
 
 

  

Abstract—This paper describes a method that requires only 
a single projected point to calibrate a pair of cameras attached 
to pan-tilt units (PTUs) in a hand-eye robot configuration. Most 
existing calibration methods require either a set of known 
calibration locations or a large number of corresponding image 
features. These requirements usually imply human 
intervention, which complicates the calibration procedure. 
Rather than using multiple points in the workspace, the 
proposed algorithm uses a single stationary point generated by 
aiming a laser at a planar surface for the entire calibration. 
The single point provides a high intensity feature that is easy to 
extract from the image. To exercise all of the PTU and camera 
degrees of freedom, a large number of random robot/PTU 
configurations are computed automatically and 60 
configurations, where both cameras can extract the single 
calibration point, are retained. As a result, this approach 
minimizes image processing requirements and virtually 
eliminates the correspondence problem. Using the Levenberg-
Marquardt non-linear minimization algorithm, the Denavit-
Hartenberg (D-H) parameters for the pan-tilt axes along with 
the internal and external parameters of the cameras are 
computed. This method requires no human intervention, 
employs simple image processing to detect the high intensity 
laser point, and produces a triangulation error of roughly 3mm 
at a range of 1 m. 

 
Index Terms – Biclops, Camera Calibration, Pan Tilt cameras. 

I. INTRODUCTION 
AMERA calibration is the process of determining the 
relation between the 3D coordinates of points in the 

workspace and their 2D image locations. The calibration 
includes internal and external parameters of the camera. 
Calibration of internal parameters finds the relationship 
between image coordinates and ray directions in the camera 
coordinate system. This relationship is described by the 
perspective projection of the perfect pinhole model. The 
parameters which need to be determined are the focal length, 
the principal point (image center pixel) and scale factors in 
the x and y directions. It is possible to include compensation 
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for lens distortion when a more accurate model is desired. 
Calibration of external parameters involves finding the 
position and orientation of the camera in some world 
coordinate system. External camera calibration is important 
in stereo vision where one needs to find the relative position 
of the coordinate systems of the two cameras and it is also 
important in hand-eye coordination in robots. Introducing 
pan-tilt motion to the cameras makes the external calibration 
dependent on the values of the pan and tilt angles. The 
calibration problem is to identify the values of the internal 
and external parameters of each camera in a stereo pair so 
that they can work together effectively, e.g., to determine 3D 
points of interest through triangulation.  

II. RELATED WORK 
Machine vision camera systems need quick, simple, easy 

and repeatable calibration methods. Many approaches to 
camera calibration exist. Some of these methods use a set of 
calibration points with known world coordinates. These 
world points can be obtained by either using a calibration 
object [1] in a known location or points marked in the 
workspace whose locations are measured. For example, a 
planar object with feature points clearly marked in a grid can 
be placed at a known location and moved by a known 
motion. Given this set of feature points with known world 
coordinates (Xi, Yi, Zi) and their projected locations in an 
image plane (ui, vi), the external and internal parameters are 
found which will best map the world points to their image 
points by determining the parameters which minimize the 
mean square distance between the observed and computed 
positions of a feature on the image plane.  

Other methods use geometric properties to calibrate 
cameras. These methods calibrate some of the internal 
camera parameters using invariant characteristics of 
geometric objects and their images. These methods do not 
require the position of the object relative to the camera. The 
aspect ratio is found using the image of a sphere [8]. Spheres 
are also used to locate the principal point [7]. The vanishing 
points [4] of parallel lines drawn on the faces of a cube are 
used to compute the principal point and focal length. 

Some methods use only feature coordinates in the image 
plane to calibrate. These methods are called self calibration 
methods [2, 3, 9, 10] because they do not require known 
calibration points. It requires camera motion to take multiple 
images. Faugeras et al. [2] developed a method where a 
motion sequence of a single camera moving in an 
unconstrained manner can be used to calculate the internal 
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Fig 3.  Biclops coordinate systems. 

