore, using the first equation of (26), we get

˙̃
R → 0. By continuity Ω̇ → 0 and then, by the second

equation of system (26), Γ → 0. Knowing that Pa(Q̃) and

W× converge to zero, one can ensure that, respectively from

(30) and (31), M and N converge to zero. Combining the

above discussion with the fact that Γ → 0, equation (28)

ensures that Pa(R̃) → 0. Similarly to the previous analysis

on Q̃, let us denote (γR̃, nR̃) the angle-axis coordinates of

R̃. One has:

kr(1 − cos(γR̃)) =
1

2
krtr(Id − R̃) ≤ L ≤ L(0) < 2kr

It yields

1 − cos(γR̃) < 2 (37)

From Pa(R̃) → 0, we have γR̃ = 0 or γR̃ = ±π. The

second possibility is excluded by (37). Therefore, we finally

have R̃→ Id and R→ Rd. �

V. STABILITY ANALYSIS

We consider the full dynamics of the system along with

virtual states and with the orientation error term in the

translational dynamics:






ξ̇ = v

v̇ = −
T

m
Rde3 + ge3 −

T

m
(R−Rd)e3

q̇ = −w

ẇ = δ

˙̃
R = R̃Ω×

IΩ̇ = −Ω × IΩ + Γ

˙̃
Q = W×Q̃+ Q̃Ω×

Ẇ = ∆

(38)

Proposition 1

Consider the system dynamics (38). Under the conditions

(32) and (33), the control laws (4) and (28) along with the

virtual controls (5) and (29) asymptotically stabilize the

system (38).

Sketch of the proof (see [2] for the detailed proof)

By Lemma 3, under the conditions (32) and (33), the closed

loop orientation dynamics is asymptotically stable when

(28) and (29) are respectively used as control and virtual

control. Therefore, the orientation error term (R − Rd)
asymptotically converges to zero.

Since, from Lemma 1, the control of the translational

dynamics is exponentially stabilizing for R = Rd, we can

use [10] to conclude that the control of the translational

dynamics is asymptotically stabilizing in presence of the

orientation error term.

Therefore, the system (38) is asymptotically stable

when the control laws (4) and (28) are used along with the

virtual control laws (5) and (29). �

By introducing virtual states, we have been able to
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design position and attitude control laws which stabilize

the VTOL UAV model using no measurement of the linear

velocity v nor of the angular velocity Ω.

VI. SIMULATION RESULTS

The VTOL UAV is described by the following parameters:

m = 2.5 kg, I1 = I2 = 0.13 kg.m2 and I3 = 0.16 kg.m2.

The gravitational acceleration is g = 9.81 m.s−2. Simulation

results are provided for stabilization at hover around the

origin starting from the initial condition ξ0 = [2 − 2 3]
T

(m), [ψ0 θ0 φ0] = [0 − 10 − 8]
T

(deg), v0 = 0 and Ω0 =
0. The desired yaw ψd was chosen to be equal to zero. The

values of the gains are: kx = 0.2, kv = 3.0, k1 = 0.8, k2 =

0.8, kr = 0.74, kω = 3.3, k3 = 12, k4 = 0.25, k5 = 6.1.

Fig. 2 presents position coordinates and attitude angles.

Stabilization of the UAV model is achieved from the given

initial condition with satisfying behavior performances. The

evolution of the angular deviation terms φ̃ = φ − φd,

θ̃ = θ − θd and ψ̃ = ψ − ψd are plotted in Fig. 3. It can

be verified that these terms converge faster than the closed

loop translation, hence validating the time scale separation

approach used for the design of the controllers.

VII. CONCLUSION

We have presented a method to design guidance and

control feedback laws for a small rotorcraft-based Unmanned

Aerial Vehicle when no measurement of the linear velocity

nor of the angular velocity is available.

The proposed approach, based on the introduction of virtual

states in the state equation of the system, allows to design

a stabilizing feedback controller and provides satisfying be-

havior of the closed loop system, without using any observer.

Closed loop stability using the partial state feedback position

and attitude controllers we designed has been proved. To

illustrate the performances of the proposed approach, simu-

lation results have been presented.
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