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Abstract— Most of the studies in flexible manufacturing
systems address the issues of flexibility, productivity, cost, etc.
The impact of flexible lines on product quality is less studied.
This paper presents a quantitative model based on Markov
chain analysis to evaluate quality performance of a flexible
machining system. A case study of flexible fixture is provided
to illustrate the applicability of the method.

I. INTRODUCTION

To satisfying the rapidly changing markets and various
customer demands, manufacturing systems are becoming
more and more flexible. For example, in automotive industry,
flexible manufacturing is “becoming ever more critical” ([1]).
Substantial amount of research and practices have been
devoted to flexible manufacturing systems (FMS), and it has
taken an explicit role in production system design. Much
of the work related to flexibility addresses the issues of
investment cost, flexibility measurement, and the tradeoffs
between productivity and flexibility, etc. However, interac-
tions not only exist between flexibility and productivity, but
also between flexibility and quality (as suggested by [2]).
The latter one is much less studied.

For example, in many flexible machining systems, a flex-
ible fixture restricts and is the core enabler to flexibility of
the whole system, and the cost of designing and fabricating
fixtures can amount to 10-20% of the total manufacturing
system cost ([3], [4]). A flexible fixture often is a pro-
grammable fixture designed to support multiple distinguished
parts being manufactured (assembled or machined) on the
same line. With the flexible fixture, system flexibility can be
achieved with little or no loss of production. In automotive
industry, a flexible fixture might be clamps/locators held by
robots or other “smart” mobile apparatus. The challenge,
however, with the flexible fixture is the accuracy of the
locator measured by the variance. Whenever there is a
product change, the fixture needs to adapt itself to the desired
corresponding location. The quality of the manufacturing
operation heavily depends on the fixture. The discrepancy
of the fixture location from its “ideal” one, in many cases,
dominates the quality of the products. For instance, con-
sider a production line producing two products, A and B.
Assuming that the fixture is located in a “good” position,
i.e., within the nominal tolerance, for product A, then, if the
subsequent parts belong to product A, it is more likely good
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quality parts can be produced. Analogously, if the fixture
is in a “bad” location, then more defective parts can be
produced. However, when the subsequent part is switched to
product B, then the fixture needs to readjust its location and
either good quality or defective parts may be produced (more
detailed description is introduced in Section IV). Therefore,
the quality characteristic of the current part is dependent
on the part type and product sequence. A study to evaluate
the quality performance in flexible machining environment
is valuable, however, has been missing in current literature.

Additional examples can be found in painting, welding,
assembly operations, etc., as well. For example, he number of
available paint colors can significantly impact product quality
([1]). The paint quality may temporarily decline after color
switch. Therefore, vehicles with the same colors are usually
grouped into batches without sacrificing much on vehicle
delivery. These examples suggest that flexibility and quality
are tightly coupled and much more work is needed to fully
understand this coupling. Such an issue is very important
but almost neglected. We believe that quality should be
integrated into the considerations in designing production
systems as well as objectives of productivity and flexibility.
In this paper, we limit our work to quality performance only.
The main contribution of this paper is the development of a
simple Markovian model to analyze the quality performance
of a flexible machining system and the application of it
in a flexible fixture case study. In addition, it suggests a
possible approach for more complex modeling of quality and
productivity in flexible manufacturing systems.

The remaining of the paper is structured as follows: Sec-
tion II reviews the related literature. Analytical formulas to
evaluate quality performance are derived in Section III. Using
the method developed, a case study of quality evaluation of a
flexible fixture is introduced in Section IV. Finally, Section
V concludes the paper. Due to space limitation, all proofs
are omitted and can be found in [5].

II. LITERATURE REVIEW

Flexibility has attracted a significant amount of research in
the last two decades. Most of the work related to flexibility
focus on the definition, meaning and measurement of man-
ufacturing flexibility, and productivity modeling of flexible
manufacturing systems, etc. Representative monographs and
review papers on flexibility manufacturing systems can be
found in [6]-[8] and [9]-[16], respectively.

