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Abstract— Several triaxial accelerometers are known. How-
ever, to the knowledge of the authors, no true, triaxial ac-
celerometers are commercially available. By true we mean
an accelerometer which would pick up the three components
of point-accelerations using one single proof-mass. What we
propose is novel architecture classes of parallel-kinematics-
machine for multi-axial accelerometers, that is, accelerometers
that can measure n components of point-accelerations, where
n = 1, 2, 3. We call these architectures simplectic, as they
use n + 1 legs oriented normally to the n + 1 faces of the
regular simplex associated with the n-dimensional subspace of
measured acceleration components. We show that the simplectic
biaxial accelerometer can be fabricated using micromachining
MEMS techniques, while the simplectic triaxial accelerometer
lends itself to compliant-mechanism fabrication techniques.
CAD models of the prototypes proposed are provided for all
of the three novel mechanical architectures proposed. Finally,
the direct kinematics problems associated with the simplectic
biaxial and triaxial accelerometers are shown to be linear
in both cases. This feature simplifies the estimation of the
proof-mass displacement from piezoresistive or piezoelectric
measurements taken at the flexible joints connecting the legs of
the mechanism to the rigid body whose acceleration is under
estimation.

I. INTRODUCTION

Inertial Navigation Systems (INS) offer many advantages
over other navigation systems:

1) They do not depend on any external reference, which
makes them highly reliable;

2) they can be produced in relatively compact sizes,
thanks to MEMS fabrication processes;

3) they are relatively cheap;
4) they are energy-efficient; and
5) they offer a large bandwidth.
However, the computation of the state variables used in

navigation from the readouts of Inertial Measurement Units
(IMUs)—acceleration, angular acceleration, angular velocity,
or a combination thereof—requires time-integration, which
renders any algorithm unstable. The reason behind is the
unavoidable bias errors in the measurements, in light of the
inherent integrator instability—the integrator poles are all
zero. Nevertheless, INS give good results when coupled
with external aids such as GPS [1], [2]. Indeed, INS and
GPS are good complements to each other, as GPS give
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stable position information with relatively low resolution
and low frequency, while INS operate at high frequencies
and have a high resolution on acceleration and angular
velocity. Moreover, INS allow the vehicle to operate in case
of a temporary loss of the GPS signal during certain lapses.
The level of autonomy provided by INS is thus highly
dependent on the bias errors embedded in their inertial
measurements.

The need for inertial sensors with high resolution and
low bias error is thus apparent. Low noise-to-signal ratio is
also important for the instrument to keep a good bandwidth,
and, therefore, offer a significant advantage over GPS.
These two characteristics can be enhanced by increasing the
mass used to generate the inertia force [3]. MEMS have the
advantage of being compact and cheap, but they are limited
with regard to the size and the density of their suspended
mass. In addition, they confine the designer to elementary
mechanical architectures, which often render the system
sensitive to other motion variables than the ones of interest.
As an example of this, we have cross-axis sensitivity when
an accelerometer signal is influenced by the acceleration
components that are perpendicular to the sensitive axis.

The vast majority of commercially available accelerome-
ters function on the principle of mass-spring systems. The
mass, which is referred to as the proof mass, is suspended
on the accelerometer frame by one or several flexible
beams, which act as the springs. In general, the mechanical
system is designed so that the proof mass can only translate
along one, two, or three independent directions, which we
will call its sensitive axes. Hence, when the accelerometer
frame is subjected to an acceleration input that is parallel
to the sensitive axis, the proof mass induces a proportional
deflection of its supporting beams. The resulting proof-
mass displacements can then be measured, thus yielding an
estimate of one, two, or three components of the acceleration
of the accelerometer frame.

To the knowledge of the authors, triaxial accelerometers
currently available on the market are layouts of three uniaxial
accelerometers that measure acceleration components in
orthogonal directions not of one, but of three distinct points
of a rigid body. Prototypes of true triaxial accelerometers,
i.e., accelerometers that use the same proof mass to measure
all three components of the acceleration of one single
point, have been produced in the past. The accelerometers
reported in [4]–[7] are micromachined; all work under the
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same principle illustrated in Fig. 1. In these accelerometers,
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Fig. 1. Working principle of existing compliant true triaxial accelerometers

