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Kinematic Analysis of the Spherically Actuated Platform
Manipulator

H. Pendar, M. Vakil, R. Fotouhi and H. Zohoor

Abstract—New methods for the inverse and forward
kinematic analysis of the novel six Degrees of Freedom
(6DOF) parallel manipulator which has only two legs are
presented. The actuation of the new mechanism is through
two base-mounted spherical actuators. In the inverse pose
kinematic, active joint variables are directly calculated with
no need for the evaluation of passive joint variables. In the
forward pose kinematic, closed form solution adopting a new
approach is presented. It is shown that the inverse and
forward pose kinematic have sixteen and four different
solutions, respectively. Moreover, closed form equations for
the rate kinematic analysis are proposed. Finally, two
different categories of the singularity points for the new
mechanism with their geometrical interpretation are
introduced. In one category the mechanism loses one or more
DOF while in the other one it gains one or more DOF.

I. INTRODUCTION

Due to their high stiffness, high speed, large load
carrying ability and high precision positioning

capability, parallel mechanisms have become very
popular in the past decade. There are numerous parallel
manipulators with different structure, different way of
actuations and different number of the degree of freedom
(DOF). The parallel manipulator proposed in [1] which is
the subject of this paper as shown in Fig.1, has a different
structure than the others. The specific feature of this
manipulator is that with only two legs it has 6 DOF. Fewer
legs leads to smaller required space for manipulator’s
installation, decreases the chance of the leg’s collision
during maneuver, and also means fewer moving part.
However, although the manipulator has the above
advantages, it suffers from the small load carrying capacity
which is a direct consequence of its actuation. It is to be
noted that, the manipulator has two base-mounted spherical
actuators. An example of spherical actuator can be found in
[2]. Since the prismatic joints are passive, the required
torque for a specific maneuver might be large and the
dynamic simulations presented in [3] justify this claim. Its
authors’ future work to find a remedy for this draw-back; for
example by making the prismatic joints partially active. Here
a complete solution for the kinematic analysis of the
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manipulator, considering passive prismatic joints which is
the original manipulator introduced in [1], is

given. New methods for the inverse and forward pose
kinematic analysis different than the ones presented in [1]
are proposed. Contrary to [1], in the inverse pose kinematic
the active joint variables are evaluated with no need for the
calculation of the passive ones. Different than the approach
adopted in [1] for the forward pose analysis which does not
lead to a closed form solution, here a closed form solution
for the forward pose kinematic is introduced. The different
possible numbers of solution for the inverse and forward
pose kinematic analysis are given. A closed form solution
for the rate kinematic is proposed. The two different
categories of the singular points for the new mechanism with
their geometrical interpretation are introduced. It is worth
noting that in one category the mechanism loses one or more
DOF while in the other one it gains one or more DOF.

II. MECHANISM DESCRIPTION

The parallel manipulator presented in this article
consists of a moving platform connected to the base frame
by two legs as shown in Fig. 1. Each leg is composed of the
spherical (S), prismatic (P) and universal (U) joints, which is
called a SPU leg. These joints in a serial manner construct
each leg. Although, it consists of two legs, it has 6 DOF[1].
Moreover it should be mentioned that the actuators of the

mechanism are at the spherical joints and are base-mounted.
Z6(right)

Fig. 1: Manipulator Configuration and Coordinate
Description

III. PARAMETER AND COORDINATE DESCRIPTION

To specify the location and orientation of the moving
platform with respect to (w.r.t) the base, a coordinate frame
is attached to the moving platform in which its origin is at
the center of the platform. The moving platform coordinate
and the base coordinate are schematically shown in Fig. 1.
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coordinate w.r.t the base frame coordinate using X-Y-Z
Eulerian angles of Rotation is

T =
CoCf CoSPpSy—SaCy CoSpCy+ SaSy x
SaCB SoSpSy+CoCy SaSpCy—CaSy y
-8B CaSy cpCy z
0 0 0 1

For the inverse and forward pose kinematic analysis, the
standard Denavit-Hartenberg parameters are required. The
selected intermediate coordinates based on the Denavit-
Hartenberg notation are shown in Figure 2. The spherical,
prismatic and universal joints need three, one and two
coordinate frames, respectively. The constant platform
parameters as well as the Denavit-Hartenberg parameters for
the left and right legs of the manipulator are:
¢, Distance between two spherical joints.

