
 

 

 

  

Abstract — Parallel manipulators might be severely damaged 

while crossing parallel singularities, because the actuator forces 

required to keep the platform on a given trajectory might 

approach infinity. It is thus important to know whether a 

desired pose of the platform in the workspace can be reached 

through a singularity-free path or not, and, in the first case, 

which path should be followed. This paper presents a new 

numerical procedure for 3UPU and 3UPS spherical wrists, 

which is able to count and identify the disjoint regions into 

which the workspace is partitioned by the singularity surface 

and to assess to which region any two points of the workspace 

belong. If the two points belong to the same region, a 

singularity-free path connecting them is found. 

I. INTRODUCTION 

T IS well known that singularities of parallel manipulators 

can be classified into three types [1]. Type 1 singularities 

occur when the Jacobian matrix which multiplies the 

derivatives of the jointspace variables is singular. Type 1 

singularities are also named serial singularities, because 

serial manipulators exhibit this type of singularities, too. 

Type 2 singularities occur when the Jacobian matrix which 

multiplies the velocity vector of the platform is singular,  

while type 3 singularities occur when both the afore 

mentioned conditions are satisfied. In this paper, type 2 and 

3 singularities will be named parallel singularities, because 

only parallel manipulators posses these types of singularities. 

Parallel singularities are the most dangerous ones, for the 

platform gains additional local degrees of freedom which 

cannot be statically controlled by the actuators, unless 

exerting unfeasibly large forces. The easiest way to tackle 

the problem of parallel singularities is to reduce the 

workspace of the parallel manipulator, so that no parallel 

singularity lies inside the workspace. However, this solution 

is also the most burdensome one, because it decreases the 

reachable space of the machine. An alternative way to 

remove singularities from the workspace is to add redundant 

actuators to the manipulator ([2],[3]), but this means to 

increase the complexity of the machine, which might be 

undesired. 

If none of the two previous solutions is viable and the 

workspace contains parallel singularities, there are only two 

possibilities left. The former is to try to control the 

manipulator as it meets a singularity, by taking into account 
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the dynamics of the manipulator (as in [4]-[6]). The latter is 

to plan a singularity-free path in the workspace ([7]-[10]), 

given the two ends of the path. Unfortunately, to the author 

knowledge, the path-planning strategies available so far in 

the literature are mainly local, which means that if they fail 

to find a singularity-free path it is not always sure that a 

singularity free path does not exist at all. 

Obviously, the problem of singularity-free path-planning 

is strictly connected to the problem of identifying and 

characterizing the different disjoint regions into which the 

workspace is split by the singularity locus. These regions 

were named aspects and rigorously defined in [11].  

The aim of this paper is to propose a global numerical 

method to avoid singularities of 3UPS and 3UPU parallel 

spherical wrists (Fig. 1). This method is based on Morse 

theory, and is able to identify the aspects of the workspace 

through the critical points of the determinant of the  Jacobian 

matrix, which is a function of the orientations of the platform 

whose zero level-set defines the singularity locus. Once the 

different aspects are counted and identified, the proposed 

method is able to detect if any two orientations belong to the 

same aspect or not, and, in the first case, it is able to find a 

singularity-free path connecting them.  

II. MORSE THEORY 

 Morse theory is an important branch of differential 

topology. Its aim is to establish the topological properties of 

a compact manifold through the critical points of a regular 

function defined on it. In this section, the main definitions 

and results used in the rest of the paper will be briefly 

recalled. Further details may be found in [12]. 

Let M be a smooth n-dimensional compact manifold and 

f  be a differentiable, real valued function on M. In the 

neighbourhood of any point P of M it is possible to define a 

local system of coordinates (x1, ... ,xn). With reference to 
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these coordinates, the gradient of  f at P is defined as 
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The points of M where 0f∇ =  are named critical points of 

f. The property of being critical does not depend on the local 

coordinate system chosen to calculate the gradient. 