 
Fig 1. Biclops with Pan and Tilt Axis shown. 

 
Fig 2. Staubli RX-130 robot carrying Biclops. 

camera parameters. This method does not require known 
world coordinates of the calibration points. It requires only 
feature correspondences from a set of images where the 
camera has undergone pure rotation. In this method, the 
internal parameters of the camera are determined including 
radial lens distortion.  

   Calibrating a camera mounted on a pan-tilt mechanism 
involves the added effort of finding the location of the pan 
and tilt axes of rotation. Most of the existing methods of 
calibrating pan-tilt cameras have assumed PTUs with 
orthogonal axes, or have assumed a relatively simple 
geometric model of motion, in which axes of rotation are 
orthogonal and aligned with the camera imaging optics [11, 
12, 13]. While this simplification works well over small 
volumes, accuracy suffers in a larger workspace, i.e., the 
camera model does not predict well the projection of a 3D 
feature point. In [6] a more complete model of pan-tilt 
cameras was employed, making the calibration suitable for 
use with low cost pan-tilt mechanisms. This method uses an 
existing tracking system consisting of stationary calibrated 
cameras. An LED point feature in the workspace is tracked 
using the fixed cameras to build a virtual calibration object 
that is then used to calibrate the pan-tilt cameras. 

Most of the existing methods require either a known set of 
calibrated world points or a large number of corresponding 
image features. Either of these requirements makes the 
calibration process complicated and slow because the data 
gathering process must be supervised for correctness. Even a 
few correspondence errors will reduce considerably the 
accuracy of the resulting model. This paper describes a 
simple method to calibrate cameras and their PTUs using a 
single unknown stationary world point as the calibration 
point. Note that the 3D location of the point is unknown at 
the start of the process, and is determined during the 
calibration procedure. The data acquisition process is very 
much simplified by using a single unknown stationary 3D 
point (with reasonable initial guess); the extra effort to 
acquire multiple points is eliminated. Furthermore, with a 
single point to detect, a faulty correspondence of a feature 
between two cameras can never occur. Consequently, it is 
possible to use a very general model for pan-tilt camera 
motion and minimize human effort, since feature 
correspondence is unnecessary, in the calibration process. 

III. BICLOPS MODEL AND PARAMETERS 
The camera system we used to acquire images of the 

workspace is called Biclops. Biclops is a custom-made, 
dual-camera motorized vision system. It consists of two 
FireWire color cameras, each attached to a pan-tilt unit 
(PTU). The PTUs are attached to a bracket, which is 
connected to a tool base as shown in Fig. 1. The robot picks 
up Biclops by connecting to the tool base as shown in Fig. 2. 
Biclops has four degrees of freedom, i.e., one pan axis and 
one tilt axis for each camera. The PTUs can be programmed 
to move the cameras to aim at any desired location in the 
workspace.  

A. Coordinate systems  
Biclops is built using standard PTUs and a metal frame. 

Though the dimensions of all the pieces are “known” 
through design, their accuracy cannot be assumed. Hence we 
need to model Biclops to determine the dimensions 
empirically. The coordinate system at which the robot holds 
Biclops is the robot’s tool control frame (TCF) which is 
indicated as frame E in Fig 3. We have defined D-H 
parameters for the two joints of each PTU. A coordinate 
frame is chosen on the CCD of the camera at the top left 
corner with the z axis out of the camera towards the objects, 
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Fig 4. Image plane coordinate systems. 

the x axis along the horizontal right direction, and y axis 
along the vertical down direction as shown in Fig. 4. All the 
coordinate frames are shown in Fig 3. Fig. 4 shows the 
image plane coordinate systems with principal point (image 
center) (u0,v0), focal length (f), and the projection of a 3D 
point p(x,y,z) to (u,v) in camera coordinates. Although pan 
and tilt axes are shown intersecting and orthogonal in the 
Fig. 3 for clarity and simplicity, the model does not assume 
this. The separation and the angle between the pan and tilt 
axes are included in the D-H parameters that will be 
determined through the calibration procedure. 