In spite of the above efforts, only a few publications are
found which investigate the impact of manufacturing flexibil-
ity on product quality. A measure of productivity, quality and
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flexibility for production systems is presented in [17]. Paper
[18] studies the issues of flexibility, productivity, and quality
from an extensive search and analysis of empirical studies.
In [19], an aggregation model to measure the manufacturing
flexibility using crisp and fuzzy numbers is presented and a
method is developed to model the fuzzy flexibility elements
such as quality level, efficiency, versatility and availability.
In addition, paper [20] surveys the existing literature related
to mass customization. In particular, it points out that quality
control issues should be taken into account and current
literature lacks in-depth study on how to assure quality in
mass-customized products.

As pointed out in [3], most of the flexibility studies assume
that quality related issues, such as, rejects, rework, etc., have
minimal impact and that only products of acceptable quality
are produced. The production of parts with high quality in
a FMS requires significant efforts and investments. Since
the flexibility of a whole FMS is typically restricted by the
flexibility of its components, such as fixtures, and the cost
of designing and fabricating fixtures can amount to 10-20%
of the total manufacturing system cost, paper [3] develops
a Fixture Repeatability and Reproducibility measure (FR-R)
to evaluate the performance of machining fixtures using the
degree of variability of a part dimension off the nominal in
flexible manufacturing systems. A review of flexible fixture
design and automation can be found in [4].

Therefore, the coupling or interactions between flexible
manufacturing system design and product quality is still not
fully understood. An in-depth analytical study of the impact
of flexibility on quality is necessary and important. This
paper is intended to contribute to this end.

III. ANALYTICAL MODELS

A. Two Product Types

Consider a flexible machining system producing two types
of products, types 1 and 2. Let gi and di, i = 1, 2, denote the
states that the system is producing a good quality part type
i or a defective part type i, respectively. Note that here we
only study the working or production period of the system. In
other words, machine breakdowns are not considered. Clearly
states gi and di are similar to the up- and down states in
throughput analysis.

Introduce P (gi, t) and P (di, t), i = 1, 2, as the probabil-
ities to produce a good part type i or defective part type i
at cycle t, respectively. In terms of the steady states, P (gi)
and P (di), i = 1, 2, are used to represent the probabilities to
produce a good or a defective part during a cycle in steady
states, respectively, i.e.,

lim
t→∞ P (gi, t) =: P (gi), lim

t→∞ P (di, t) =: P (di), i = 1, 2.

If P (g) and P (d) are used to denote the good or defective
part probabilities (of both products), respectively, we obtain

P (g1) + P (g2) = P (g),
P (d1) + P (d2) = P (d). (1)

In addition, introduce the following assumptions:

(i) A flexible machining system has four states: producing
good part type 1, type 2, and producing defective part
type 1 and type 2, denoted as g1, g2, d1 and d2,
respectively.

(ii) The transition probabilities from good states gi, i =
1, 2, to defective states dj , j = 1, 2, are determined
by λij . The machining system has probabilities νij

to stay in good states gj , j = 1, 2. Similarly, when
machining system is in defective state di, i = 1, 2,
it has probabilities μij to transit to good states gj ,
j = 1, 2, and probabilities ηij to stay in defective states
dj , j = 1, 2.
Remark 1: λii and μii, i = 1, 2, can be viewed as
non-switching quality failure and repair probabilities,
respectively (i.e., product types are not switched). Anal-
ogously, λij and μij , i, j = 1, 2, i �= j, can be viewed
as switching quality failure and repair probabilities,
respectively.

(iii) When incoming parts are in random order without cor-
relations (non-sequenced), the part flow is identically
and uniformly distributed with probabilities P (1) and
P (2) for part types 1 and 2, respectively. In other
words, every cycle the system has probability P (1) or
P (2) to work on part types 1 and 2, respectively.
Remark 2: Assumptions (ii) and (iii) imply that prob-
abilities P (1) and P (2) are embedded in the transition
probabilities λij , μij , νij and ηij , i, j = 1, 2. For
example, λij defines the transition probability that the
incoming part is type j and the machining system
produces a defective part at t + 1 given that the
machining system produces a good type i part at t.