The Hessian matrix of f is defined at a point P of M as 
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A critical point C of f is said to be nondegenerate if 
f C

H is 

nonsingular. The index λ of a nondegenerate critical point is 

defined as the number of negative eigenvalues of the Hessian 

matrix 
f C

H . Neither the property of being nondegenerate 

nor the index depend on the local coordinate system chosen 

to compute
f C

H .   

For each real value a, let Ma
+  

be 
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the sub-manifold of M where the function f is greater than a. 

The following two relevant results can be stated: 

Theorem 1: Let a<b and suppose that the set 1[ , ]f a b− , 

consisting of all points P M∈ with ( )a f P b≤ ≤ , contains 

no critical points of f. Then Ma
+  

is diffeomorphic to Mb
+
. 

Theorem 2: Let c be a real value in the image of f. Suppose 

that 1( )f c− contains a nondegenerate critical point of f. 

Then, for all sufficiently small ε>0, Mc-ε
+ 

is homotopic to  

Mc+ε
+  

with a k-cell attached. If λ is the index of the critical 

point and n the dimension of M, then k equals n−λ. 

Rigorous definitions of diffeomorphism and homotopy 

can be found in [13] and [14]. Roughly speaking, if two 

topological spaces are diffeomorphic one can be obtained 

from the other through operations like stretching and 

bending, but no cutting or gluing is allowed. Homotopy is 

less restrictive: a topological space can be contracted until its 

dimension decreases (a ball can be contracted to a point), but 

still no cutting or gluing is allowed. Connectedness is 

conserved by homotopy and diffeomorphism: if two sets are 

diffeomorphic or homotopic they must be composed of the 

same number of disjoint regions. The disjoint regions will be 

henceforth named aspects, analogously to the disjoint 

regions composing the workspace of a parallel manipulator, 

as defined in [11].  Theorems 1 and 2 can be thus specialized 

in these two corollaries: 

Corollary 1: Let a<b and suppose that the set 1[ , ]f a b− , 

consisting of all P M∈ with ( )a f P b≤ ≤ , contains no 

critical points of f. Then the number of aspects composing 

Ma
+  

equals the number of  aspects composing Mb
+
. 

Corollary 2: Let c be a real value in the image of f. Suppose 

that 1( )f c− contains one nondegenerate critical point of f. 

Then, for all sufficiently small ε>0, Mc-ε
+ 

is composed of the 

same number of aspects as a topological space obtained by 

attaching a k-cell to Mc+ε
+
. If λ is the index of the critical 

point and n the dimension of M, then k equals n−λ. 

Corollaries 1 and 2 are useful to understand how the 

number of aspects which Ma
+  

is composed of varies as the 

real value a decreases. As long as the critical points of f 

contained in Ma
+  

remain the same, the number of aspects is 

constant, by virtue of Corollary 1.  As soon as a new critical 

point is included in Ma
+
, the number of aspects composing it 

may vary. By virtue of corollary 2 this variation is the same 

as the one obtained by attaching a k-cell to Ma
+
. To 

understand how these results can be used, it is necessary to 

recall how a k-cell is defined, and what happens when it is 

attached to a topological space.  

A k-cell is the k-dimensional ball of radius 1: it contains 

all the points X of the k-dimensional Euclidean space 

satisfying X 1≤ . To attach a k-cell to a topological space Y 

the following operations are required [12]. The topological 

sum (disjoint union) of the k-cell and Y is considered, and a 

continuous function g from the boundary of the k-cell to Y is 

defined. Then each point of the boundary of the cell is 

identified with its image through g in Y. Fig. 2 shows an 

example: a 1-cell is attached to the space Y, which consists of 

two aspects. The 1-cell is glued at its boundary to Y. After 

attaching the cell, the number of aspects of  Y changes: it 

consists of one aspect only. 

It is useful to investigate the change of the number of 

aspects due to the attachment of cells. If a 0-cell is attached 

to a topological space Y, a new aspect is added to it. The 0-

cell has indeed no boundary, thus no gluing to the aspects of 

Y is possible. No other cell is able to add a new aspect, 

because any k-cell with k greater than zero has a boundary 

and there exists a continuous path through the glued points 

connecting each point of the cell to an aspect of  Y.  

