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Abstract— This paper presents a probabilistic framework to
perform scan matching localization using standard time-of-
flight ultrasonic sensors. Probabilistic models of the sensors as
well as techniques to propagate the errors through the models
are also presented and discussed. A method to estimate the
most probable trajectory followed by the robot according to
the scan matching and odometry estimations is also presented.
Thanks to that, accurate robot localization can be performed
without the need of geometric constraints. The experiments
demonstrate the robustness of our method even in the presence
of large amounts of noisy readings and odometric errors.

I. INTRODUCTION

A crucial issue for a mobile robot to execute useful long-
term missions is to determine and keep track of its position.
Localization usually consists on matching recent sensory
information against prior knowledge of the environment. It is
a usual practice to introduce geometric constraints [1], such
as the existence of lines and corners in the environment,
in the localization process. Although this may reduce the
computational complexity, it renders the process useful only
for structured indoor environments. To confront this problem,
some other methods use raw range sensor readings and
make no assumption on the structure of the environment [2],
[3], [4]. These techniques have been successfully applied to
a wide range of subjects as a way to improve odometry.
Also some SLAM and map building issues benefit from
these ideas [5], [6]. An important approach to this kind of
localization is the scan matching.

The idea behind most of the scan matching algorithms
is as follows. Starting with two sets of range readings and
an initial guess for the displacement between them, the
algorithm iteratively refines the displacement estimation by
generating pairs of corresponding points on the scans and
minimizing an error metric. The most popular method to
perform scan matching is the Iterative Closest Point (ICP).
This algorithm was originally used in the computer vision
community for fine registration of 2D and 3D point sets [7],
[8], and subsequently used to match sets of range readings
in robotics [9], [10]. Although this algorithm provides good
estimates of the displacement between two scans, it does
not when dealing with rotation. Other methods, such as the
Iterative Dual Correspondence (IDC) or the Metric-Based
Iterative Closest Point (mbICP) [11] deal with this problem.
However, none of these methods take into account sensor
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partamet de Matemàtiques i Informàtica, Universitat de les Illes Balears,
Palma de Mallorca, Spain. {antoni.burguera, y.gonzalez,
goliver}@uib.es

imprecisions. The work by Pfister [2] do explicitly take into
account the sensor imprecision. In this work, the contribution
of each scan point to the overall matching estimate is
weighted according to its uncertainty. Another interesting
method to perform scan matching dealing with uncertainty
is the probabilistic Iterative Correspondence (pIC) [12]. In
this method statistical compatibility between scan points is
computed by means of the Mahalanobis distance.

Laser sensors present some desirable properties in terms of
accuracy and density of their readings. For this reason, they
are extensively used to perform scan matching. Ultrasonic
range sensors are not as accurate as laser nor provide dense
sets of readings. Thus, they are not usually used in local-
ization processes and only a few works deal with ultrasonic
range sensors [13], [14], [15]. However, these sensors are
more appealing than laser in terms of cost, weight and
power consumption. Moreover, their basic features are shared
with underwater sonar. In underwater robotics, sonar is more
suitable than laser as sound suffers a lower absorption than
light in this medium.

At the extent of the authors knowledge, there is only one
work dealing with scan matching localization using standard
time-of-flight ultrasonic range finders [10]. This method
deals with the sparsity of the readings by grouping sonar
readings along short robot trajectories and by correcting the
whole set of odometric estimations performed during the
grouping process. However, the low angular resolution and
noisy behavior of sonar sensors are not taken into account.

This paper introduces the sonar probabilistic Iterative
Correspondence (spIC). spIC is a sonar scan matching frame-
work where both the sparseness and noise of the readings
are taken into account. This is accomplished by means of
probabilistic models of ultrasonic and odometric sensors, as
well as a method to propagate the error through them. The
matching process is accomplished by means of Mahalanobis
distance [12]. Moreover, the error introduced by the matching
process is estimated. Also, the correction of the whole robot
trajectory involved in the scan matching process is presented
as a constrained optimization problem.

