
 
 

 

  

Abstract—A stability analysis and controller synthesis 
methodology for an inverted robot arm system is proposed in 
this paper. This uncertain system is modeled by a state space 
Takagi-Sugeno (T-S) fuzzy model with linear nominal part and 
structure bounded parameter uncertainties in the state 
equations of each fuzzy rule. First, a sufficient condition on 
robust stability of the Continuous Perturbed Time-Delay Affine 
T-S (CPTDATS) fuzzy models of inverted robot arm is proposed. 
Then, H∞ -disturbance attenuation performance of the fuzzy 
models is analyzed. At last, a numerical example shows the use 
of the proposed approach on the stabilization and 
H∞ -disturbance attenuation for the inverted robot arm 
systems. 

I. INTRODUCTION 
The inverted robot arm is an ubiquitous example of 

nonlinear control systems analysis and design. The standard 
problem related to inverted robot arm is stabilization of either 
downward or upright equilibriums at a prescribed position. 
The purpose of this paper aims to make the inverted robot arm 
balance; afterwards, the inverted robot arm could get the 
dynamic balance. The track of the inverted robot arm can be 
horizontal or gradient. In this paper, we propose the state 
feedback fuzzy control based on the T-S model for the 
inverted robot arm.  

In recent years, the T-S fuzzy control [1-8] has become one 
of the useful control approaches for complex nonlinear 
control systems. It is well known that time delay often occurs 
in many dynamical systems. Therefore, time delay could be 
considered as an important issue in T-S fuzzy control systems. 
In the time-delay T-S fuzzy model [8], local dynamics in 
different state space regions are represented by linear models. 
The overall T-S fuzzy model of the system is achieved by 
fuzzy “blending” of these time-delay linear subsystems.  

The control design is carried out based on the so-called 
Parallel Distributed Compensation (PDC) [1-8] scheme. The 
idea is that for each local linear model, a linear feedback 
control is designed. The resulting overall controller which is 
in general nonlinear is also a fuzzy blending of each 
individual linear controller. The control approach is to design 
linear feedback gains for each local linear model and to let the 
overall control input can be blended by these linear feedback 
gains. 

One of the most important requirements for a control 

 
 

system is the so-called robustness. Those can solve the 
disturbance and perturbations problems from inherent 
uncertainties in the real system. In this paper, the H∞  control 
scheme [9] is used to deal with the robust performance design 
problems in CPTDATS fuzzy models. It can provide the 
guaranteed H∞  performance for the attenuation γ , which 
can cope with the worst disturbances in systems. We also 
propose the issue of robust stability in the presence of 
norm-bounded uncertainty. The uncertain models are 
described by a state-space model and time-varying 
norm-bounded parameter uncertainty in the system matrices. 

 In general, based on Linear Matrix Inequalities (LMI) [1] 
methods, one can find suitable linear feedback gains for each 
fuzzy rule for closed-loop homogeneous T-S fuzzy systems. 
However, the synthesis of the CPTDATS fuzzy models is a 
difficult problem for the designers because the closed-loop 
stability conditions are not LMI formulations but Bilinear 
Matrix Inequalities (BMI) ones. The BMI conditions cannot 
be easily solved via a convex optimization algorithm. For this 
reason, an Iterative LMI (ILMI) [6-8] algorithm is applied to 
solve the proposed BMI problem in this paper.  

II. DYNAMIC MODEL OF INVERTED ROBOT ARM 
In this section, we first introduce the mathematical model 

of inverted robot arm system. Referring to Fig. 1, we 
proposed a simplified dynamic model to describe open-loop 
inverted robot arm system as follows [10].  

 

( ) ( )( ) ( )θ t θ t t= − − θ
g ksin
l m

( )e t+ v        (1) 

 
where l  is the length of the rod, m  is the mass of the bob, g  
is the acceleration due to gravity, k  is the friction, ( )θ t  is 

the angle by the rod and the vertical axis, ( )tv  denotes the 
disturbances. 