Based on above assumptions, we can describe the system
using a discrete Markov chain illustrated in Figure 1. In
addition, since total probabilities equal to 1, we have
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Fig. 1. State transition diagram of a flexible machining system with two
product types

P (1) + P (2) = 1,

P (g1) + P (d1) = P (1),
P (g2) + P (d2) = P (2),
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λ11 + λ12 + ν11 + ν12 = 1, (2)

λ22 + λ21 + ν22 + ν21 = 1,

μ11 + μ12 + η11 + η12 = 1,

μ22 + μ21 + η22 + η21 = 1.

The transitions to state g1 can be described as

P (g1, t + 1) = P (produce a good part type 1 at t + 1|
produce a good part type 1 at t)P (g1, t)

+P (produce a good part type 1 at t + 1|
produce a defective part type 1 at t)P (d1, t)

+P (produce a good part type 1 at t + 1|
produce a good part type 2 at t)P (g2, t)

+P (produce a good part type 1 at t + 1|
produce a defective part type 2 at t)P (d2, t)

= P (g1, t + 1|g1, t)P (g1, t) + P (g1, t + 1|d1, t)P (d1, t)
+P (g1, t + 1|g2, t)P (g2, t) + P (g1, t + 1|d2, t)P (d2, t)

= ν11P (g1, t) + ν21P (g2, t) + μ11P (d1, t) + μ21P (d2, t).

Considering the steady state probability P (g1), we have

P (g1) = ν11P (g1)+ν21P (g2)+μ11P (d1)+μ21P (d2). (3)

Similarly,

P (g2) = ν12P (g1) + ν22P (g2) + μ12P (d1) + μ22P (d2),(4)

P (d1) = λ11P (g1) + λ21P (g2) + η11P (d1) + η21P (d2),(5)

P (d2) = λ12P (g1) + λ22P (g2) + η12P (d1) + η22P (d2).(6)

Solving the above equations, we obtain a closed formula
to calculate the probability of good quality part, P (g).

Theorem 1: Under assumptions (i)-(iii), the good part
probability P (g) can be calculated as

P (g) =
F

F + G
, (7)

where

F = (λ11 − λ21)(μ12μ21 − μ11μ22)
+(1 − ν22 + ν12)[(1 − η11)μ21 + η21μ11]
+(1 − ν11 + ν21)[(1 − η11)μ22 + η21μ12], (8)

G = [(1 − ν11)(1 − ν22) − ν12ν21](1 − η11 + η21)
−(μ12 − μ22)[(1 − ν11)λ21 + λ11ν21]
+(μ21 − μ11)[(1 − ν22)λ11 + ν12λ21]. (9)

In case of “equal part types”, i.e., two part types are
equally composed (i.e., 50% each) and have identical tran-
sition probabilities, i.e.,

μ11 = μ22, ν11 = ν22, λ11 = λ22, η11 = η22,

μ12 = μ21, ν12 = ν21, λ12 = λ21, η12 = η21,(10)

which implies that the transitions from one product type to
another are equivalent in terms of quality, we obtain

Corollary 1: Under assumptions (i)-(iii), the good part
probability P (g) for equal part type case is described by

P (g) =
μ12 + μ11

λ11 + λ12 + μ12 + μ11
. (11)

In addition, P (g) is monotonically increasing and decreasing
with respect to μ1i and λ1i, i = 1, 2, respectively.

Remark 3: When only single product is processed, ex-
pression (11) is simplified to

P (g) =
μ11

λ11 + μ11
,

which is an analogy to the machine “efficiency” in through-
put analysis.

B. Multiple Product Types

Now consider a flexible machining system producing mul-
tiple products. Same assumptions and notations in Subsection
III-A will be used with the exception that now i = 1, . . . , n,
denoting n product types. Analogously to Subsection III-A,
we obtain the following transition equations:

P (g1) =
n∑

i=1

νi1P (gi) +
n∑

i=1

μi1P (di),

· · · · · · · · ·
P (gn) =

n∑
i=1

νinP (gi) +
n∑

i=1

μinP (di),

P (d1) =
n∑

i=1

λi1P (gi) +
n∑

i=1

ηi1P (di),

· · · · · · · · ·
P (dn−1) =

n∑
i=1

λi,n−1P (gi) +
n∑

i=1

ηi,n−1P (di),

1 =
n∑

i=1

P (gi) +
n∑

i=1

P (di).