This paper is structured as follows. Section II describes
the scan building process, including error models and error
propagation methods. In section III the probabilistic sonar
scan matching is presented. Section IV deals with trajectory
correction. Experiments demonstrating the validity of our ap-
proach are provided in section V. Finally, some conclusions
are available in section VI
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II. SCAN BUILDING

A. Error models

The basic requirement for scan matching algorithms is
the existence of two sets of readings where reliable point
to point correspondences could be established. Because the
number of readings provided by a ring of echo sounders
is low, a process where sets of sonar readings are grouped
is necessary. For simplicity, these groups of sonar readings
will be referred to in this paper as scans. The two scans
used in scan matching are named current scan (Scur) and
reference scan (Sref ), being the current scan the most
recently gathered scan, and the reference scan a previously
gathered scan.

The grouping process consists in moving the robot a
certain distance and, using odometry, group the sonar returns.
The traveled distance has to be long enough to acquire a
large scan, but not too long so odometric error remains low.
In practice traveled distances between one and two meters
are good choices.

By performing the described grouping [10] process, the
resulting scan is subject to two sources of error. On the
one hand, there is an uncertainty in the position of the
sonar readings with respect to the robot pose when they
were taken. This uncertainty is mostly due to angular and
range uncertainties of sonar sensors. On the other hand, the
robot pose estimates used to build the scan are subject to
odometric errors. The estimated position of a sonar return
depends on the error of the sonar sensor and on the robot
pose error. Because of that, both sources of error have to be
taken into account simultaneously when building the scan. To
accomplish this, the following sonar and odometry models
are proposed.

A sonar reading taken by sensor i at time j is assumed
to be a Gaussian random variable xsi

ri,j
= N(x̂si

ri,j
, P si

ri,j
).

The mean, x̂si
ri,j

, represents the translation and rotation of the
reference frame ri,j , located at the sonar reading coordinates,
with respect to the reference frame si, located at the sensor
position and aligned with the axis of the sonar beam. Thus,
x̂si

ri,j
= [x, y, θ]T has the form [r, 0, 0]T , being r the current

sonar range reading. P si
ri,j

is a covariance matrix of the form

P si
ri,j

=


 σ2

xx 0 0
0 σ2

yy 0
0 0 0


 , (1)

where σxx models the range uncertainty. It has been exper-
imentally set as r/100. The σyy models the sonar angular
uncertainty of α degrees as follows

σyy =
r

2
tan(

α

2
). (2)

The sonar opening, α, has been set to 30o, which is a
usual configuration in Polaroid ultrasonic range finders. Fig.
1 shows the 2σ bound ellipses corresponding to the described
sonar model for sonar measurements ranging from 0m to 4m
at intervals of 10cm.

As the robot moves, its pose can be estimated by means
of odometry. Our proposal is not to estimate the global
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Fig. 1. 2σ bound ellipses corresponding to the sonar model

Fig. 2. Relations between the models. The grey circular sector represents
the sonar beam.

robot pose but small displacements of the robot. In other
words, we estimate the current robot pose with respect to
the robot pose when the last estimation was performed.
In this way, the jth odometric estimation is modeled as
a Gaussian random variable xj−1

j = N(x̂j−1
j , P j−1

j ). The
mean, x̂j−1

j = [x, y, θ]T , represents the translation and
rotation of the reference frame j, located at the current robot
pose, with respect to the reference frame j − 1, located at
the pose of the robot in the previous estimation. P j−1

j is its
associated covariance. The obtention of both x̂j−1

j and P j−1
j

depends on physical characteristics of the robot and is out
of the scope of this paper.

Finally, the relative position xj
si

of each ultrasonic sensor
with respect to the robot reference frame also needs to be
know. It is assumed that this relative position does not change
over time and is perfectly known. Thus, it can be expressed
as xj

si
= N(x̂j

si
, P j

si
), where the covariance P j

si
is set to zero.