The torque is the control input and it is assumed that the 
control object is to maintain a constant angle ( )tθ = β . In 

order to maintain ( )tθ = β , the torque must have a 
steady-state component ssT  that satisfies 

 
( ) ssa cT 0− β + =sin  or ( )ssT a c= βsin       (2) 
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Fig. 1  Inverted robot arm system 
 

Choose the state variables as ( ) ( )1 t t= θ − βx , 

( ) ( )2 t t= θx , and the control variable as ( ) ( ) sst t T= −u T . 

Then, the new equilibrium point is ( )1 t 0=x , ( )2 t 0=x  and 

( )t 0=u . The inverted robot arm equation (1) can be thus 
represented as 

 
( ) ( )1 2t tx x=                  (3a) 

( ) ( )( ) ( ){ } ( ) ( )2 1t a t c t e tx sin x sin u v= − + β − β + +   (3b) 

 
Then, we will consider this class including premise 

nominal parameter uncertainty:  
 
( ) ( )1 t t= ϕx                  (4a) 

( ) ( )( ) ( ) ( ) ( ){ }2 1 1x t a x t 0 01 t x tsin . cos sin= − + β + − β   

          ( ) ( )c t e tu v+              (4b) 

( ) ( )( ) ( )2t 0 02 t x t. sinϕ = ρ +  

( ) ( )( ) ( )( )21 0 01 t x t t. sin+ − ρ + − τ      (4c) 

where ( ) ntϕ ∈ ℜ  is a time-delay weighting function and 

[ ]0,  1ρ ∈  is the weighting coefficient.  

III. THE AFFINE T-S FUZZY MODEL OF INVERTED 
ROBOT ARM 

Generally, the main feature of the T-S fuzzy system can be 
expressed by joining dynamics of each fuzzy rule of linear 
subsystems. Given a pair of ( ) ( )( )t  tx , u , the perturbed 

time-delay affine T-S fuzzy model of inverted robot arm 
system (1) can be inferred as follows [8]: 

 
( )

( )( ) ( ) ( ) ( ) ( )( ){ }
r

i i i id id
i 1

t

h t t t t

x

z x x
=

=

+ Δ + + Δ − τ∑ A A A A
 

( )( ) ( ) ( ) ( ){ } ( )
r

i i i i i
i 1

h t t tz u v
=

+ + Δ + + Δ +∑ B B a a E   (5) 

where 

( ) ( ) ( ) ( )1 2 pt t  t    tz z , z , ... , z⎡ ⎤= ⎣ ⎦ , ( )( ) ( )( )
p

i ij j
j 1

ω t M tz z
=

= ∏  

( )( ) ( )( )
( )( )

i
i r

i
i 1

ω t
h t

ω t

z
z

z
=

=

∑
, ( )( )ih t 0z ≥  and ( )( )

r

i
i 1

h t 1z
=

=∑  

                      (6) 
The quantities iA , idA , iB , ia  and E  are constant matrices. 
Besides, iΔA , idΔA , iΔB  and iΔa  are time-varying 
matrices with appropriate dimensions and they are structured 
in the following norm-bounded form:  
 
[ ] ( )[ ]i id i i i i 1i 2i 3i 4i      t       Δ Δ Δ Δ =A A B a D Δ Q Q Q Q   (7) 
 
where iD , 1iQ , 2iQ , 3iQ  and 4iQ  are known real constant 

matrices of appropriate dimensions, and ( )i tΔ  is an 
unknown matrix function with Lebesgue-measurable 
elements and satisfies ( ) ( )T

i it t ≤Δ Δ I .  
For a nonlinear T-S fuzzy system represented by (5), a 

fuzzy controller is designed to share the same fuzzy sets with 
the plant. It is based on the PDC concept [1]. The output of 
the PDC-based fuzzy controller is determined by the 
summation such as 

 

( ) ( )( ) ( ){ }
r

i i i
i 1

t h t tu z x
=

= − +∑ F μ          (8) 

 
Substituting (8) into (5), one can obtain the corresponding 
closed-loop system 
 

( ) ( )( ) ( )( )

( ) ( ){ } ( ) ( )

r r

i j
i 1 j 1

ij i ij ji j ji

1t h t h t
2

t t

ˆ ˆx x x

x v

= =

=

+ Δ + + Δ +

∑∑

A D A A D A E
    (9) 

where 

 ( ) ( ) ( )( ) TT Tt t t t 1x x x⎡ ⎤= − τ⎣ ⎦ , ij ij id ij⎡ ⎤= ⎣ ⎦A G A g , 

ij i i j= −G A B F , ij i i j= −g a B μ  and 

( )ij i 1i 3i j 2i 4i 3i jt ⎡ ⎤Δ = − −⎣ ⎦A Δ Q Q F Q Q Q μ .       