Rewrite into a matrix form we have

AX = B, (12)

where A is defined in (13) on next page and

X =
(
P (g1), . . . , P (gn), P (d1), . . . , P (dn)

)T

, (14)

B =
(
0, 0, . . . , 1

)T

. (15)

Therefore, we obtain
Theorem 2: Under assumptions (i)-(iii), the good part

probability P (g) can be calculated from

P (g) =
n∑

i=1

P (gi) =
n∑

i=1

xi, (16)

where xi = P (gi), i = 1, . . . , n, are the elements in X and
can be solved from

X = A−1B, (17)

and A, B are defined in (13) and (15), respectively.
Note that the inverse of matrix A exists due to the fact that

an irreducible Markov chain with finite number of states has
a unique stationary distribution.
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν11 − 1 ν21 . . . νn1 μ11 μ21 . . . μn−1,1 μn1

ν12 ν22 − 1 . . . νn2 μ12 μ22 . . . μn−1,2 μn2

. . . . . . . . . . . .
ν1n ν2n . . . νnn − 1 μ1n μ2n . . . μn−1,n μnn

λ11 λ21 . . . λn1 η11 − 1 η21 . . . ηn−1,1 ηn1

λ12 λ22 . . . λn2 η12 η22 − 1 . . . ηn−1,2 ηn2

. . . . . . . . . . . .
λ1,n−1 λ2,n−1 . . . λn,n−1 η1,n−1 η2,n−1 . . . ηn−1,n−1 − 1 ηn,n−1

1 1 . . . 1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

In the case of equal product types, we have

μ11 = μii, ν11 = νii, λ11 = λii, η11 = ηii,

μ12 = μij , ν12 = νij , λ12 = λij , η12 = ηij ,

i, j = 1, . . . , n, i �= j.

Corollary 2: Under assumptions (i)-(iii), the good part
probability P (g) for n equal product types is described by

P (g) =
μ11 + (n − 1)μ12

λ11 + μ11 + (n − 1)(λ12 + μ12)
. (18)

In addition, P (g) is monotonically increasing and decreasing
with respect μ1i and λ1i, i = 1, 2, respectively.

In order to avoid messy notations, the following discus-
sions are limited to equal product types only.

C. Discussions

Similar to throughput analysis, let e1i = μ1i

λ1i+μ1i
, i = 1, 2,

denote the “switching (i = 2) or non-switching (i = 1) qual-
ity efficiencies”, respectively. In other words, e1i represents
the efficiency to produce a good quality part if product type
is kept constant (i = 1) or changed (i = 2).

1) Less vs. more product types: Now we consider how
the number of product types may affect quality. We can
show that the good part probability P (g) is monotonically
decreasing or increasing with respect to number of product
types n if e11 > e12 or e11 < e12, respectively (see [5]
for details). This result suggests that when the switching
quality efficiency is not as good as non-switching efficiency,
introducing more products may be harmful for overall quality
performance of the system. Therefore, to ensure maintaining
desired quality performance, every effort has to be made
to achieve e12 ≥ e11. In addition, it implies that when
e11 > e12, single product case has better quality than
multiple products case, which suggests that batch production
may be more preferable.

2) Random vs. sequence part flow: To further investigate
this phenomenon, consider the following two systems, A and
B, both producing n equal part types. System A adopts
a sequencing policy with part types 1 to n being mixed
randomly with uniform distribution (as described in assump-
tion (iii)), while system B keeps strict alternative sequence
1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . ., i.e., product type changes at
the end of every cycle. Let P (g)A and P (g)B define the
good job probability of systems A and B, respectively. For

system B, product type is changed at every cycle, therefore,
P (g)B = e12.

Comparing P (g)A and P (g)B , it can be shown that
P (g)A > P (g)B if e11 > e12 ([5]). It implies that when
quality efficiency is decreased for changing products, using
randomly mixed sequence has better quality performance
than using strictly alternating sequence policy, since the
former one has less transitions among products. It again
indicates that using batch processing may lead to a better
quality performance than the sequencing policy. A thorough
investigation of batch production is important and is a topic
in future work.

Using the models described above, we apply them to a
flexible fixture case study in a flexible machining system.