the proof-mass center of gravity is lower than the beam
anchors. Therefore, any acceleration aX in the X-axis
direction results in a proof-mass angular displacement γX .
Conversely, accelerations aZ directed along the Z-axis
induce a proof-mass displacement δZ in the same direction.
The proof-mass displacements can be estimated by means
of piezoresistive sensors on the flexible beams or by means
of capacitance variations between the bottom surface of
the proof-mass and the handle wafer displayed in black
in Fig. 1. However, due to the unidirectional nature of
the etching processes used in micromachining, all of these
accelerometers have anisotropic mechanical structures,
which make them sensitive to parasitic angular acceleration
effects. These accelerometers may be labelled compliant
true triaxial accelerometers, as opposed to another type of
true triaxial accelerometers [8] in which the proof-mass is
levitated electrostatically. Since the electrostatic true triaxial
accelerometers are not in the same price range—nor in the
same energy consumption range—as the common compliant
accelerometers, their mode of operation will not be further
described in this paper.

What we propose is mechanisms with the architectures
of parallel-kinematics machines (PKMs), allowing the mea-
surement of one, two or three of the acceleration components
of one single point of a rigid body. The biaxial accelerom-
eter architecture is intended for microfabrication in single-
crystal silicon, whereas the uni- and triaxial accelerometer
architectures are intended for millimeter-scale fabrication in
polyurethane.

II. THE NOVEL ARCHITECTURES

In general, an accelerometer comprises a proof-mass M
and a suspension coupling the mass with the accelerometer
frame. The latter is rigidly mounted onto the moving body
whose position, velocity and acceleration are to be measured.

The novelty of the accelerometers introduced here lies
in their versatile architecture. Versatility means that, with
a common feature of their architecture, the accelerometers
allow for the measurement of one, two and three acceleration
components. The novel architecture can be termed simplectic
in that the suspension consists of n+ 1 legs, where n is the
number of acceleration components that the accelerometer
is capable of measuring. Here, we recall that a simplex, in
the realm of mathematical programming [9], is a polyhedron

with the minimum number of vertices embedded in R
n.

Therefore, in one-dimensional space, the simplex is a
line segment, its two “vertices” being its two end-points;
in two-dimensional space, the simplex is a triangle; in
three-dimensional space, a tetrahedron. While the shapes
of the triangle and the tetrahedron can, in principle, be
arbitrary, one common feature of our accelerometer class
is that the triangle is equilateral and the tetrahedron is
regular. The outcome is that the accelerometer is equally
sensitive in all directions of motion, which makes these
architectures isotropic. Here, we prefer to speak of isotropy
rather than symmetry, as the latter, including the former
as special instance, is more general. Indeed, in the case of
accelerometers, having an isotropic architecture implies that
the dynamic properties of the sensor are the same in all
directions. Moreover, the n + 1 legs provide redundancy
in the measurements, thereby providing robustness against
measurement errors. We describe below the three types of
accelerometers, for n = 1, 2 and 3, in this order.

The rationale behind the design principle used in all
three accelerometer types lies in the mobility analysis of
kinematic chains, as first proposed in [10] and then applied
systematically in [11] to the design of parallel manipulators.
Furthermore, the building block of the three accelerometer
types is the Π-joint1, as described in detail in [11], and
recalled presently in Section III. The Π-joint lends itself
to implementation using either MEMS technology or a
compliant mechanism, whereby the links and joints are all
fabricated of one single piece, as proposed in [13].

A. The 2ΠΠ Uniaxial Accelerometer Architecture

The one-dimensional accelerometer is intended to measure
the acceleration of a point constrained to move along a
line. This is achieved by means of a ΠΠ leg-architecture.
A Π joint is, essentially, a parallelogram linkage. In order to
obtain a one-dimensional design, we use two opposing ΠΠ
legs lying in perpendicular planes to sustain the proof-mass,
as shown in Fig. 2. This architecture allows only motion

M

(a)

M

(b)

Fig. 2. The uniaxial 2ΠΠ accelerometer: (a) top view; (b) front view.

along the line of intersection of the two planes containing

1Π stands for “Pi”-joint, as termed by Hervé [12].
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the Π joints, while providing a high stiffness in a plane
normal to this direction. For Earth-bound applications, the
accelerometer may be oriented so that each of the two
orthogonal planes containing the legs forms a 45◦ angle
with respect to the vertical, thereby eliminating virtually any
parasitical displacements produced by gravity.

B. The 3ΠΠ Biaxial Accelerometer Architecture

Other compliant planar parallel mechanisms have been
proposed in the past, among which we may cite the one
proposed by Yi et al. [14]. These researchers produced a
compliant version of the planar 3RRR parallel mechanism.
In our case, however, we are to achieve translations in the
plane only; hence, we start from a linkage which constrains
any proof mass rotation. By laying out the three ΠΠ legs
in a common plane at 120◦ from one another, that is,
along the three medians of an equilateral triangle, we obtain
the mechanism shown in Fig. 3. This mechanism allows
translation in the common plane, while providing a high
stiffness in a direction normal to the plane.