Suppose now that the number of aspects decreases after 

attaching the cell. If so, after the attachment of the k-cell, 

there exists a continuous path going from a point of an aspect 

of  Y to a point belonging to another (see Fig. 2). This path 

must start from the first point, enter the cell somewhere 

inside the first aspect through the image of g, exit the cell 

inside the second aspect through the image of g and reach the 

second point. Thus the image of g must contain at least two 

points belonging to two different disjoint aspects, i.e. be 

disconnected. But the gluing function g is required to be 

continuous, thus, if its domain is connected, its image must 

also be connected. Any k-cell with k greater than 1 has a 

connected boundary, therefore the image of g must be 

connected and the number of aspects cannot decrease. If a 1-

cell is attached, the number of aspects may decrease (as in 

Fig. 2) or may not (imagine the cell were attached as a 

“handle” to the first aspect only). In any case, since the 

boundary of the 1-cell contains two points only, at most two 

aspects can be joined together. These considerations lead to 

the following results: 

Corollary 3: The number of aspects composing a topological 

space increases when a k-cell is attached to it if and only if k 

equals 0. In this case only one aspect is added. 
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Corollary 4: If the number of aspects composing a 

topological space decreases when a k-cell is attached to it, 

then k equals 1. If a 1-cell is attached to a topological space, 

the number of aspects composing it may remain the same or 

be diminished by one. 

Finally, note that corollaries 1 and 2 can be analogously 

formulated for the set Ma
-
, containing all the points of M 

where f a≤  (see [12]). 

III. APPLICATION TO SPHERICAL WRISTS 

A. The 3UPS parallel spherical wrist 

The 3UPS spherical wrist (Fig. 1a) was first studied in 

[15], where the direct kinematics was solved. This wrist 

consists of a platform connected to the base through a 

spherical joint, which ensures the spherical motion, and three 

legs composed of a universal joint, an actuated prismatic 

joint, and a spherical joint. Each wrist can be defined 

through the coordinates pi of the centers of the universal 

joints Pi in a fixed frame S and the coordinates qi of the 

centers of the spherical joints Qi in a moving frame S’ 

attached to the platform. By applying Carnot theorem to the 

three triangles PiOQi, the closure equations are: 
 
 

             22 ( 1,..,3)T T T
i i i i i i il i+ − = =p p q q p Rq  ,      (4) 

 

 

where R is the rotation matrix for coordinate change between 

the frames S and S’, and li are the lengths of the legs. The 

elements of R can be expressed as homogeneous quadratic 

functions of the four Euler parameters e1, e2, e3, and e4. 

Therefore (4) can be written as 
 

                       ( ) ( )= +F e G l k ,           (5) 
 

where F is a homogeneous quadratic vector function of the 

Euler parameters, G is a vector function whose i-th 

component is equal to li
2
, and k is a constant vector. 

The Euler parameters themselves are linked through the 

quadratic equation: 
 

                             ( ) 1TH = =e e e  .                                (6) 
 

By differentiating (5) and (6), the ensuing infinitesimal 

relationship between the variations of the Euler parameters 

and those of the lengths of the legs is obtained: 
 

          d d d d 0
T T T T
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e
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Parallel singularities occur when nonzero infinitesimal 

variations of the orientation of the platform is allowed, even 

though the actuators are locked, i.e. dl equals zero. This 

implies that the determinant of the matrix A in (7) must 

vanish at parallel singularities. The first three rows of A are 

the derivatives of F with respect to the Euler parameters, 

whereas the fourth row is the derivative of H, thus all the 

elements of A are of degree 1 in the Euler parameters, for 

both H and F are of degree 2. Moreover, A does not depend 

on the jointspace variables l. The determinant of A, which 

will be denoted as J, is a fourth order homogeneous function 

of the Euler parameters, for a given wrist. The parallel 

singularity surface is therefore defined by the equation 
 
 

                              0J = , (8) 
 

which partitions the workspace into different aspects. If the 

sign of J is different at two different orientations, then they 

obviously belong to two different aspects and there exists no 

singularity-free path connecting them. However, if the sign 

of J is the same, the two orientations might belong or not to 

the same aspect, and it is not known a priori whether a 

singularity-free path exists or not. 