The mean, x̂j
si

either is provided by the manufacturer or can
be measured on the robot. Fig. 2 summarizes the relation
between the described models.

The set of the last N odometric estimations as well as the
readings acquired at each of these positions is stored and
will be referred to as the Transformations History.
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B. Measurement grouping

The information in the Transformations History has to be
processed in order to build the current and the reference
scans. The position of the sonar readings belonging to the
scan has to be expressed with respect to a common reference
frame. In order to select the common reference frame, it has
to be taken into account that the odometric error increases
with distance. Thus, selecting the central position of the path
followed by the robot when building the scan minimizes
the global error of the scan. The mentioned central position
has been chosen as the scan frame and is named A for the
reference scan and B for the current scan.

In order to express the sonar readings with respect to
a common reference frame, a mechanism to represent one
reference frame with respect to another one is needed. A
common approach in stochastic mapping and SLAM [13],
where working with processes corrupted by Gaussian noises
is a usual practice, is the use of operators ⊕ and �. The
former is the composition operator and the latter is the
inversion operator, defined as follows.

Let xa
b = N(x̂a

b , P a
b ), where x̂a

b = [x1, y1, θ1]T represents
the translation and rotation of the reference frame b with
respect to the frame a and P a

b is the associated covariance
matrix. Let also define, in a similar way, xb

c = N(x̂b
c, P

b
c ),

where x̂b
c = [x2, y2, θ2]T . The composition xa

c = xa
b ⊕ xb

c,
where xa

c = N(x̂a
c , P a

c ), is calculated as follows.

x̂a
c = f(xa

b , xb
c) =


 x1 + x2 cos θ1 − y2 sin θ1

y1 + x2 sin θ1 + y2 cos θ1

θ1 + θ2


 . (3)

Linearizing the system around the current estimates and
using the first order Taylor approximation, the covariance
can be expressed as follows

P a
c = J⊕1P

a
b JT

⊕1 + J⊕2P
b
c JT

⊕2, (4)

where

J⊕k =
∂f(xa

b , xb
c)

∂(xk, yk, θk)

∣∣∣∣
(x̂a

b
,x̂b

c)

(5)

for k=1,2. The inversion is a transformation such that �xa
b =

xb
a, being xb

a = N(x̂b
a, P b

a). It is calculated as follows.

x̂b
a = g(xa

b ) =


 −x1 cos θ1 − y1 sin θ1

x1 sin θ1 − y1cosθ1

−θ1


 . (6)

Linearizing the system, the covariance P b
a can be ex-

pressed as

P b
a = J�P a

b JT
� , where J� = ∂g(xa

b )
∂(x1,y1,θ1)

∣∣∣
x̂a

b

. (7)

Using these operators, the reference frame of a sonar
reading ri,j with respect to a robot pose reference frame
k could be obtained as follows

xk
ri,j

=




xk
k+1 ⊕ ... ⊕ xj−1

j ⊕ xj
si
⊕ xsi

ri,j
k < j

(�xk−1
k ) ⊕ ... ⊕ (�xj

j+1) ⊕ xj
si
⊕ xsi

ri,j
k > j

xj
si
⊕ xsi

ri,j
k = j

(8)

(a)

(b)

Fig. 3. The measurement grouping process. (a) Before applying the process.
(b) After applying the process.

Using these operations, each of the readings in the Trans-
formations History belonging to the scan being built (Fig.
3-a) can be represented with respect to the scan reference
frame (Fig. 3-b).

After performing the mentioned process, the pose
[x, y, θ]T of each scan point frame with respect to the scan
frame is generated. However, the orientation of the scan point
frame does not provide useful information for scan matching.
Thus, after building the scan, only the [x, y]T scan point
coordinates and the corresponding 2x2 covariance matrix are
held.