 
Base on the PDC type fuzzy controller (8), a sufficient 

condition for ensuring delay-independent stability of 
controlled time-delay affine T-S fuzzy model (9) is 
introduced in this paper. Moreover, a H∞ control 
performance with 0γ >  is also considered in this paper. This 
constraint is of the following form. 
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( ) ( ) ( ) ( )f ft tT 2 T

0 0
t t t tx x dt v v dt< γ∫ ∫S        (10) 

 
with zero initial condition for all ( ) 2 ft [0, t ]v L∈ , where γ  
is a prescribed value which denotes the worst case effect of 

( )tv  on ( )tx  . Besides, T 0= >S S  is a positive-definite 

weighting matrix and  n n×∈ℜS  . The purpose of this paper is 
to find satiable fuzzy controllers (8) such that the closed-loop 
system (9) is robustly stable with satisfying the H∞  
constraint (10). 
  

IV. SUFFICIENT CONDITIONS OF ROBUST FUZZY 
CONTROLLER DESIGN 

 
A fuzzy controller is designed to share the same fuzzy 

sets with the affine T-S fuzzy model (5) based on the PDC 
scheme. In this section, the delay-independent stability 
conditions for the CPTDATS fuzzy model (9) are described 
in the following theorem.  

Theorem 1 
Given a H∞  attenuation parameter 0γ > . The 

CPTDATS fuzzy system described by (9) is quadratically 
stable in the large and the H∞  control performance (10) is 
guaranteed for an attenuation γ  if there exist common 
positive definite matrices 0>P , 0>S , 1 0>N , control 
gains iF , iμ  and scalars ijq 0ξ ≥  such that 

 
crt c R
ij ij ij

T T
2i 2i 2 j 2 j 1

0

2 2

⎧ϒ + <⎪
⎨

≥ + +⎪⎩

Γ Θ

P Q Q Q Q N
   for   0

ˆi I∈    (11a) 

crt c R
ij ij ij

T T
2i 2i 2 j 2 j 1

0

2 2

⎧ϒ + <⎪
⎨

≥ + +⎪⎩

Γ Θ

P Q Q Q Q N
      for   1

ˆi I∈    (11b) 

where 
T

ij ji ij jic
ij 2 2

+ +⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G G G
Γ P P         (12) 

p
c
ij ijq ijq

q 1
c

Tij p p
ij ji T

ijq ijq ijq ijq
q 1 q 1

*

v
2

=

= =

⎡ ⎤
− ξ⎢ ⎥

⎢ ⎥
= ⎢ ⎥+⎛ ⎞⎢ ⎥− ξ − ξ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑ ∑

Γ T

Γ
g g

P n
    (13) 

( )R 2 T
ij ij= + + γ +Θ U P PE I E P S          (14) 

R
ijR

ij
ij0

*⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

Θ
Θ

U
               (15) 

( )1 T 1 T
ij id 1 id jd 1 jd 2− −= +U PA N A P PA N A P

 { } T

i j i j3 2⎡ ⎤ ⎡ ⎤+ ⎣ ⎦ ⎣ ⎦P D D I D D P

 ( ) ( )T

1i 3i j 1i 3i j 2+ − −Q Q F Q Q F

 ( ) ( )T

1j 3 j i 1j 3 j i 2+ − −Q Q F Q Q F         (16) 

( ) ( )T

ij 4i 3i j 4i 3i j 2= − −U Q Q μ Q Q μ  

 ( ) ( )T

4 j 3 j i 4 j 3 j i 2+ − −Q Q μ Q Q μ        (17) 

 
From Theorem 1, it can be noted that the matrix 

inequalities in P , iF  and jμ  belong to the class of BMIs and 
the controller synthesis cannot be solved with ease by a 
convex optimization algorithm. In order to solve the present 
robust fuzzy controller design problem, it is necessary to 
rewrite the conditions of Theorem l. In next section, a new 
theorem is provided to introduce new stability conditions 
which can be solved by an ILMI algorithm. 