(¢, Distance between two universal joints.
Z( rolgt Length of the left and right legs, respectively.
(Hlf , Hzf , 03f ),(6,x,6,,,06,;) : Spherical joints variables

for the left and right legs, respectively.
(@/>85,)> (D> Py ) - Universal joint variables for the left

and right legs, respectively.

Fig. 2: Intermediate coordinates description for the left
leg

The X and Z axes for each coordinate frame are presented
in Fig. 2 and the Y axis can be found via the right-hand rule.
The Denavit-Hartenberg Parameters for the selected
intermediate coordinates are given in tablel.

IV. INVERSE POSE KINEMATIC

In the inverse pose kinematic the desired actuator
variables which are the spherical joint variables, should be
calculated having iT . First the basic idea which leads to the

calculation of the active joint variables with no need for the
evaluation of the passive joint ones will be discussed and
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later its
introduced.
Table 1.Denavit-Hartenberg parameters for the left leg

equivalent mathematical repression will be

! %, | a | d 0,
1 0 0 0 6,
2 90 0 0 6, +90
3 90 0 0 0,
4 0 0 0
¢ S
5 -90 0 0 90— ¢,
6 90 0 0 &,

Having the platform’s location and orientation in inverse
pose process, location of the points 4" and B’in Fig. 1 are
known. Thus, the leg’s direction is available. Therefore, two
spherical variables 6,6, which are related to the direction
of the leg as shown in Fig. 3 can be evaluated.

03

~

)
02

N

01

Fig. 3: Spherical joint’s variables description
To have @, , rotation of the leg around itself has to be found.

From Fig. 1, it is clear that the direction ofz,, solely

depends on the rotation of the leg around itself. However,
z5 for each leg is perpendicular to its corresponding z, and

leg. Since the direction of leg and z, is known, the direction
of z,will be available by cross producting z, and the leg’s

direction. It is to be noted that, the direction of the leg is
available having @ ,0, . Also, the z, direction is the same as

the direction of the normal vector of the manipulator which
is known. In the following the mathematical equivalent of
the above geometrical interpretation is provided.

The index f'in the following formulation indicates that the
related matrix evaluated for the left leg. The transformation
matrix between coordinates (0) and (6) of the left leg, Fig. 2,
using the Denavit-Hartenberg parameters given in table 1,
is:

(), =TT, )
This transformation is also:
(2T)f :(%T_l)f f,T(f,T_l)f 2)
In which %T,ﬁT are:
1 0 0 .50, -1 0 0 .57,
1) :0 1 0 O (°T) . = 0 -10 O
oo 1 o | o 0o 1 0
0 00 1 0 0 0 1

Equaling Eqs. (1) and (2), by the fact that %7 is completely
known , we have:
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completely known, forth column of Eq.(2) Sforth column of Eq.(1)

k 0 [t s€0,CO,;

kz Brr=1\ Brr/6m-1 0 = zf'SHI/'Cezf'
— T Breer i y y y

k3 (0 )f P (P )f 0 ff-SHzf

1 1 1

wherelk, k, k, 1] is the forth column of Eq. (2) and

completely known. Thus the spherical joint variables for the
left are:

61( p is:
0,, =atan2 (k,,k,) 3)
0,, =atan2 (k,,k, /C6,,) if 6,=00rz (4
0,, =atan2 (k;,k,/S6,,) if 6,#0and7z (5)
Having 0, and 0,,,6,, can be calculated as follows.
The direction of Z 3f is:

Co,,Co,,
Zy, =|86,,C6,, (6a)
S6,,
where 61( Ps 62 ,are already calculated. Also, the direction of
Zg, 1s:

Zor=
(-C6,,56,,CO,, +56,,560,,)C¢,, +C0b,,CH,, Sp,,
(=56,,56,,C0,, - C6,,56,,)C9,, +56,,C0,,5¢,
C€0,,CO,,Co,, +56,,5¢,
(6b)
Cross producting Zy, and Z 6r and multiplying the
result by 'R =("R,R)™", one has:

b - Se3f C¢1f
Py |7 o R(Zsy X Zg) = 0 )
P C93fc¢1f
Since 6, 6, and T are available, the left had side of

Eq. (7) is known. It is to be noted thatZ3/ and (fR are
known because 6, ,, 8,  are evaluated in previous step and

7 i1s identified since it is the third column off;T .