III. PROBABILISTIC SCAN MATCHING

The goal of a scan matching process is to estimate the rel-
ative displacement x̂A

B = [xx, xy, xθ]T between the reference
scan frame A and the current scan frame B. This process is
usually performed by means of an iterative process [9]. At
each iteration k the algorithm establishes, for each point pi in
Snew a correspondence qj in Sref using the current estimate
x̂ref

curk
. Next, the new estimation x̂ref

curk+1
is computed as the

one that minimizes the error of these correspondences. These
two steps are repeated until convergence is achieved.

A usual practice is to use Euclidian distance to establish
the correspondences, and, when established, minimize the
squared sum of the distances between the pairs of corre-
sponding points. This technique has proved to be useful, even
with sparse sets of noisy sonar readings [10]. However, the
recent work by Montesano et al. [12] proposes a probabilistic
framework where sensor uncertainties can be explicitly taken
into account. The idea is to pair a point in Snew with another
one in Sref if they are statistically compatible. When used
with laser scans, the probabilistic scan matching lets the
robot to deal with the small angular and range uncertainties
of laser devices, as well as with uncertainties in the relative
scan location.

As stated before, to perform scan matching with sonar
poses some additional problems. Scans have to be built
by grouping sonar readings, thus, odometric errors are also
present inside the scan. Moreover, sonar range and angular
uncertainties are much greater than laser ones. In this context,
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our proposal resides on the use of the statistical models
described in section II in a probabilistic scan matching
framework. Thanks to that, the robot is able to cope with
odometric and sonar uncertainties.

A. Nearest neighbor data association

Let pi = N(p̂i, Ppi
) and qj = N(q̂j , Pqj

) be Snew

and Sref items respectively. These distributions have been
obtained according to the process described in section II. Let
p̂i = [px, py]T and q̂i = [qx, qy]T .

To decide whether pi is compatible or not with qj , the
Mahalanobis distance is used. The squared Mahalanobis
distance between pi and qj is defined as follows

D2(pi, qj) = hT
i,jC

−1
i,j hi,j , (9)

where hi,j = h(x̂A
B , pi, qj) computes the difference between

pi and qj . To calculate this difference, pi has to be trans-
formed to the reference frame A.

hi,j =
[

xx + px cos xθ − py sinxθ

xy + px sin xθ + py cos xθ

]
−

[
qx

qy

]
. (10)

By linearizing h around the current estimate x̂A
Bk

and the
points p̂i and q̂j , the covariance matrix Ci,j can be computed
as follows

Ci,j = J3i,j
PA

B JT
3i,j

+ J4i,j
Ppi

JT
4i,j

+ Pqj
, (11)

where

J3i,j
=

∂h(x, p, q)
∂x

∣∣∣∣
x̂A

Bk
,p̂i,q̂j

, J4i,j
=

∂h(x, p, q)
∂p

∣∣∣∣
x̂A

Bk
,p̂i,q̂j

.

(12)
The matrix PA

B is the covariance associated to x̂A
B . The

obtention of this matrix will be described in section III-C.
The Mahalanobis distance is, under Gaussian assump-

tion, a chi-squared distribution with dim(hi,j) degrees of
freedom. Thus, pi and qj are compatible if and only if
D2(pi, qj) < χ2

2,p, where p is the desired confidence level.
For each pi, the set of compatible points in Sref is built.
Among them, the corresponding point qj is selected as the
one which is closer to pi in the Mahalanobis sense.

As a result of this process, the set C of correspondences
is generated.

B. Minimization

The second step in the scan matching process is to find
the relative displacement xA

B between the two scans that
minimizes the error between pairs of corresponding points.
The notation C = {< a1, b1 >,< a2, b2 > ... < an, bn >}
will be used to denote correspondences between the ai in
Sref and the bi in Scur. In this work, a Least Squares method
has been used to minimize the sum of squared Mahalanobis
distances between the points in C.