B. Transformation Matrices 
The transformation matrices used to convert points from 

one coordinate frame to the next are given by the following 
equations. We use notation cθ12 for cos(θ1+ θ2), sθ12 for 
cos(θ1+ θ2) and ATB for transformation matrix which 
transforms points described in frame B to points in frame A. 

The transformation matrix from the base of the robot to 
the TCF frame is given by (1) as 

cαcβcγ-sαsγ -cαcβsγ-sαcγ cαsβ x
B sαcβcγ+cαsγ -sαcβsγ+cαcγ sαsβ yT =E -sβcγ sβsγ cβ z

0 0 0 1

 
 
 
 

 (1) 

where (x, y, z) is the position and α, β, γ are the yaw, pitch 
and roll rotation angles, respectively, of the TCF in robot 
base coordinate system. The transformation matrix from the 
TCF frame to frame 0 is given by (2),  

cθ cθ -cθ sθ sθ ty z y z y x
sθ sθ cθ +cθ sθ -sθ sθ sθ +cθ cθ -sθ cθ tE x y z x z x y z x z x y yT =0 -cθ sθ cθ +sθ sθ cθ sθ sθ +sθ cθ cθ cθ tx y z x z x y z x z x y z

0 0 0 1

 
 
 
 
 

 (2) 

where tx, ty, and tz are the translation and θx, θy, and θz are 
x, y, z rotation parameters, respectively, from the TCF frame 
to frame 0. The other transformation matrices using D-H 
parameters are given by (3), (4) and (5),  

cθ -sθ 0 0p p
0 sθ cθ 0 0p pT =1 0 0 1 0

0 0 0 1

 
 
 
  

 (3)  

cθ -sθ 0 a1t 1t 1
cα sθ cα cθ -sα -d sα1 1 1t 1 1t 1 1 1T =2 sα sθ sα cθ cα d cα1 1t 1 1t 1 1 1

0 0 0 1

 
 
 
  

 (4)  

where θp is the pan angle and θt is the tilt angle. The D-H 
parameters from frame 1 to frame 2 are θ1+θt, α1, a1 and d1. 
The angle between X1 and X2 is θ1+θt. The angle between Z1 
and Z2 is α1, the separation between Z1 and Z2 along X1 is a1, 
and the separation between X1 and X2 along Z2 is d1. 

cθ -sθ 0 a2 2 2
cα sθ cα cθ -sα -d sα2 2 2 2 2 2 2 2T =3 sα sθ sα cθ cα d cα2 2 2 2 2 2 2

0 0 0 1

 
 
 
  

 (5) 

where θ2, α2,, a2 and d2 are D-H parameters from frame 
2 2 2OX Y Z  to frame 3 3 3OX Y Z . The angle between X2 and X3 

is θ2. The angle between Z2 and Z3 is α2. The separation 
between Z2 and Z3 along X2 is a2. The separation between X2 
and X3 along Z3 is d2. 

C. External Parameters 
The transformation matrix which converts points from the 

base of the robot to a coordinate frame fixed on the camera 
is called the external transformation matrix. The external 
transformation matrix gives the location and orientation of 
the camera in the base coordinate frame of the robot 
(knowing the TCF position and orientation). The parameters 
of this external transformation matrix used in expressions (2) 
through (5) (tx, ty, tz, θx, θy, θz, θ1, α1, a1, d1, θ2, α2, a2, d2) are 
the external parameters. 