M

Fig. 3. The biaxial 3ΠΠ accelerometer

C. The 4RΠΠR Triaxial Accelerometer Architecture

Many a parallel-robot architecture is available to generate
pure translations of the moving platform with respect
to the base, e.g. [15] and [16]. We may also cite the
compliant parallel mechanism of [17], which allows for
pure translations of its moving platform in space. Our device
is based on a novel architecture made up of the “legs” of
the Japan Mechanical Engineering Laboratory (MEL) Micro
Finger [13].

The proposed architecture is shown in Fig. 4, with a
regular, heavy tetrahedron M playing the role of the moving
platform, used as the proof-mass of the accelerometer. The
four “legs” of the device are attached, at one end, to the
tetrahedron-shaped proof-mass M, at the other end to the
moving body on which the accelerometer is mounted. This
body is the accelerometer frame. Each leg is a RΠΠR
chain, where R stands for revolute, or pin joint. The RΠΠR
chain includes two revolute joints, one at each of its two

M

Fig. 4. The triaxial 4RΠΠR accelerometer

ends, coupling the leg to the tetrahedron and to the body2.
These two revolutes have their axes parallel to a line passing
through the vertex of each triangular face of the tetrahedron
and normal to the opposite edge. Moreover, the midplanes
of the two parallelogram linkages are coincident and contain
the two R-joint axes. We refer to the layout of Fig. 4 as the
4RΠΠR-mechanism, for it consists of four RΠΠR legs. To
ensure full mechanical isotropy3 , these legs are placed to
form a regular tetrahedron. Notice that the mechanism thus
resulting comprises 40 flexures distributed onto four legs,
whereas the architecture proposed in [17] was made up of
51 flexures in three legs.

III. THE COMPLIANT REALIZATIONS

The common compliant approximation of a revolute joint
is a straight flexible beam cast at both ends. If two such
beams are identical and connected to the same two rigid
bodies in such a way that their flexible directions given
by the (parallel) axes about which the rigid cross-sections
rotate are parallel, then the mechanism formed thereby can
be called a compliant Π joint, parallel-guiding mechanism
[18], or parallelogram. Indeed, the flexible mechanism has
the shape of a parallelogram, as can be seen from Fig. 5(a),
and allows only for translation in one direction. Arai et al.
proposed a slightly different version of the compliant Π-
joint—see Fig. 5(b)—which uses notched beams rather than
beams with constant cross-sections. The advantage of the
notched Π-joint is higher ratios between the stiffness in the
flexible direction and the stiffness in the other directions. The
main drawbacks, as pointed out in [19], are smaller beam
minimum thickness—thereby rendering machining costlier,
while giving rise to higher stress concentration, and leading
to limited range of motion.

A. Compliant Realization of the 1D-2ΠΠ Architecture

Upon assembling two notched Π joints in series and in
the same plane, we obtain a compliant version of the legs

2In the sequel, the R joints of the RΠΠR chain are not to be confused
with those of the parallelograms. We need not refer to the latter as stand-
alone joints in this paper

3By this term we mean isotropy under kinetostatic, elastostatic, and
elastodynamic conditions
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(a) (b)

Fig. 5. Compliant realization of the Π-joint (a) with a pair of constant
cross-section beams; and (b) with four notched beams

of the 1D-2ΠΠ architecture. We oppose two of these legs to
suspend the proof-mass, while orienting them so that their
respective planes of motion are orthogonal. The result, as
shown in Fig. 6, is a mechanism which is highly stiff in
the plane normal to the sensitive axis, and compliant in the
direction of that axis.

Fig. 6. CAD model of a compliant realization of the 1D-2ΠΠ mechanism

B. Compliant Realization of the 2D-3ΠΠ Architecture

Because of its planar nature, the 2D-3ΠΠ architecture
can be realized by means of microfabrication techniques.
Here, the type of Π joint could be any of the two proposed
in Fig. 5. However, in order to minimize the cross-axis
sensitivity, we must keep the out-of-plane thickness as high
as possible. There are not many ways, in micromachining,
to achieve high thickness-to-width ratios, that is, etch
deeper than wide in the substrate. Deep Reactive Ion
Etching (DRIE) is probably the most reliable technique,
as it allows for trenches of a few microns wide by several
hundred microns deep. As a general rule, the etch depth
is increased at the expense of the in-plane accuracy,
and, for that reason, it is preferable to keep the flexible
beams as thick as possible. This leads to the use of constant
cross-section beams in the Π joints instead of notched beams.