The criteria to be minimized is the following

min
x

n∑
i=1

hT
i C−1

i,i hi, (13)

where hi = h(x, bi, ai) as defined in (10) and Ci,i is the
associated covariance matrix as defined in (11). Linearizing

h using the first order Taylor approximation, a point ai can be
expressed by J3i,i

x̂A
B − h(x̂A

B , bi, ai), where J3i,i
is defined

in (12) and x̂A
B is the estimation obtained in the previous

scan matching iteration. In the first iteration, xA
B is obtained

from odometry.
Thanks to this, (13) can be rewritten as follows

min
x

(Jx − A)T Q−1(Jx − A), (14)

where

J =




J31,1

J32,2

...
J3n,n


 , A =




J31,1 x̂
A
B − h(x̂A

B , b1, a1)
J32,2 x̂

A
B − h(x̂A

B , b2, a2)
...

J3n,n
x̂A

B − h(x̂A
B , bn, an)



(15)

and Q is a block diagonal matrix containing the Ci,i. By
using the orthogonality principle, the x that minimizes the
previous Equation is

xmin = (JT Q−1J)−1JT Q−1A. (16)

This xmin is used in the next iteration as the x̂A
B in order

to find correspondences and minimize again.

C. Error estimation

More than finding the vector x̂A
B that better explains

the correspondences between scan points, we want also to
estimate the error produced by the matching process. For
this reason, the scan matching output is represented as a
Gaussian distribution of the form xA

B = N(x̂A
B , PA

B ). This
section describes a method to compute the covariance matrix
PA

B .
Let the function F (x) be defined as follows

F (x) =




h(x, b1, a1)
h(x, b2, a2)

...
h(x, bn, an)


 . (17)

The covariance Ci,i is known for each h(x̂A
B , bi, ai). Thus,

the block diagonal matrix Q containing the Ci,i represents
the covariance of F (x̂A

B).
Linearizing F (x) around x̂A

B and using the first order
Taylor approximation, Q can be written as follows

Q = J5P
A
B JT

5 , where J5 = ∂F (x)
∂x

∣∣∣
x̂A

B

. (18)

Thus, the scan matching covariance PA
B can be computed

as follows
PA

B = J+
5 Q(JT

5 )+, (19)

where + represents the Moore-Penrose pseudoinverse of a
matrix.

IV. TRAJECTORY CORRECTION

The probabilistic scan matching described in the previous
section estimates xA

B̃
= N(x̂A

B̃
, PA

B̃
) as the relative displace-

ment between A and B. If each scan has been gathered from
a single robot pose, odometry can be rejected and the scan
matching estimation used instead. This is how scan matching
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(a) (b)

Fig. 4. Trajectory correction. (a) Before correction (b) After correction,
odometric estimations are corrected to agree with scan matching.

localization is usually performed with laser. However, the
sonar scans are built using a number of readings acquired
along a set of robot poses. Thus, it is desirable to correct
the whole set of odometric estimations, that is, the robot
trajectory, involved in the scan generation.

Let Xo = {xA
1 , x1

2, ..., x
n
B} be the set of odometric esti-

mations between the reference frames and xA
B̃

the estimation
provided by the scan matching. In order to find the corrected
set of estimations between the two scans, we impose the
condition that the composition of the corrected odometric
estimations must be equal to the one coming from scan
matching. Being x = {xA

1′ , x1′
2′ , x2′

3′ , ..., xn′
B′ ,�xA

B′} the set
of corrected estimations, this condition, depicted in Fig. 4,
can be expressed as follows

h(x) = xA
1′ ⊕ x1′

2′ ⊕ x2′
3′ ⊕ ... ⊕ xn′

B′ ⊕ (�xA
B′) = 0. (20)