B. The 3UPU  parallel spherical wrist 

The 3UPU wrist (Fig. 1b) consists of a platform connected 

to the base through three legs composed of two universal 

joints and one actuated prismatic joint. The two universal 

joints are such that the axes of the revolute joints attached to 

the platform and to the base converge in the center of 

spherical motion. Furthermore, the axes of the two remaining 

revolute joints of each leg are parallel. 

This wrist was first proposed in [16], where it was proven 

that it is able to perform local spherical motions. It was 

proven in [17] and [18]  that this wrist is capable of finite 

spherical motions and it was discovered that the singular 

orientations of the 3UPU wrist coincide with those of the 

3UPS wrist, but  the platform of the 3UPU wrist also gains a 

local translational degree of freedom, in addition to the local 

rotation which is gained by the 3UPS wrist. 

The singularity equation of the 3UPU spherical wrist was 

derived in [18] through geometrical methods, obtaining a 

fourth order equation in the Rodrigues parameters, which is 

an equivalent form of the afore mentioned fourth order 

equation in the Euler parameters (8). 

C. Aspect identification and path-planning 

By using the notation of section II, there is a compact 

manifold M, the workspace of the wrist containing all 

rotations of the platform, upon which a differentiable 

function J is defined. The aim of this section is to determine 

how many aspects where J is positive exist, i.e. how many 

aspects compose M0
+
 according to definition (3).  

The evolution of the set Ma
+
 is studied as the level a 

decreases, starting from a level above the absolute 

maximum, down to zero level. In order to visualize this 

process, pretend that the manifold M were two-dimensional, 

and that the graph of J could be plotted as a three-

dimensional landscape on M (Fig. 3). This fictitious lower-

dimensional representation is only adopted for visualizing 

 
Fig. 2 :Attaching a 1-cell to a topological space Y. 
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the real process, which occurs on a four-dimensional 

landscape plotted on the three-dimensional manifold M. 

Imagine now that the landscape is completely flooded with 

water. Now let the water level a decrease: as the water level 

reaches the height of the highest peak, M1, an island crops 

out from the water. The set Ma
+
 is the section obtained by 

cutting the landscape with a plane at height a. As soon as a 

critical point of J is met, the number of aspects composing 

Ma
+
 varies. Before meeting the absolute maximum M1, Ma

+
  

was empty: it contained zero aspects. After meeting the 

absolute maximum, the number of aspects composing it 

changes as if a k-cell were attached to it. The maximum is a 

critical point of index 3 and the dimension of the manifold M 

is also 3, thus, k equals 0 (corollary 2). For corollary 3, if a 

0-cell is attached to the set one aspect is added, thus, after 

passing the maximum the number of aspects is 1.  

The level of water a keeps on decreasing: as long as it 

remains between m1 and m2, the heights of the two maxima 

of Fig. 3, the number of aspects remains equal to 1, by virtue 

of corollary 1. There exists only one island above the water. 

As soon as the maximum M2 is reached, another island 

appears and a new aspect of  Ma
+
 is generated. Passing the 

level m2 the number of aspects changes as if another 0-cell 

were attached to Ma
+
, for corollary 3 the number of aspects 

now equals 2. The number of aspects remains equal to 2 until 

the saddle point S is reached. Consider a point P of Ma
+
, with 

a contained in the open interval (s, m2). It is possible to 

establish whether P belongs to the aspect generated by M1 or 

to the aspect generated by M2. The steepest ascent path 

starting from P must reach one of the two maxima M1 or M2: 

P belongs to the aspect generated by the maximum point 

reached. Thus, the maxima work as “labels” for the aspects: 

each aspect is identified by the maximum contained in it. 