 
V. ROBUST FUZZY CONTROLLER DESIGN VIA ILMI 

ALGORITHM 

In this section, an ILMI algorithm is provided to get a 
suitable solution for the stability conditions of Theorem 1. 
The decay rate α  is considered in the stability conditions in 
order to relax the LMI search procedure and make it feasible. 

Theorem 2 
The stability conditions (11) described in Theorem 1 are 

held and the CPTDATS is quadratically stable in the large if 
there exists a decay rate 0α < , positive definite matrices 

0>P , 0>S , 1 0>N , control gains iF , iμ  and scalars 

ijq 0ξ ≥  such that 
ctd
ij

T T
2i 2i 2 j 2 j 1

0

2 2

⎧ <⎪
⎨

≥ + +⎪⎩

Γ

P Q Q Q Q N
   for 0 i Î∈      (18a) 

ctd
ij

T T
2i 2i 2 j 2 j 1

0

2 2

⎧ <⎪
⎨

≥ + +⎪⎩

Γ

P Q Q Q Q N
   for 1 i Î∈      (18b) 

where  
R

T
4ij

T
5ij
T
6ij 1ctd

ij T
7ij

8ij

9ij
T

0 2
0 0
0 0 0
0 0 0
0 0 0
0 0 0

* * *
* *

*

− α⎡
⎢ −⎢
⎢ −
⎢

−⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

P
L I

L P I
L P N

Γ
L P
L
L
E P
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2

0
3

0
0 0
0 0 0 2

* * * *
* * * *
* * * *
* * * *

* * *
* *

*

⎤
⎥
⎥
⎥
⎥
⎥ <⎥−
⎥

− ⎥
⎥− ⎥

−γ ⎥⎦

I
I

I
I

,      (19) 

 
R11

R 21 R 22
T
1ij

2ij

3ij
T
4ijctd

ij T
5ij
T
6ij
T
7ij

8ij

9ij
T

0
0 0
0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

* * * * *
* * * *

* * *
* *

*

− α⎡
⎢
⎢
⎢ −
⎢

−⎢
⎢ −
⎢

−⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

P

L I
L I
L I

L I
Γ

L P
L P
L P
L
L
E P

 

 

1

2

0
2

0
0 0 3
0 0 0
0 0 0 0
0 0 0 0 0 2

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * *
* * * *

* * *
* *

*

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ <⎥− ⎥

− ⎥
⎥− ⎥
⎥−
⎥

− ⎥
⎥−γ ⎦

I
N

I
I

I
I

,    (20) 

and T T
1ij i j⎡ ⎤= ⎣ ⎦L μ μ , 2ij 4i 3i j= −L Q Q μ , 3ij 4 j 3 j i= −L Q Q μ , 

T T
4ij i j⎡ ⎤= ⎣ ⎦L F F , 5ij i j⎡ ⎤= ⎣ ⎦L B B , 6ij id jd⎡ ⎤= ⎣ ⎦L A A , 

7ij i j⎡ ⎤= ⎣ ⎦L D D , 8ij 1i 3i j= −L Q Q F , 9ij 1j 3 j i= −L Q Q F  
p

R11 R ijq ijq
q 1

2
=

= − ξ∑ T              (21) 

( ) ( )

( ) ( )

T T

R 21 i i j j j i

pT T T
j j i i i j ijq ijq

q 1

2
=

= − + −

+ − + − − ξ∑

a B y P a B y P

y μ z y μ z n
      (22) 

T T T T
R22 i i j j i i i i

p
T T
j j j j ijq ijq

q 1

2 v
=

= + − −

− − − ξ∑

y y y y y μ μ y

y μ μ y
         (23) 

T T T T
R i i j j ij ij ji ji= + + + + +A P PA A P PA Y Y Y Y  

( ) ( ) ( )T T T T T
ij i j i j ij ji j i− + − + − +Y B P F PB F Y Y B P F  

( )T T T T T T T
j i ji i i j j i i i i j j− + + + − − −PB F Y z z z z z B P PB z z B P    

j j 2 2− + +PB z P S                (24) 
 
in which 
 

T
ij i j= +Y B P F , T

i i=z B P , i i  =y μ       (25) 
 

According to the conditions of Theorem 2, the solutions of 
fuzzy control problem of CPTDATS fuzzy systems can be 
obtained by applying ILMI algorithm, which is developed on 
the LMI technique. The flowchart of ILMI algorithm, which 
can be used to solve the conditions of Theorem 2, is 
introduced as follows. 