D. Internal Parameters 
The transformation matrix that converts points from the 

coordinate frame fixed on the camera to the 2D image 
coordinates is given by the following expression 

fp 0 u 0x 0IT = 0 fp v 0y3 0
0 0 1 f

 
 
  

 (6) 

where f is the focal length, (u0, v0) is the location of the 
point where the axis of the camera intersects the image 
plane, i.e., the principal point. Parameters px, py are the 
number of pixels per mm (inverse scale factors) in the x and 
y directions, respectively, of the image. The parameters f, u0, 
v0, px and py are the internal parameters. This model does not 
include the lens distortion and the pixel skew, though the 
model can be easily extended to include them.  

E. Calibration Matrix 
The transformation matrix that transforms points from the 

base coordinate frame of the robot to the image coordinate 
frame is defined to be the calibration matrix, given by ITB. 

( ) ( ) ( ) ( ) ( )-1 -1 -1 -1 -1I I 2 1 0 E BT = T T T T T TB E3 3 2 1 0  (7) 

This matrix is clearly dependent on the values of the pan 
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Fig 5. Staubli RX-130 robot carrying a laser pointer tool. 

and tilt axis angles because of 0T1 and 1T2. ITB can be 
computed for any pan and tilt angles of a PTU if all the 
internal and external parameters are known. Given a 3D 
point XB in the base coordinate frame of the robot, the 
calibration matrix is used to compute the location of the 
point in the image by W= ITB XB. Vector W= {w1 w2 w3}T 
contains the homogenous coordinates of the image point 
U(u, v), computed by u=w1/w3, v=w2/w3. 

IV. CALIBRATION 
 Calibration is the process of determining the values of 

all the parameters { tx, ty, tz, θx, θy, θz,, θ1, α1, a1, d1, θ2, α2,, a2 

, d2 f, u0, v0, px, py }of the model Ф. Given a point in the 
workspace, the corresponding image point can be computed 
using the values in Ф. The error between the computed and 
the observed points, as registered in the image plane, is 
called the projection error, and is the result of error in the 
estimation of the model parameters. Thus, choosing model 
parameter values that minimize the mean square projection 
error is the goal of the calibration procedure. This is 
described mathematically by (8): 

n 2Φ = (U (Φ,X ,θ ,θ ,T )-U )im Min i i pi ti ii=1Φ
∑  (8) 

where iU is the observed image point and 
( , , , , )i i pi ti iU X Tθ θΦ is the computed image point of the 

projected 3D point Xi in the base coordinate frame of the 
robot when the position of the end effector is Ti and pan and 
tilt values are θpi, and θti respectively. In (8), Ti= (x, y, z, α, 
β, γ } is the set of translation and rotation values of the end 
effector, parameter ‘n’ is the total number of 3D points 
observed, and Фm is the required parameter set that 
minimizes the mean square projection error. 

 To calibrate the model, the usual approach is to use a 
large set of 3D points and their corresponding 2D image 
points with respect to some pan, tilt angles and end effector 
position and orientation. The mean square of the projection 
error is minimized using Levenberg-Marquardt [5] nonlinear 
minimization. This procedure requires a known set of 3D 
points (Xi) in the workspace which are difficult to measure 
and time consuming to collect. The innovation of the 
proposed approach is that the calibration procedure herein is 
altered to use a single 3D point (X) and images of the point 
from various camera positions and orientations are taken. 
The modified calibration is represented by equation (9). 

n 2Φ = (U (Φ,X,θ ,θ ,T )-U )im Min i pi ti ii=1Φ
∑   (9) 

 The second distinguishing characteristic of the 
calibration procedure is to replace the known 3D point with 
an unknown but stationary 3D point in the workspace. The 
coordinates of the unknown 3D point are added to the set of 
calibration parameters to get a new set {Ф, X}. The 
calibration procedure itself will determine the 3D location of 
the point (X). The final calibration is represented by equation 
(10), 

n 2{Φ,X} = (U ({Φ,X},θ ,θ ,T )-U )im Min i pi ti ii=1{Φ,X}
∑  (10) 

where X is the unknown stationary 3D point in the base 
coordinate frame of the robot. Using a single stationary 3D 
point does not affect the excitation of all the degrees of 
freedom of calibration as we still have the pan, tilt and the 
end effector location and orientation that can be varied 
extensively by moving the robot that carries Biclops.  

