
 
 

  

Abstract—New methods for the inverse and forward 
kinematic analysis of the novel six Degrees of Freedom 
(6DOF) parallel manipulator which has only two legs are 
presented. The actuation of the new mechanism is through 
two base-mounted spherical actuators. In the inverse pose 
kinematic, active joint variables are directly calculated with 
no need for the evaluation of passive joint variables. In the 
forward pose kinematic, closed form solution adopting a new 
approach is presented. It is shown that the inverse and 
forward pose kinematic have sixteen and four different 
solutions, respectively. Moreover, closed form equations for 
the rate kinematic analysis are proposed. Finally, two 
different categories of the singularity points for the new 
mechanism with their geometrical interpretation are 
introduced. In one category the mechanism loses one or more 
DOF while in the other one it gains one or more DOF.  
 

I. INTRODUCTION 
ue to their high stiffness, high speed, large load 
carrying ability and high precision positioning 
capability, parallel mechanisms have become very 

popular in the past decade. There are numerous parallel 
manipulators with different structure, different way of 
actuations and different number of the degree of freedom 
(DOF). The parallel manipulator proposed in [1] which is 
the subject of this paper as shown in Fig.1, has a different 
structure than the others. The specific feature of this 
manipulator is that with only two legs it has 6 DOF. Fewer 
legs leads to smaller required space for manipulator’s 
installation, decreases the chance of the leg’s collision 
during maneuver, and also means fewer moving part. 
However, although the manipulator has the above 
advantages, it suffers from the small load carrying capacity 
which is a direct consequence of its actuation. It is to be 
noted that, the manipulator has two base-mounted spherical 
actuators. An example of spherical actuator can be found in 
[2]. Since the prismatic joints are passive, the required 
torque for a specific maneuver might be large and the 
dynamic simulations presented in [3] justify this claim. Its 
authors’ future work to find a remedy for this draw-back; for 
example by making the prismatic joints partially active. Here 
a complete solution for the kinematic analysis of the 
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manipulator, considering passive prismatic joints which is 
the original manipulator introduced in [1], is  
given. New methods for the inverse and forward pose 
kinematic analysis different than the ones presented in [1] 
are proposed. Contrary to [1], in the inverse pose kinematic 
the active joint variables are evaluated with no need for the 
calculation of the passive ones. Different than the approach 
adopted in [1] for the forward pose analysis which does not 
lead to a closed form solution, here a closed form solution 
for the forward pose kinematic is introduced.  The different 
possible numbers of solution for the inverse and forward 
pose kinematic analysis are given. A closed form solution 
for the rate kinematic is proposed. The two different 
categories of the singular points for the new mechanism with 
their geometrical interpretation are introduced. It is worth 
noting that in one category the mechanism loses one or more 
DOF while in the other one it gains one or more DOF.  

II. MECHANISM DESCRIPTION  
The parallel manipulator presented in this article 

consists of a moving platform connected to the base frame 
by two legs as shown in Fig. 1. Each leg is composed of the 
spherical (S), prismatic (P) and universal (U) joints, which is 
called a SPU leg. These joints in a serial manner construct 
each leg. Although, it consists of two legs, it has 6 DOF[1]. 
Moreover it should be mentioned that the actuators of the 
mechanism are at the spherical joints and are base-mounted. 

 
Fig. 1: Manipulator Configuration and Coordinate 

Description  

III. PARAMETER AND COORDINATE DESCRIPTION 
   To specify the location and orientation of the moving 
platform with respect to (w.r.t) the base, a coordinate frame 
is attached to the moving platform in which its origin is at 
the center of the platform. The moving platform coordinate 
and the base coordinate are schematically shown in Fig. 1. 
The transformation matrix of the moving platform 
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coordinate w.r.t the base frame coordinate using X-Y-Z 
Eulerian angles of Rotation is 
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For the inverse and forward pose kinematic analysis, the 
standard Denavit-Hartenberg parameters are required. The 
selected intermediate coordinates based on the Denavit-
Hartenberg notation are shown in Figure 2. The spherical, 
prismatic and universal joints need three, one and two 
coordinate frames, respectively. The constant platform 
parameters as well as the Denavit-Hartenberg parameters for 
the left and right legs of the manipulator are: 

B:  Distance between two spherical joints. 

P :  Distance between two universal joints. 

Rf ll , :  Length of the left and right legs, respectively. 

),,(),,,( 321321 RRRfff θθθθθθ : Spherical joints variables 
for the left and right legs, respectively. 

),(),,( 2121 RRff φφφφ : Universal joint variables for the left 
and right legs, respectively. 

 
Fig. 2: Intermediate coordinates description for the left 

leg 
 
The X and Z axes for each coordinate frame are presented 

in Fig. 2 and the Y axis can be found via the right-hand rule. 
The Denavit-Hartenberg Parameters for the selected 
intermediate coordinates are given in table1.  

IV. INVERSE POSE KINEMATIC 
In the inverse pose kinematic the desired actuator 

variables which are the spherical joint variables, should be 
calculated having TB

P . First the basic idea which leads to the 
calculation of the active joint variables with no need for the 
evaluation of the passive joint ones will be discussed and 

later its equivalent mathematical repression will be 
introduced.  

Table 1.Denavit-Hartenberg parameters for the left leg 
i  

1−iα  1−ia  id  iθ  
1 0 0 0 

1θ  
2 90 0 0 902 +θ  
3 90 0 0 

3θ  
4 0 0 

f  0 

5 -90 0 0 
190 φ−  

6 90 0 0 
2φ  

Having the platform’s location and orientation in inverse 
pose process, location of the points A′  and B′ in Fig. 1 are 
known. Thus, the leg’s direction is available. Therefore, two 
spherical variables 21 ,θθ  which are related to the direction 
of the leg as shown in Fig. 3 can be evaluated. 