 
<ILMI Algorithm> 

( )0Obtain initial  from the following Ricatti equation.P
( ) ( ) ( ) ( )0 0 0 0T Tˆ ˆ ˆ ˆ 0+ − + =A P P A P BB P Q
( )0
iGet initial  by standard pole placement technique.F

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

k k k k k k
1 i i ijq

k

, , , , , ξ

k k k k
1 ijq

Min        

Subject to

       0, 0, 0, ξ 0 and (18)

α

≥

P S N F μ

P > S > N >

( ) ( ) ( )k k k
ij i iSet ,  and  from (25).Y y z

Solving by LMI toolbox

( )k 0α <

( ) ( ) ( )( ){
( ) ( )

k k kT
ij i j

ij

k kT
i i

− +

+ −

∑ Y B P F

z B P ( ) ( ) }k k
i i+ − < υy μ

Yes

No

Yes

Feasible solution

Infeasible and stop interation

( )

( )( )

( ) ( ) ( ) ( )

k

k

k k k k
1 ijq

Min        trace

Subject to

       0, 0, 0, ξ 0 and (18)≥

P
P

P > S > N >

k k 1= +

No

 
Fig. 2  ILMI Algorithm 

 

In which 
r

i
i 1

1ˆ
r =

= ∑A A , 
r

i
i 1

1ˆ
r =

= ∑B B  and 0>Q , υ  is a 

predetermined small. Applying the above ILMI algorithm, 
one can obtain a fuzzy controller (8) to stabilize the 
CPTDATS fuzzy systems (5) with satisfying the H∞  
performance constraint (10). In next section, a numerical 
example is provided to demonstrate the usefulness and 
effectiveness of the proposed design approach. 
 

 
VI. NUMERICAL SIMULATIONS 
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To consider the time delay effect in the actuality situation, 
it is assumed that the sensor for exploring the ( ) ( )2 t tx = θ  is 
perturbed by time delay given as: 

 
( )i i i 1itΔ =A D Δ Q         (26a) 

( )id i i 2itΔ =A D Δ Q         (26b) 
where 
 

i

0 0 01
0 01 0

.
.

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
D , ( ) ( )

( )i

t 0
t

0 t
cos

sin
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

Δ , 

1i

1 0
0 2

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Q , 2i

0 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Q    

 
To obtain the CPTDATS fuzzy model of the inverted robot 
arm system, it is necessary to apply the linearization 
technique [12]. Let us choose three operating points as 
follows: 
 

( ) ( )d oper1
,  58 0 0 0 0x x , u+ + + = ,  

( ) ( )d oper2
,  0 0 0 0 0x x , u = , 

and  ( ) ( )d oper3
,  118 0 0 0 0x x , u− − − = −    (27) 

 
Then, three linear subsystems can be constructed by these 
three operating points. In which, ( )d oper2

,  x x , u  is the 

maintain equilibrium point and the others are the 
off-equilibrium points. Through constructing the above three 
linear subsystems and defining membership functions as Fig. 
3, one can obtain the time-delay affine T-S fuzzy model, 
which is composed by three rules as follows: 
 
Rule 1:  IF ( )1x t  is about 11M   

THEN ( ) ( ) ( ) ( ) ( )( )1 1 1d 1dt t t tx x x= + Δ + + Δ − τA A A A   

      ( ) ( )1 1t tu v+ + +B a E          (28a) 

Rule 2:  IF ( )1x t  is about 21M  

THEN ( ) ( ) ( ) ( ) ( )( )2 2 2d 2dt t t tx x x= + Δ + + Δ − τA A A A  

( ) ( )2 2t tu v+ + +B a E         (28b) 

Rule 3:  IF ( )1x t  is about 31M  

THEN ( ) ( ) ( ) ( ) ( )( )3 3 3d 3dt t t tx x x= + Δ + + Δ − τA A A A   

( ) ( )3 3t tu v+ + +B a E         (28c) 
where 
 

1

0 0 85
2 2495 0

.
.