V. EXPERIMENTS 

A. Laser Pointer Tool 
To determine that a calibration is accurate, an independent 

measurement must be made. To enable this, a laser pointer 
tool that can be attached to the robot wrist has been 
fabricated. It consists of a laser pointer (with pivot to adjust 
orientation) connected to a tool base. The robot picks up this 
tool by connecting to the tool base, as shown in Fig. 5. The 
robot can then aim the laser tool at any location in the 
workspace. This approach provides a simple but effective 
check on the calibration procedure. After the calibration 
procedure, the location of the calibration point can be 
computed and the laser pointing tool can overlay its laser 
point on the calibration point, thus verifying the results of 
the procedure. 

B. Workcell 
The workcell consists of two Staubli RX-130 robots, one 

carrying Biclops and the other carrying the laser tool, as 
shown in Fig. 6. These robots are on a robot transport unit 
(RTU) and can be moved along the track. An accurate 
calibration of the RTU system has been done which gives 
the transformation from the base of one robot to the other, 
measured experimentally to be within 1mm. The laser 
pointer aims at an arbitrary stationary location in the 
workspace. The robot carrying Biclops moves through a 
sequence of locations to exercise all of the degrees of 
freedom on the camera and PTUs. At each programmed 
location, the cameras on Biclops capture an image. 

FrA2.3

3189



 
 

 
Fig 7. Histogram of the Projection errors for left camera. 

 
C. Image acquisition and processing 

The cameras on Biclops can be programmed for specific 
values of exposure time. Since the laser spot is quite bright 
relative to the other parts of the scene, a short exposure time 
ensures capturing only that spot. We assume that there are 
no other high intensity light sources in the workspace. This 
makes it very easy to process the images quickly to 
determine the location of the laser point in the images.  

D. Procedure 
The number of constraints required by the Levenberg-

Marquardt algorithm to converge to a good model is usually 
five times the number of parameters in the model. 
Consequently, we used 60, 2D image points, which is 
equivalent to 120 constraints. Since the positions of the 
robot and values of the pan-tilt mechanism are under 
computer control, it is easy to ensure that each variable is 
exercised from minimum to maximum values. This 
persistent excitation prevents ill-conditioned matrices that 
result in poor models. The algorithm for the calibration 
procedure is as follows: 
1) A laser pointer is aimed at an arbitrary location. 
2) Random pan, tilt and TCF position and orientations are 

computed. This set is reduced to 60 positions, where the 
laser point is in the field of view of both cameras. 

3) Biclops is moved by the robot to each of the set of 
positions and images of the laser point are captured. 

4) These images are processed to determine the 2D 
coordinates of the laser point. 

5) Once the data are collected for all positions the 
minimization routine (Levenberg-Marquardt) is used to 
determine the calibration parameters.  

E. Results 
Calibration of the pan-tilt cameras on Biclops requires 

only one unknown point to determine the values of the 
model parameters. Ideally, the same values of the model 
parameters should be obtained regardless of the location of 
the unknown point. In this section we repeat the calibration 
procedure of (10) using different unknown points to measure 

the difference between the models obtained. Table I shows 
the 19 parameter values for each camera along with the 
obtained coordinates of the unknown stationary 3D point in 
two different trials using different unknown 3D points. An 
initial estimate of the parameters was determined from the 
“as designed” dimensions of the Biclops pan-tilt system. The 
Levenberg-Marquardt nonlinear minimization routine was 
used on the calibration data to compute values for the 
parameters that minimize the projection error. The model 
parameter values obtained from the two different unknown 
3D points were within acceptable limits, as shown in Table 
I. For Trial 1, the “unknown” point was measured at (500, -

3198, 1368). The computed values for the left and right 
cameras, the last three parameters in the model, show very 
small errors. Similarly, for Trial II, where the “unknown” 

 
Fig 6. Workcell with two Staubli RX-130 robots on the RTU  

and laser point projected onto the wall . 