Because of the angular terms h(x) is nonlinear. To confront
those nonlinearities, the problem is formulated as the obten-
tion of the a posteriori maximum likelihood estimation of
the relative motions during the scan building, given the scan
matching constraint. In other words, our goal is to compute
the most probable trajectory followed by the robot that agrees
with the estimation provided by the scan matching. This
can be expressed as the following constrained optimization
problem

min
x

f(x) = min
x

1
2
(x − xo)T P−1(x − xo)

h(x) = 0, (21)

where xo = {xA
1 , x1

2, ..., x
n
B ,�xA

B̃
} and P is the block

diagonal matrix containing the odometric estimations error
covariances PA

1 , P 1
2 , ..., Pn

B and the scan matching error
covariance P B̃

A .
The Sequential Quadratic Programming (SQP) is a

method vastly used to solve this kind of problems. This
work presents the Iterated Extended Kalman Filter (IEKF) as
an alternative method to solve this constrained optimization
problem [10] because, in situations like those expressed with
(21), using an IEKF with an exact measurement function is
faster and leads to the same results that SQP.

The feasibility and formulation of the IEKF to correct
the trajectory involved in the scan building process can
easily be derived from the loop closing IEKF formulation
in Hierarchical SLAM [16].

V. EXPERIMENTAL RESULTS

The method described in this paper has been implemented
on a Pioneer 3-DX mobile robot equipped with 16 Polaroid

TABLE I

COMPARISON OF SICP, SIDC AND SPIC ERRORS WHEN σodo = 0.02.

µx σx µy σy µθ σθ

spIC 0.0153 0.0122 0.0154 0.0103 0.0396 0.0304
sIDC 0.0526 0.1003 0.0425 0.0567 0.1645 0.2250
sICP 0.0789 0.0976 0.0784 0.0871 0.3102 0.2667

ultrasonic range finders. For comparison, two methods not
taking into account sonar and odometry errors have also
been implemented. These methods are analogous to ICP and
IDC, but grouping sonar readings prior to the scan matching
and correcting the trajectory after the scan matching. These
methods will be referred to, for simplicity, as sICP (sonar
ICP) and sIDC (sonar IDC).

The first experiment consists on matching two scans
gathered along the same robot trajectory. The robot moved
in a non structured indoor environment. Two sources of error
have been added to the scans. First, odometric noise while
building the scan, producing distorted scans. Thus, both scans
may present slightly different shapes. Odometric noise is
generated by adding Gaussian random noise with zero mean
and σodo variance to each wheel encoder reading. In the
experiments presented in this paper, σodo ranges from 0 to
0.05 at 0.01 intervals. Notice that, since the encoder readings
are provided in meters per second and sensor data is obtained
every 100ms, a σodo of 0.05 represents a huge error. The
second source of error is added to the initial estimate. Errors
added to this initial estimate range from -0.2m to 0.2m in x
and y, and from −45o to 45o in θ. Notice how large are the
errors, specially in rotation. For each σodo, a set of tests has
been performed by adding the described noise to the initial
estimate. Convergence of the algorithms was achieved when
the error ratio was below 0.001 during three consecutive
iterations. The maximum number of iterations is set to 250.

Because the scans have been gathered along the same
robot trajectory, the ground truth [0, 0, 0]T is perfectly
known. Fig. 5-a summarizes the results obtained in this
experiment. The x axis represents the σodo. The y axis
represents the percentage of right estimates. An estimate is
considered to be right if the x and y error is below 5 cm
and the angular error is under 10o. Results using spIC (solid
line) are much better than the ones with sICP and sIDC.
For σodo between 0 and 0.02, spIC has a 100% hit rate.
Notice that a σodo of 0 does not mean error free odometry,
but no odometric noise added to the original real scans.
sIDC performs much better than sICP for low odometry
noise because it deals better with angular errors. However,
with higher σodo sIDC results are quite similar to the sICP
ones. On the contrary, because all the errors involved in the
matching process are taken into account in our probabilistic
framework, spIC provides much better results even in the
presence of huge odometric errors.