A CAD model of the corresponding compliant realization
of the 2D-3ΠΠ architecture is shown in Fig. 7, a prototype of
which is under fabrication at the McGill Nanotools Facility.
One may notice that the first Π joint of each leg, that is, the
Π joint attached to the accelerometer frame, was mirrored
in order to achieve symmetry in each leg. Also, the proof-
mass displacements are sensed by measuring the capacitance
variations between the electrodes and the proof-mass.

Nevertheless, the proposed architecture lends itself to
other types of displacement-measurement techniques, such
as piezoresistive and piezoelectric sensing. In those cases,
the sensors have to be installed on some of the flexible
elements of the mechanism in order to track their angular

0.3 mm

10 mm

proof-mass

electrodes

stopper

flexible beams

Fig. 7. CAD model of a micromachined compliant realization of the 2D-
3ΠΠ mechanism

displacements, and, through a direct kinematics solution, the
motion of the proof-mass. An important advantage of the
2D-3ΠΠ architecture is that this problem is linear, provided
that the lengths of the intermediate links of the Π joints
attached to the proof-mass are known.

To substantiate the above claim, let us label each leg
with the subscripts J = I, II, III , and sketch the J th

leg in an arbitrary posture, as in Fig. 8. Here, we want to

rJ
p

pJ
bJ

sJ

aJ

OJ
O

PJφJ

ψJ
P

Fig. 8. The J th leg of the 2D-3ΠΠ mechanism

solve for the position vector p of point P . It is assumed
that the angles φJ are measured, whereas angles ψJ are
not. Notice that this problem is planar, which allows us
to work with two-dimensional vectors. Therefore, we have
rJ ,aJ , sJ ,bJ ,pJ ,p ∈ R

2. Here, points O and OJ are
attached to the moving body, and hence, vector rJ has
constant components in a frame fixed to the body. As Π
joints allow only for translation of the link opposed to the
fixed link, vectors sJ and pJ are constant in the frame of the
moving body. The position vector p of point P , the centroid
of the moving platform, can thus be written as

p = rJ + aJ + sJ + bJ + pJ . (1)

We assume that all the legs have the same dimensions and
that these dimensions are all known. Therefore, rJ , sJ and
pJ are known, while aJ can be computed from its magnitude
a ≡ ‖aJ‖2, where ‖ · ‖2 denotes the Euclidean norm of (·),
and the measured angle φJ . We let cJ be the sum of all the
foregoing vectors, namely,

cJ ≡ rJ + aJ + sJ + pJ . (2)
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Hence, upon substituting eq. (2) into eq. (1), we obtain

bJ = p − cJ . (3)

We now take the square of the Euclidean norm on both sides
of eq. (3), which gives

b2 =
(
pT − cT

J

)
(p − cJ) , J = I, II, III, (4)

where b ≡ ‖bJ‖2 is known and constant, besides being
identical for all three legs. From eq. (4), it is now apparent
that the problem consists in finding the intersection point of
three circles of radii b and centered at cJ , J = I, II, III .
To do this, we rewrite eq. (4) as

b2 − pT p = −2cT
J p + c2J , J = I, II, III, (5)

where cJ ≡ ‖cJ‖2. Then, we cancel the quadratic term pT p
by subtracting eq. (5) with J = III from eq. (5) with J =
II . Similarly, we subtract I from III and II from I , which
leaves us with the system of three linear equations in two
unknowns

Np = m, (6)

where

N ≡


cT

II − cT
III

cT
III − cT

I

cT
I − cT

II


 and m ≡ 1

2



c2II − c2III

c2III − c2I
c2I − c2II


 .

The 3 × 2 matrix N bears full rank if and only if
points CI , CII and CIII , with position vectors cI , cII

and cIII , respectively, are non-collinear. As stated before,
these points are always so in the 2D-3ΠΠ mechanism;
therefore, the least-square solution of the foregoing system
can be computed directly from the left Moore-Penrose
generalized inverse of N. Moreover, in the case where
points CI , CII and CIII are the vertices of an equilateral
triangle—which takes place at the equilibrium posture of the
mechanism— matrix N becomes isotropic. An outcome of
this is that the foregoing generalized inverse is proportional
to NT the proportionality factor being the square of the
double nonsingular value of N. Hence, solving for p
reduces to the multiplication of a 3 × 2 matrix by a 2-
dimensional vector, which involves a rather limited roundoff
error. In general, as the mechanism is to remain close
to the equilibrium position, N remains well conditioned,
and solving for p using this method will give reliable results.