6f
Therefore 0, is:
0,, = atan2 (=p,,P3) (®)
Tabl‘e.Z: Multiple Answers for Inverse Solution of the Left Leg
Fsler:f t 91 ! 92 S 93 S ¢1 S
e T O | Oytm |~ T
T | Oy | T=0 | O | =g+
M| Oy AT | T, | O T 0
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From Egs. (3) and (8), it can be concluded that there are four
possible answers for the inverse solution of the left leg
which are given in table 2. The same procedure can be used
to have the active variables of the right leg, except that

163T,gT for the right leg are:

-1 0 0 .50, 100 -5,

(OT):O -1 0 0 (,T):OIO 0

B0 0 -1 0 | o010
0 0 0 1 000 1

Since there are four possible solutions for each leg,
there exist sixteen possible answers for the inverse problem
of the introduced manipulator.

V. FORWARD POSE KINEMATIC

The forward pose problem for the majority of the
parallel robots is solved through the numerical analysis and
rarely a closed from solution is available. However, in this
paper a closed form solution for the forward pose problem of
the proposed manipulator is presented. Consider Fig.1 since
the spherical joint’s variables are given, the direction of

(Z5), and  (Zy),. available.  Since
g (Zs )zeﬁ and” (Zs )

surface, their cross product, m, gives the normal direction
of the platform. Moreover, line A’B” which connects point
A’ of the left leg to point B” of the right leg, placed on the
moving platform surface. Thus:

M="(Zs) % *(Zs) gy = m-B'4"=0 9)

or

axis are

right always lay on the moving platform

m-BA'=0 = Hl, +El,+G=0
H=mcé,,C6,, |+ms6,C0, |+ms6,,
E=m[C6,,CO, ]+ m,[56,,C,]-m,S6,,
G=—0,m,

where, the relation for the B’A’is given in Eq. (13). In
addition, it is obvious that the distance between 4" and B’

is constant and is ¢, where [ is the length of the

manipulator’s platform thus:
A'B|=1,

(10)
which lead to:
(0 ) +(Lg)’ =240 0y —Bl,—Cl, =D
4=-[ce,,co,,c6,, -6,,)-56,,56,,]
B= [25 »COx CZR]
C=20,C6,,C0,,
D=( 1) =(t,)
Egs. (9) and (10) are two equations with two unknown

which are £, and / ;. From Eq. (9),/ ; can be found in

terms of { .. Substituting the result £ ,in terms of / , in
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Eq. (10), a polynomial of the second order in terms of
l + will be obtained which can be solved easily. This second

order polynomial is:
a(ff)2 +bl,+c=0
a=1+1"-2I4
b=2FI-2FA-BI-C
c=F>+BF-D
F=-G/E
I=-H/E
Solving Eq. (11) for ¢ ., £, will be found from Eq.

(9). To completely address the direct kinematics problem,

(11)

®Thas to be calculated which would be done in the
remainder of this section.
B(Xé)leﬁ is equal to:

B B'A" B'A
(X )= =20 (12)
6/ lefi ‘B/A/ Z .
In which B’4’ is:
Xy —Xp EA,-CHU-CHZ,-—€B+€RC61RC62R
BA=|y,—yy|= [/-SHU-CHZA,- +/0,56,,C6,,
Zy—Zp 1,86, — 1,50,
(13)
expressing ? (X, )le/t in the coordinate (3) (See Fig. 2):
3(X6)le/t = ;RB(XG)le/t (14)
Also é’R:jR;‘RSR is:
S ¢1f C¢2f -8 ¢1f S ¢2f C¢1f
éRle/t (:jR ;R GSR)le/t = S¢2/ C¢2/ 0
- C¢L/‘C¢2/‘ C¢1/‘S ¢2f S ¢1f
(15)