As the level a reaches the height of the saddle point S, 

another change of the number of aspects of Ma
+
 is expected. 

Suppose that S is a 2-saddle, i.e. the Hessian matrix has two 

negative eigenvalues and the index of S is equal to 2, thus 

the number of aspects composing Ma
+
 changes as if a 1-cell 

were attached to it. For corollary 4 the number of aspects 

may be diminished by one or remain constant.  

To decide whether or not the number of aspects has 

decreased, it is necessary to find out to which one of the 

existing aspects the saddle point belongs. The method to 

reach this goal is identical to that proposed for a noncritical 

point: the steepest ascent path is followed starting from the 

saddle, until a maximum is reached. There are two different 

steepest ascent paths starting from a 2-saddle point: they 

leave the saddle along the direction of the positive 

eigenvalue of the Hessian matrix. If the steepest ascent paths 

reach the same maximum, then an aspect is joining with 

itself, and the number of aspects remains constant. If the 

steepest ascent paths reach two different maxima, the aspects 

generated by the two maxima join together (Fig. 3). To 

identify the aspect generated by the joining, the critical 

points inside it (in Fig. 3, the two maxima and the 2-saddle) 

can be used: the steepest ascent path starting from any point 

inside the new aspect will lead to one of  its critical points. 

The procedure is henceforth analogous. Each maximum 

generates a new aspect, and each 2-saddle may connect two 

existing aspects. Following the two steepest ascent paths as 

for the first 2-saddle, two critical points are reached: if they 

belong to two different aspects, such  aspects have joined 

together. If the critical points reached belong to the same 

aspect, the number of aspects remains constant.  

As the level a reaches the value 0, the number of aspects 

that compose M0
+ 

is determined. Each of these aspects is 

provided with a set of critical points which completely 

characterizes it. Furthermore, all critical points of an aspect 

are connected through a network of singularity-free steepest 

ascent paths. Given any two points of the workspace (like P1 

and P2 in Fig. 3), it can be assessed whether or not they 

belong to the same aspect: if the steepest ascent paths 

starting from the two given points reach two maxima 

belonging to the same aspect, the two points belong to the 

same aspect too, otherwise not. If they do, a possible 

singularity-free path is obtained by joining the steepest 

ascent paths connecting the two points to the maxima and 

any path in the singularity-free network connecting the 

critical points of the aspect. 

Note that the singular critical points must not be 

considered: if the singular critical point is a maximum, an 

isolated singular point appears in the workspace, if it is a 2-

saddle two aspects “touch” on the boundary, but no 

connection is established between them.  

The positive minima and the positive 1-saddles are 

ignored too. In these two cases, the index λ is lesser than 2, 

and therefore only k-cells with  k greater than 1 are attached 

to Ma
+
. Corollaries 3 and 4 ensure that the number of aspects 

composing Ma
+
 can neither increase nor decrease: the 

topology of the set Ma
+
 changes, because holes will appear 

or disappear, but the number of aspects remains constant.  

If a degenerate critical point is met, it is not possible to 

know whether the number of aspects composing Ma
+
 is 

changing by means of the Hessian matrix only. Higher 

derivatives have to be considered: the point might be a 

maximum, thus a new aspect is born. Or it might be neither a 

maximum nor a minimum and two or more aspects could 

join together (see for example the “monkey-saddle” in [12]). 

An analogous method can be used to count and identify 

the number of aspects composing M0
-
, thus, at the end of this 

procedure, it is possible to establish to which aspect any 

nonsingular point belongs. Summarizing the procedure, the 

following operations have to be performed: 

1. All the critical points of J are determined. This step will 

be better detailed in the next section. 

2. Each critical point is identified as a saddle, a maximum, a 

 
Fig. 3 Process of generation and joining of aspects. 
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minimum or a degenerate critical point. By computing 

the value of J at each critical point, it is established which 

critical points are contained in M0
+
, which ones in M0

-
 

and which ones are singular. If any nonsingular 

degenerate critical point is found, it is impossible to 

proceed, because higher derivatives would be required. 