IV. A FLEXIBLE FIXTURE CASE STUDY

A. Problem Description

Consider a machining operation that drills a hole on part
type A and part type B. The machine has a flexible fixture.
When a job comes in, the fixture can adapt itself to pre-
designed locations (referred to as La and Lb for part types
A and B, respectively) in order to hold the part, then the
drilling will take place. Now assuming incoming parts are in
a random order mixed with types A and B (assumption (iii)),
then the fixture may move to location La when part type A
is coming, moves to Lb when B is coming, and returns to
La after some time to processes A again. Since the fixture is
not perfect, the Las (correspondingly, Lbs) may not be the
same as the designed La (correspondingly, Lb). One way of
evaluating it is to measure the distance between the real La

(correspondingly, Lb) and the ideal location. Figure 2 shows
discrepancy of a locator from its nominal position, assuming
the locator can be anywhere between the “ideal” location 0
and distance Δa or Δb with uniform distribution for part A
and B, respectively. It is clear that when the locator (e.g.,
La) is too far from the designed (ideal) location, the hole
will be drilled on a wrong place, which will cause a quality
defect. On the other hand, when the locator is within the
designed tolerance (shown in Figure 2 as ε), it will not hurt
the hole drilling.

For simplicity and illustration purpose, now we assume
that the flexible fixture is the only factor that causes quality
defects. (It is common that the locating error is much larger
than the tooling error.) Then the probability of a part with
good quality is ε/Δa for part type A (correspondingly,
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0 Δε

Fig. 2. Locator discrepancy and tolerance range

ε/Δb for part type B), denoted as δa (correspondingly,
δb), indicating the probability that the locator moves to a
satisfactory location.

The problem to be addressed in this case study is: Given
the flexible fixture described above, develop a model to
evaluate the quality performance as a function of system
parameters.

B. Analytical Expression

Assuming δa and δb are independent of the locator’s
starting location, then the transition matrix of the states of
this problem (making part A and part B) becomes

Ptransition =

⎛
⎜⎜⎝

ν11 λ11 ν12 λ12

μ11 η11 μ12 η12

ν21 λ21 ν22 λ22

μ21 η21 μ22 η22

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

P (m, g)Pa P (m, d)Pa P (m, g)Pb P (m, d)Pb

P (m, g)Pa P (m, d)Pa P (m, g)Pb P (m, d)Pb

P (m, g)Pa P (m, d)Pa P (m, g)Pb P (m, d)Pb

P (m, g)Pa P (m, d)Pa P (m, g)Pb P (m, d)Pb

⎞
⎟⎟⎠ ,

where Pa and Pb are the probabilities that the next job is
part A or B, respectively, and Pa + Pb = 1. P (m, g) and
P (m, d) are the probabilities that the locator has moved and
is in a “good” or “bad” location (producing good or defective
products), respectively. Similarly, P (m, g) and P (m, d) are
the probabilities that the locator has not moved and is in a
“good” or “bad” location, respectively.

This matrix can be simplified. For example, when the
locator is in “good” location producing part A, then it does
not move if the next job is still part A, and the transition
probability of making a good part A (correspondingly, defec-
tive part A) will be only determined by Pa (correspondingly,
0). (Note that here we assume location error is the only
source for defects.) This is because when the locator is in
a good position and the next job belongs to the same type,
the probability of making another good job is 1. Similarly,
if it is in the “good” location producing part A, but the
next job is part B, the locator will move. The probability
of moving to a “good” position (making a good part B) is
δb. Therefore the transition probability from good A location
to good B location is δbPb. Repeat this process and finally

we can obtain a simplified transition matrix:

Ptransition =

⎛
⎜⎜⎝

ν11 λ11 ν12 λ12

μ11 η11 μ12 η12

ν21 λ21 ν22 λ22

μ21 η21 μ22 η22

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

Pa 0 δbPb (1 − δb)Pb

0 Pa δbPb (1 − δb)Pb

δaPa (1 − δa)Pa Pb 0
δaPa (1 − δa)Pa 0 Pb

⎞
⎟⎟⎠ . (19)

With above relationship, we obtain values for variables λij ,
μij , νij and ηij , i, j = 1, 2. Then, using Theorem 1, the
good part probability is obtained:

P (g) =
F

F + G
, (20)

where

F = (1 − Pa + δaPa)(1 − δa)PaδbPb

+(1 − Pb + δbPb)(1 − Pa)δaPa − Pa(1 − δa)δbPbδaPa,

G = δaPaδbPb(1 − δa)Pa − δbPb(1 − Pa)(1 − δa)Pa

+[(1 − Pa)(1 − Pb) − δbPbδaPa][1 − Pa + (1 − δa)Pa].