Equaling the first column of Eq. (15) to the Eq. (14),
(since both represent”® (X ) lef ) the desired N could be

determined as below:

n, S¢1f C¢2f
n=|n, = (X)u="(X)um R =| 5S¢, (16)
}’l3 Completely known - C¢1f C¢2f

So:
¢,, =atan2 (n,,~n,) (17)
and¢2A p is:
¢2f =atan2 (nz,—n3 /C¢1f) if ¢1f =0or &xw (18)
¢2/ =atan2 (n,,n, /S¢1f) others (19)

Now f;T can be computed as below:

WeA6.3
ST @0
5T : Known(because the configuration is known)

T : known(because inputs are known)

2T < known(because ¢ ; Is calcualted ')
iT,:T : known(bacuase @ -9y, are calcualeted)

T : known(because the configuration is known)
Finally, since Eq. (17) gives two possible answers for
é, for each pair of (zf,ﬁ ) there are two possible
answers for the forward pose solution. Moreover, Eq. (11)
can lead to two answers for / . thus two pairs of (£ /)

can be acceptable and as a result there exit four possible
solutions for the forward pose problem.

VI. INVERSE RATE KINEMATICS

In inverse rate Kinematics, having the linear velocity of
point G shown in Fig. 4 as well as the angular velocity of the

moving platform, all @ have to be evaluated.

Fig. 4: The direction of h, n and m
Consider the following definitions:

S=1z

q=Ryq

where, Z, is shown in Fig. 2, [ is the length of the link

and EA,/G

The velocity of point A”in Fig. 4 is:
S=i+w,xq

z=1z,,

is the position vector of point 4 w.r.t point G .

(2]
where 7 and @pare the linear velocity of point G and
angular velocity of the moving platform, respectively and
are known. AlsoS from the leg view is:

S=Il§+(w+w,)xS (22a)
where ¢, is the angular velocity of the leg, @, is the
component of @, along z, and ¢ is composed of the
components of @, which are in the plane that hasz, as the
normal vector. Since @, and § have the same direction
there cross product will be vanished. Therefore Eq. (22a) is:

S=[+wxS (22b)
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Taking the dot and cross product of Egs. (21) and (22b) with
§ respectively and equalling the results, one obtains:
§xS

[ =58, o= (23)

It must be noted that S is known from Eq. (21) and the
calculated angular velocity of the leg in Eq. (23), dose not
have its component along the leg,&,. To have this
component the following steps have to be taken. Equaling
the angular velocity of the cross symbol of the universal
joint, from the platform and leg’s views, we have:

@
f_/%

0, +0,=0+0, +0, (24)

In which ¢ is the relative angular velocity of the cross
symbol of the universal joint w.r.t the platform and is in the
direction of n; «,is the relative angular velocity of the
cross symbol of the universal joint w.r.t the leg which is in
the direction of /and at last &, is the component of the

leg's angular velocity in the leg’s direction.
Defining k as:
k=nxh (25)
where 7 and/are shown in Fig. 4 and taking the dot
product of the Eq. (24) with £ leads to:
k-a,=k-a+k-a, (26)
Therefore @, which is the component of the leg’s angular
velocity along itself is equal to:
k(@,-a) .
D, =— "S5
k-s
Thus the angular velocity of the legis (¢, =@, + @ ):

27)

i o . .
w, = L+ k- XS IA §+SXS (28)
k-z I Jk-z /
Eq. (28) in the matrix format is:
[o]=[Fpvspv] i @, (29)
where
s Eh
Fpy==——4+———3§ (30)
/ h-z)1
AL T T~ AT
Fsv=| 5 L ZhA (§q~) (31
-z [ \h-z)1
RULE1T
The rule below was used in deriving Egs. (29-31):
SXm=5m (32)
where 3 is:
0 -5 s,
s=| s 0 -y (33)
-5, 8 0

Utilizing Egs. (29-30) for the left and right legs, we have:

WeA6.3

IS S
|:wg/ } _ {(FPV),- (SPV)A,} i
(o) (591 | o,

D
where, @y, Gy ATC the angular velocity of the left and right

(34)

legs respectively. Also(Fpv),,(Fpv),.(Spv),and(Spv),

are calculated from Eqgs. (30) and (31) for the right and left
legs, respectively. Thus having 7, ¢, the angular velocity of
each leg is available. Moreover, the angular velocity of each
leg in terms of @ is: (as an example for the right leg)

(RV)_I([;?R)RCOLR =0, 35)
where
0 s6 cbrcty, . élR Dxp
RV =0 —cb, 56,,c0,,|,0,=|60,, | 0, =| 0y
1 0 56, 6, o
(36)

and (JR), is the rotation matrix between coordinate 0 of the
right leg and the base frame coordinate frame.