TABLE I 
CALIBRATION PARAMETERS 

 Trial  I 
Point (500, -3198, 1368) 

Trial II 
Point (700, -2148, 1254) 

Parameters Left Right Left Right 
tx (mm) 111.4615 -80.73 87 111.3205 -80.0354 
ty (mm) -60.2324 122.68 54 -60.35 121.99 43 
tz (mm) 221.7315 230.9312 221.37 230.2173 
θx (deg) 0.0592 0.1125 0.0761 0.0925 
θy (deg) -0.0854 -0.2831 -0.0732 -0.2478 
θz (deg) 45.7232 45.5747 45.9421 45.0732 
α1 (deg) 90.2854 90.3832 90.5531 90.2987 
a1 (mm) -8.9323 -9.5688 -9.0615 -9.8233 
θ1 (deg) 88.1076 86.7735 87.9864 86.1378 
d1 (mm) 9.8212 10.1115 9.5616 10.4156 
α2 (deg) 89.9718 90.2965 90.0515 90.3193 
a2 (mm) 54.1533 44.8755 54.3460 44.8043 
θ2 (deg) -90.0723 -90.6572 -90.1289 -90.0667 
d2 (mm) 42.7024 27.9636 42.5957 27.5537 
f (mm) 12.2565 11.9414 12.17111 11.9871 

u0 (pxls) 322.4034 333.5779 323.10 334.1599 
v0 (pxls) 260.584 264.3231 259.6133 265.1217 

px (pxls /mm) 101.0467 101.4207 100.9734 101.8278 
py (pxls /mm) 101.0243 100.2475 100.9958 100.0450 

3D-X (mm) 499.297 498.265 700.325 699.654 
3D-Y (mm) -3197.035 -3196.214 -2148.014 -2147.092 
3D-Z (mm) 1368.093 1367.215 1254.032 1253.256 
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Fig 8. Histogram of the Projection errors for right camera. 

point was measured to be (700, -2148, 1254), the last three 
parameters in the model also show small error, certainly 
acceptable from the standpoint of grasping an object.  

The calibration process was repeated in a similar fashion 
90 times to test the accuracy of the calibration. The 
histogram of the projection error for the set of points was 
plotted as shown in Fig. 7 and Fig. 8. The projection error  
had range [0.5 to 2.8] pixels and mean close to 1 pixel.  

Using the model computed for each camera and 
triangulating to a point 1000 mm away, a 1 pixel error 
creates an error of 3 mm. The time required for the complete 
calibration procedure is limited by the speed of the motion 
of the robot and PTUs. The procedure takes about three 
minutes to run. This compares favorably with the 20 to 30 
minutes required for our previous calibration procedure that 
used a multi-point calibration grid. We are unaware of 
published calibration times for alternative approaches. 
Calibration using a grid requires more complex image 
processing and human involvement to verify the correctness 
of the corresponding image point locations; these problems 
were eliminated completely in the present method.  

VI. CONCLUSIONS 
 A novel method is developed to calibrate a pair of 

cameras mounted on PTUs where a pair of cameras analyzes 
images from a single fixed point in space. The 
correspondence problem has been eliminated completely, 
and image processing has been simplified to finding the only 
bright dot in an image. 

  A complete model without any assumptions about the 
PTU geometry is considered. The present method does not 
require either an extensive set (or any, for that matter) of 
known calibration points in the workspace or an expensive 
routine to make the image features correspondences.  

 A single unknown stationary 3D point in the 
workspace, designated by aiming a laser pointer at some 
surface in the workspace, is sufficient to derive the vision 
system model parameters. The values of robot location, pan, 

and tilt can be generated automatically using inverse 
kinematics (with initial approximation of the parameters) so 
that the algorithm can run unattended whenever needed. 
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