After some algebric manipulation, we obtain

P (g) =
Pa(1 − Pa)[δa(1 − Pb) + δbPb]

PaPb
= δaPa + δbPb.

(21)
Compared with the single product case (where only prod-

uct A is produced), whose quality is defined by δa, we have

P (g) − δa = Paδa + (1 − Pa)δb − δa = (1 − Pa)(δb − δa).

Clearly, only when a new product (B) has smaller locator
discrepancy, introducing additional product can improve the
overall quality performance, which agrees with intuition.

In addition, it is reasonable to assume Δa and Δb would
be the same in many cases. Therefore δa = δb = δ, and we
obtain P (g) = δ, i.e., the probability of making a good part
depends only on the flexible locators, which is consistent
with our intuition.

C. Extensions to Three- and Multiple-Product Cases

Applying the same concept to three-product case, we
assume three products A, B and C are manufactured with
the flexible locator. For simplicity here we only consider the
case of δa = δb = δc = δ. We compose the matrix A in (13)
and simplify it as shown in (22) on next page.

After some simplification and rearrangement (see [5]), we
can finally reach

P (ga) = δPa, P (gb) = δPb, P (gc) = δPc,

where ga, gb and gc denote that the system is in good states
producing parts A, B and C, respectively. Therefore, the
probability of making a good part is

P (g) = P (ga) + P (gb) + P (gc) = δ(Pa + Pb + Pc) = δ.

This result again is consistent with the one of two-product
case and matches our expectation. It also verifies the analysis
presented in Section III.
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A =

⎛
⎜⎜⎜⎜⎜⎜⎝

ν11 − 1 ν21 ν31 μ11 μ21 μ31

ν12 ν22 − 1 ν32 μ12 μ22 μ32

ν13 ν23 ν33 − 1 μ13 μ23 μ33

λ11 λ21 λ31 η11 − 1 η21 η31

λ12 λ22 λ32 η12 η22 − 1 η32

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Pa − 1 δPa δPa 0 δPa δPa

δPb Pb − 1 δPb δPb 0 δPb

δPc δPc Pc − 1 δPc δPc 0
0 (1 − δ)Pa (1 − δ)Pa Pa − 1 (1 − δ)Pa (1 − δ)Pa

(1 − δ)Pb 0 (1 − δ)Pb (1 − δ)Pb Pb − 1 (1 − δ)Pb

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

For the general multiple products case, assume there are n
products, and all δi = δ, i = 1, . . . , n. By induction, we can
show that P (g) = δ holds again. The idea of the proof is as
follows: We first show the base case (n = 2) is true (equation
(21)). Next we assume the case n = k − 1 is true. Then for
case n = k, we can group the first k − 1 products into an
aggregated product since they result in good part probability
equals to δ. Now we only have two products, the aggregated
product and product k. Using the results for n = 2 we prove
that the case n = k is also true, which will lead to the good
part probability equals to δ for n products as well.

It is not surprising that the probability of making a good
part is not dependent on the number of products nor the
penetration of each product, since we assume the quality
is only determined by the locators with the same δ. This
implies that once we can control the flexible fixture (locator),
introducing more products will not hurt product quality.
However, when δs are not identical for different products,
then the system quality performance will be dependent on
the number of products, their respective δs, and different
ratio of product mix.

V. CONCLUSIONS

The quality performance a flexible manufacturing system
is less studied. In this paper, we develop a quantitative model
to evaluate the quality performance of a flexible machining
system based on discrete Markov chain. We derive closed
formulas to calculate good part probability and compare the
results under different sequencing policies. The case study of
a flexible fixture presented here illustrates the applicability
of the method and verifies the results obtained in the paper.
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