3. Starting from each 2-saddle, the two steepest ascent paths 

are followed, until they reach any of the maxima higher 

than the 2-saddle. The 2-saddle and all the critical points 

belonging to the same aspects as the reached maxima are 

assigned to the same aspect.  

4. Operation 3  is repeated, suitably modified, for the 

critical points of M0
-
. 

This procedure requires the gradient and the Hessian 

matrix of J on the manifold M. Suppose that the i-th Euler 

parameter ei is not equal to zero. The remaining three Euler 

parameters represent a local coordinate system for the 

manifold of rotations M, and ei can be locally expressed as a 

function of the three remaining Euler parameters. Therefore, 

by virtue of the implicit function theorem, the gradient and 

the Hessian matrix of J in the local coordinates can be 

obtained by applying usual derivation chain rule. The 

steepest ascent path can be found iteratively: the next point is 

found by adding small increments to the three Euler 

parameters of the previous different from the i-th in the 

direction of the gradient, whereas the i-th Euler parameter is 

determined through (6). 

IV. DETERMINATION OF ALL CRITICAL POINTS 

The determination of all critical points of J is the toughest 

step of this procedure, but it has to be solved only once for a 

given manipulator. By using Lagrange multiplier method, the 

critical points of the function J constrained by (6) satisfy the 

four equations: 
 

              ( )0 1,..., 4i i

i

J
T e i

e

∂
= − = =

∂
λ . (9) 

Lagrange multiplier λ can be eliminated by considering the 

ensuing equation-set: 
 

                         

1 4 4 1

2 4 4 2

3 1 1 3

0

0

0

T e T e

T e T e

T e T e

− =


− =


− =

, (10) 

which is a set of three homogeneous equations of the fourth 

order in four variables. Each solution of (10) in the 

projective space, when normalized through (6), is a critical 

point of J, except some extraneous solutions, which have 

been added while passing from (9) to (10).  

The solutions of  (10) can be found by posing e4 equal to 

1, and then by partial homogenization: e1 and e2 are 

substituted with the ratio of two homogeneous variables, x1/ 

x0 and x2/ x0 and the denominators are all simplified. Now 

(10) has become a homogeneous equation set of the fourth 

order in the three homogeneous variable xi, whereas the 

variable e3 is hidden in the coefficients. The resultant 

polynomial in e3 of these three homogeneous equations is 

then found through the classical Sylvester’s elimination 

method, which is thoroughly described in [19].  

The resultant polynomial is expected to be a polynomial of 

degree 64, because, by virtue of Bezout’s theorem, (10) must 

admit 4
3
 solutions in the projective space. However, by 

having posed e4 equal to 1, the solutions of (10) for which e4 

is equal to 0 have become solutions at infinity, and therefore 

the degree of the resultant might be lesser than 64. In 

particular, there are always at least 12 extraneous solutions at 

infinity, therefore the degree of the resultant polynomial is at 

most 52. In fact, if e4 is posed equal to 0 in (10), the ensuing 

homogeneous system is obtained:  
 

                            
4

3 1 1 3

0

0

T

T e T e

=


− =

, (11) 

 

whose solutions are not solutions of (10). The former 

equation of (11) is of degree 3, while the latter of degree 4, 

thus there are exactly 12 extraneous solutions at infinity to 

the resultant polynomial. 

By posing e1 equal to 0, an equation-set analogous to (11) 

is obtained, therefore there are 12 other extraneous solutions 

which are not in general solutions at infinity of the resultant 

polynomial. However, these 12 extraneous solutions can be 

easily got rid of, by simply dividing the resultant polynomial 

of (10) by the resultant polynomial of the analogous of  (11). 

Eventually, a 40-degree resultant polynomial is obtained, 

thus there can be at most 40 critical points of  J on M, which 

can be easily determined numerically with any accuracy. 

V. NUMERICAL EXAMPLE 

The six vectors reported in Table I define the spherical 

wrist for this numerical example, according to the definitions 

reported in section III.A.  