To illustrate this experiment, the following results con-
centrate on σodo = 0.02. Fig. 5-b depicts the final estimates
of sIDC, sICP and spIC for the mentioned σodo. It can be
observed how all the spIC estimates concentrate around the
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Fig. 5. Comparison of sonar scan matching methods. (a) Percentage of right estimates of sICP, sIDC and spIC with respect to odometry noise. (b)
Estimations of the three methods for σodo = 0.02. spIC results concentrate around the ground truth. (c) Convergence rate. (d) Visual map using odometry.
(e) Visual map using sIDC. (f) Visual map using spIC.

ground truth. On the contrary, sICP and sIDC results, both
negatives and positives, may provide estimates far away from
the ground truth. This fact can be observed on Table I,
where the means and standard deviations of the errors in
the estimates are shown. Only positives (both true and false)
have been used.

Convergence rate is an important factor. Fig. 5-c shows
the number of iterations for each trial using σodo = 0.02. It
can be observed how spIC converges faster than sICP and
sIDC. This is due to the accuracy of the correspondences
established thanks to the described models and statistical
framework. Similar results are obtained with other σodo.

The second experiment has been conducted while the
robot moved in a corridor in our university. Additional noise
has been added to odometric readings, providing the map
depicted in Fig. 5-d. It can be observed how the visual
result of spIC (Fig. 5-f) is better than the sIDC (Fig. 5-
e), specially in the areas where lots of spurious readings,
artifacts and specular reflections are present. At the end of the
corridor, where an important angular error is present, spIC
also performs much better than sIDC. An additional problem
with sIDC has been detected in this experiment. Due to the
large amount of spurious readings and distortion in the scans,
sIDC was not able to achieve the convergence criteria. This
is consistent with figure 5-c, where a significant part of sIDC
trials reach the limit of 250 iterations. It is also consistent
with Fig. 5-a, where sIDC performance significantly falls as
odometric noise increases. On the contrary, spIC achieved
convergence during all the experiment. Because of this, the
convergence criteria for sIDC had to be reduced to 0.05.

Finally, the effects of the trajectory correction can be
observed in Fig. 6. This data corresponds to a different
run in our university. Trajectory corrections produced by the
sonar scan matching produce a map with discontinuities, as
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Fig. 6. After scan matching, (a) without trajectory correction and (b) with
trajectory correction
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depicted in Fig. 6-a. By applying the proposed trajectory
correction method, the sonar readings, as well as the robot
poses, are continuously located at their most probable posi-
tion (Fig. 6-b).

VI. CONCLUSION

This paper presents a probabilistic framework to perform
scan matching localization using standard time-of-flight ul-
trasonic sensors. Probabilistic models of the sensors as well
as techniques to propagate the errors through the models are
also presented and discussed. A method to estimate the most
probable trajectory followed by the robot according to the
scan matching and odometry estimations is also presented.
Thanks to that, accurate robot localization can be performed
without the need of geometric constraints.

The experiments demonstrate the robustness of our method
even in the presence of large amounts of noisy readings and
huge odometric errors. The tolerance to odometric errors is of
crucial importance when performing localization with sonar,
because the sparsity of the readings makes necessary to group
them using dead reckoning.

Our method has been compared to sIDC and sICP, which
are variations of the well known IDC and ICP to be used
with sonar data. Results show important improvements in
the accuracy and robustness of the estimates as well as in
the convergence rate.

It has to be remarked that ICP was originally designed
for fine registration. Thus, it assumes small errors in the
initial estimate. However, when performing scan matching,
large errors may appear in the initial estimate, specially in
rotation, due to miss-calibrated odometry, slippery surfaces,
etc. These errors in the initial estimate may be specially
important when performing sonar scan matching, because
the scan building process itself relies on odometry. Because
of that, the large errors obtained with ICP in the experiments
are not due to the algorithm itself, but to its use in the
scan matching context. As ICP is an algorithm vastly used
to perform scan matching, the previously mentioned fact
constitutes a problem to be solved. The provided experiments
demonstrate that, when dealing with the sonar scan matching
problem, the probabilistic approach of spIC provides a robust
and accurate solution.
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