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
A , 2

0 0 85
7.0711 0

.⎡ ⎤
= ⎢ ⎥−⎣ ⎦

A , 

3

0 0 85
3.91 0

.⎡ ⎤
= ⎢ ⎥

⎣ ⎦
A , 1 2 3

0
10

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
B B B  

( )
( )1 2 3

0 0 02 t
0.01 t 0

. sin
cos

⎡ ⎤
Δ = Δ = Δ = ⎢ ⎥

⎢ ⎥⎣ ⎦
A A A ,  

1d 2d 3d

0 0 15
0 0

.⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
A A A ,  

( )
1d 2d 3d

0 0 01 t
0 0

. sin⎡ ⎤
Δ = Δ = Δ = ⎢ ⎥

⎣ ⎦
A A A ,  

1

0
4.9498

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

a , 2

0
0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
a , 3

0
27.05

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
a , 

0
0 5.

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
E  

 
According to the membership functions defined in Fig. 3, the 
S-procedure is presented as follows. For Rules 11, i.e., 

( )13 t 60x≤ ≤ , the matrices of S-procedure are given as 
follows: 
 

111

1 0
0 0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
T ,  ( )

111

1 3 180 60 180
2

0

/ /⎡ ⎤− π + π⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

n  and 

( ) ( )111v 3 180 60 180/ /= π × π            (29) 
 

For Rules 33, i.e., ( )1120 t 3x− ≤ ≤ − , the matrices of 
S-procedure are given as follows: 

 

331

1 0
0 0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
T ,  ( )

331

1 3 180 120 180
2

0

/ /⎡ ⎤− − π − π⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

n  and 

( ) ( )331v 3 180 120 180/ /= − π × − π          (30) 
 

For the above CPTDATS fuzzy model (28), the fuzzy 
controller can be designed by applying Theorem 2 and the 
ILMI algorithm. In this example, it is assumed that the H∞  
control performance is guaranteed for an attenuation 

2 0 01.γ = . Besides, the disturbance is ( ) ( )t 0 5 tv . sin= . Then, 
we can get a feasible solution after four iterations of the fuzzy 
controller design procedure. The final decay rate α  is 

0.5782−  and the feasible solutions are obtained as follows: 
 

282.4378 11.4783
11.4783 12.1012

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
P , 

444.0919 473.4944
473.4944 505.6346

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
S , 

1

9.5678e9 0
0 9.5678e9

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
N ,  

111 10.0226ξ = , 331 5 7973.ξ =             (31) 
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And, the fuzzy controller has the following form: 
 
Rule 1: IF ( )1x t  is about 11M  

THEN ( ) [ ] ( )t 200.3008 221.9395 t 0.4599  u x= − −  (32a) 

Rule 2:  IF ( )1x t  is about 21M  

THEN ( ) [ ] ( )t 200.2968 221.9349 t   u x= −          (32b) 

Rule 3:  IF ( )1x t  is about 31M  

THEN ( ) [ ] ( )t 200.3648 221.9972 t 1.5482 u x= − −   (32c) 
 
The simulation results are shown in Fig. 4 and Fig. 5. From 
the simulated results, one can find that the controlled 
nonlinear time-delay inverted robot arm system (4) is globally 
stable. 
 

VII. CONCLUSIONS 
In this paper, we have shown that the perturbed inverted 

robot arm system with disturbance can be controlled by the 
T-S fuzzy controllers. The proposed fuzzy controller design 
approach was developed via PDC method and ILMI 
algorithm. Finally, the simulation results showed that the 
fuzzy controller designed in this paper can stabilized the 
nonlinear inverted robot arm subject to satisfying H∞  
performance constraint. 
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Fig. 3   Membership functions of ( )1 tx  

 
 

 

Fig. 4   Responses of ( )1 tx  

 

 

Fig. 5   Responses of ( )2 tx  

 

FrD5.2

4385