C. Compliant Realization of the 3D-4RΠΠR Architecture

The legs of the 3D-4RΠΠR mechanism are obtained
by appending flexible revolutes at both tips of the legs
used in Fig. 6. The axes of these revolutes lie in the plane
of the ΠΠ chain. Four of these RΠΠR legs are used to
connect the regular-tetrahedron-shaped proof-mass to its
frame. Each leg is oriented so that its plane contains one
edge of the regular tetrahedron and is perpendicular to the
opposing edge. The compliant realization thus resulting is
shown in Fig. 9, whence it is apparent that the mechanism

is compliant to any proof-mass translation in space, while
being highly stiff to any rotation of the proof-mass with
respect to the accelerometer frame.

Fig. 9. CAD model of the compliant realization of the 3D-4ΠΠ mechanism

Only millimeter-scale models are contemplated for
the fabrication of such a mechanism. Indeed, the
complicated geometry makes it difficult—if at all possible—
to manufacture using existing microfabrication techniques.
Hence, for a first prototype, separate machining of the legs
and the proof-mass is contemplated. The materials suitable
for fabrication are polyurethane, PVC, aluminum and steel.
The final selection will depend upon the targeted bandwidth
of the accelerometer, its size, and the minimum possible
thickness in the flexible beams allowed by the fabrication
process.

Also, as it may be difficult or expensive to embed
electrodes in this complicated geometry, the contemplated
displacement-sensing principles contemplated will rely on
piezoresistivity or piezoelectricity. Again, this requires the
solution of the direct kinematics problem, which turns out
to be nothing but finding the common intersection point of
four planes. This problem turns out to be, again, linear. To
show this, we label each leg of the three-dimensional 3D-
4RΠΠR mechanism with the subscripts J = I , II , III , IV .
Shown in Fig. 10 is a schematic of the simplified kinematic
chain of the J th leg. It is assumed that all flexible joints
behave like revolutes, which is a good approximation for
small displacements of the proof-mass M. We are to find
the position vector p of point P of the moving platform M
from the four measured angles φJ , J = I, II, III, IV . The
positions of points OJ with respect to point O are known
and constant in a body-frame, and so are the positions of
points PJ with respect to point P . Apparently, p can be
expressed in terms of all other vectors associated with the
J th leg, namely, as

p = rJ + aJ + bJ (7)

Also, with angle φJ , it is a simple matter to compute nJ ,
the unit vector normal to the mid plane of the two Π joints.
Since aJ lies in this plane, it is bound to be orthogonal to
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Fig. 10. The J th leg of the 3D-4RΠΠR mechanism

nJ . Hence, we can eliminate aJ from eq. (7) by multiplying
each side by nT

J from the left:

nT
J p = nT

J (rJ + bJ ) (8)

Writing eq. (8) for all four legs, we obtain a formally
overdetermined system of four linear equations in three
unknowns, the components of p:

Np = m, (9)

where

N ≡




nT
I

nT
II

nT
III

nT
IV


 , and m ≡




nT
I (rI + bI)

nT
II(rII + bII)

nT
III(rIII + bIII)
nT

IV (rIV + bIV )


 .

Provided that vectors nJ , J = I, II, III, IV are not copla-
nar, which they are not because of the geometry of the regular
tetrahedron, we can find the least-square solution robustly,
using an orthogonalization procedure, such as Householder
reflections [20].

IV. CONCLUSIONS

A new class of mechanical architectures for multi-axial
accelerometers was proposed in order to achieve better
cross-axis sensitivity of the sensors. We call these new
architectures simplectic because they all use one more leg
than required by the number of components of the point-
acceleration they are meant to measure. Hence, the idea
behind these architectures is to arrange the legs normally
to each face of the simplex corresponding to the dimension
of the space of motions generated by the mechanism. The
legs are to have just enough mobility to allow the mechanism
to span that space, which is achieved by means of compliant
revolutes and Π joints. It is shown that the direct kinematics
problems associated with the architectures proposed for
measuring two and three components of point-acceleration
are linear. This simplifies the proof-mass displacements
estimation from deflection measurements taken at the rev-
olute joints connecting the mechanism to the accelerometer
frame. Indeed, the kinematics problems being linear obviates
resorting to any linearization, thereby easing the real-time
computations.
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