Through the elimination method of section IV, 32 critical 

points are determined, among which there are 4 positive 

maxima, 2 positive 2-saddles,  4 negative minima, 12  

negative 1-saddles, and 10 singular 2-saddles.  

The identification process for the positive aspects is 

illustrated in Fig. 4. The transparent ball of radius equal to π 

represents the manifold of all possible orientations of the 

platform. Each point of the ball identifies a possible rotation 

of the platform: the axis of the rotation is directed as the 

vector connecting the point to the center of the sphere, whilst 

the amplitude of the rotation is equal to the distance of the 

point from the center of the sphere. Each point inside the ball 

univocally identifies one orientation of the platform, whereas 

two diametrically opposed points of the boundary of the 

sphere represent indeed the same orientation of the platform.  

TABLE I 

NUMERICAL EXAMPLE 

p1 p2 p3 q1 q2 q3 

(1,0,0) (0,1,0) (0,1,1) (-9,2,6)/11 (6,6,7)/11 (-1,1,0) 
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With this parameterization of orientation, the coordinates 

of the four positive maxima M1, M2, M3, and M4 (grey 

cones) are reported in Fig. 4.  The two positive 2-saddles S1, 

and S2 are represented as black spheres, and their 

coordinates inside the ball are reported in Fig. 4 too.  

The steepest ascent paths starting from S1 and S2 (thick 

lines) connect the maximum M1 to M2, and the maximum M3 

to M4, respectively. Therefore there are two positive aspects: 

the former contains the critical points M1, M2, and S1, 

whereas the latter contains M3, M4, and S2.  

Given three generic points P1, P2, and P3 where the 

function J is positive, represented as white spheres in Fig. 4, 

it can be assessed to which one of the two positive aspects 

they do belong by following the steepest ascent paths (thin 

lines). The steepest ascent paths starting from P1, P2, and P3 

reach the maxima M1, M2, and M3, respectively. Therefore 

P1 and P2 belong to the same aspect, and the path P1−M1−S1− 

M2−P2 connecting P1 to P2 is singularity-free. The steepest 

ascent path starting from P3 reaches M3, which belongs to a 

different aspect, therefore there exists no singularity-free 

path at all to reach  P1 or P2 starting from P3. 

The movie attached to this paper shows the evolution of 

the level-set of the function J (red surface) as the level 

decreases. The four aspects borne at the four maxima join in 

pairs at the level of the two saddles, leaving two aspects 

only. At the zero level the singularity surface is obtained, and 

it is possible to verify that P1 and P2  (blue and green 

spheres) belong to the same aspect and that the proposed 

path is indeed singularity-free.  

VI. CONCLUSION 

This paper has presented a numerical procedure capable of 

identifying the aspects and of finding a singularity-free path 

connecting any two points of the workspace. This task can be 

performed for all 3UPS and 3UPU spherical wrists, which do 

not posses degenerate  nonsingular critical points of the 

Jacobian determinant. Manipulators with degenerate  

nonsingular critical points are anyway very rare and it is very 

difficult to find them in practice. 

Possible developments of this research might be to avoid 

also the collisions between the links while planning the 

singularity-free paths. The described method is directly 

applicable to all wrists whose direct kinematics equations 

have the same structure as (4), and to any other mechanism, 

provided that all the critical points of the Jacobian 

determinant on the configuration space can be determined. 
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M3≡≡≡≡(1.36,1.74,-1.30) 

M4≡≡≡≡(0.69,0.22,0.91) 

M1≡≡≡≡(-2.19,1.13,-0.27) 

S1 

≡≡≡≡(-1.69,-0.08,-1.14) S2≡≡≡≡(1.16,1.06,-0.08) 

M2 

≡≡≡≡ (-0.69,-1.17,-1.57) 

P2≡≡≡≡ 

(-0.50,-0.75,-1.90) 

P1≡≡≡≡ 

(-1.85,0.78,-1.55) 

P3≡≡≡≡(0.30,1.14,-2.47) 

 Fig. 4 : Singularity-free paths. 
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