VII. FORWARD RATE KINEMATICS

In forward rate kinematics, having the active joints
velocity, the linear velocity of point G and angular velocity
of the moving platform has to be obtained. From Eq. (34)
one has:

(RM)"'W =P (37)
If the actuator rates are known, from Eq. (35) the angular
velocity of each leg is (for example for the right leg):
W = ((RV)_l(I;)R)R)_l Oy
Thus W in Eq. (34) is available and Eq. (37) gives
angular velocity of moving platform and the linear velocity

of the point G. More details for the rate kinematics and also
acceleration calculation are available in [4]

VIII. SINGULARITY ANALYSIS

Having the closed form solution of the rate kinematics,

the singularity points can be found setting the determinant of
the relation matrix equal to zero and infinity. Therefore, two
different set of singularity points with different natures will
be obtained [5] . However, this method requires the solution
of a complicated set of nonlinear equations. Instead, here
another approach with the same result but without any need
to solve nonlinear equation will be presented.
1) The first kind of singularity occurs when the left or right
legs reaches either a boundary of its work space or an
internal boundary limiting different sub regions of the
workspace. This kind of singularity includes points where
different solutions can exist for the inverse kinematics
problem. In such cases the mechanism loses one or more
degree(s) of freedom(s). To find such points, the Jacobian
Matrix for the left and right legs is obtained and then its
determinant is set to zero. Thus

det(J)=0°C8,Cp, =0 (37)
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which leads to:

L, =0 or £,=0 (38a)
6,, =190 or,, =190 (38b)
¢, =190 org,, =190 (38¢c)

The schematics of the manipulator corresponding to Egs.
(38a-c) are given in figs. (5a-c), respectively.

=z

Fig. Sa: Schematic for Eq. (382) when/ |

.

Fig. Sb: Schematic for Eq. (38b) when 0, =0

-

Fig. Sc: Schematic for Eq. (38¢) wheng, =0

2) The second kind of singularity occurs when the moving
platform is movable even when the actuators are locked.
These kinds of singularity include points where different
solution can exist for the forward kinematics problem. In
such a case the mechanism gains one or more degree(s) of
freedom(s). In the forward kinematics solution, the direction
of the normal vector of the moving platform must be found

by the cross product of *(Z;),,and *(Z;),,,, that is:

right

m= B(Zs)ze/t X B(ZS)right
If B(Zs)leﬂand Z,),

right

(37
are parallel then their cross

product will be vanish. So Eq. (9) is always true and the only
constraint equation for the two unknowns /¢ il g is Eq. (10).

Since the numbers of the unknowns are more than the
number of equations there exist many solutions for £ .,/ ,

In this case if the actuated joints locked that are direction of
left and right legs are fixed, the platform could take different
configuration. A schematic of the second category of
singular point for the introduced mechanism is shown in Fig.
6.

WeA6.3

Fig. 6: Schematic of the manipulator correspond to the
second category of the singular point

IX. CONCLUSION

In this article forward and inverse pose of the novel
Spherically Actuated Manipulator introduced in [1], were
presented. In the inverse pose solution, active joint variables
were calculated with no need for the evaluation of the
passive joint variables. It was shown that there are 16
possible answers for the inverse pose problem. A closed
form solution for the forward pose of the mechanism was
obtained. Also it was verified that the maximum number of
the solutions for the forward problem are four. The rate
kinematics problem was solved and a closed form relation
was achieved.

Finally, two different sets of singularity points were
given. Having the closed form rate kinematics solution, the
singularity points could be found by setting the determinant
of the Jabocian matrix equal to zero and infinity. By doing
so a set of nonlinear equations should be solved. However,
in our method the singularity points were derived form
another way, which gives the same results, but with no need
for solving any nonlinear algebraic equations.
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