 
Fig. 3: Spherical joint’s variables description 

To have 3θ , rotation of the leg around itself has to be found. 
From Fig. 1, it is clear that the direction of 5z , solely 
depends on the rotation of the leg around itself.  However, 

5z  for each leg is perpendicular to its corresponding 6z  and 
leg. Since the direction of leg and 6z is known, the direction 
of 5z will be available by cross producting 6z  and the leg’s 
direction. It is to be noted that, the direction of the leg is 
available having 21 ,θθ . Also, the 6z direction is the same as 
the direction of the normal vector of the manipulator which 
is known. In the following the mathematical equivalent of 
the above geometrical interpretation is provided.  

The index f in the following formulation indicates that the 
related matrix evaluated for the left leg. The transformation 
matrix between coordinates (0) and (6) of the left leg, Fig. 2, 
using the Denavit-Hartenberg parameters given in table 1, 
is:   
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Equaling Eqs. (1) and (2), by the fact that TB
P is completely 

known , we have: 
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where[ ]Tkkk 1321 is the forth column of Eq. (2) and 
completely known. Thus the spherical joint variables for the 
left are: 

f1θ  is: 

=f1θ atan2 ( ), 12 kk                                              (3) 

=f2θ atan2 ( )/, 113 fCkk θ       if      πθ orf 01 =     (4)                

  =f2θ atan2 ( )/, 123 fSkk θ         if     πθ andf 01 ≠   (5)      

Having f1θ and f2θ , f3θ  can be calculated as follows. 

The direction of fZ 3  is: 

fZ 3  = 
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where ff 21 ,θθ are already calculated. Also, the direction of 

fZ 6  is: 
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(6b) 
Cross producting fZ 3 and fZ 6  and multiplying the 

result by 11
2

0
1

2
0 )( −= RRR , one has: 
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Since ff 21 ,θθ and TB
P are available, the left had side of 

Eq. (7) is known. It is to be noted that fZ 3 and R2
0 are 

known because ff 21 ,θθ are evaluated in previous step and 

fZ 6  is identified since it is the third column of TB
P . 

Therefore  f3θ  is: 

=f3θ   atan2 ( ), 31 pp−                            (8)  
Table.2: Multiple Answers for Inverse Solution of the Left Leg 

First 
set f1θ  f2θ  f3θ  f1φ  

Second 
set  f1θ  f2θ  πθ +f3  πφ +− f1  

Third 
set πθ +f1  f2θπ −  f3θ  πφ +− f1  

Fourth 
set πθ +f1  f2θπ −  πθ +f3  f1φ  

From Eqs. (3) and (8), it can be concluded that there are four 
possible answers for the inverse solution of the left leg 
which are given in  table 2. The same procedure can be used 
to have the active variables of the right leg, except that 

TT BP
06 ,  for the right leg are: 
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Since there are four possible solutions for each leg, 
there exist sixteen possible answers for the inverse problem 
of the introduced manipulator.  

V. FORWARD POSE KINEMATIC 
The forward pose problem for the majority of the 

parallel robots is solved through the numerical analysis and 
rarely a closed from solution is available. However, in this 
paper a closed form solution for the forward pose problem of 
the proposed manipulator is presented. Consider Fig.1 since 
the spherical joint’s variables are given, the direction of 

leftZ )( 5  and rightZ )( 5  axis are available. Since 

left
B Z )( 5 and right

B Z )( 5  always lay on the moving platform 
surface, their cross product, m , gives the normal direction 
of the platform. Moreover, line BA ′′  which connects point 
A′  of the left leg to point B′ of the right leg, placed on the 

moving platform surface. Thus:  

=m left
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where, the relation for the 
→

′′AB is given in Eq. (13). In 
addition, it is obvious that the distance between A′  and B ′  
is constant and is p  where p is the length of the 
manipulator’s platform thus: 

PlBA =′′                               (10) 
which lead to: 
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Eqs. (9) and (10) are two equations with two unknown 
which are R  and f . From Eq. (9), R  can be found in 

terms of f . Substituting the result R in terms of f  in 
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Eq. (10), a polynomial of the second order in terms of 

f will be obtained which can be solved easily. This second 
order polynomial is: 
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Solving Eq. (11) for f , R  will be found from Eq. 
(9). To completely address the direct kinematics problem, 

TB
P has to be calculated which would be done in the 

remainder of this section. 
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expressing left

B X )( 6  in the coordinate (3) (See Fig. 2): 
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 Equaling the first column of Eq. (15) to the Eq. (14), 

(since both represent leftX )( 6
3 ) the desired ff 21 ,φφ could be 

determined as below: 
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and f2φ is: 
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Finally, since Eq. (17) gives two possible answers for  
f1φ  , for each pair of ( f , R ) there are two possible 

answers for the forward pose solution. Moreover, Eq. (11) 
can lead to two answers for f  thus two pairs of ( f , R ) 
can be acceptable and as a result there exit four possible 
solutions for the forward pose problem.   

VI. INVERSE RATE KINEMATICS 
In inverse rate Kinematics, having the linear velocity of 

point G shown in Fig. 4 as well as the angular velocity of the 
moving platform, all θ  have to be evaluated.  

 
Fig. 4: The direction of h, n and m  

Consider the following definitions: 

GARqzlSzz /3 ,ˆ,ˆˆ ′===  

where, 3ẑ  is shown in Fig. 2, l  is the length of the link 

and GAR /′ is the position vector of point A′w.r.t point G . 
The velocity of point A′ in Fig. 4  is: 

qtS P ×+= ω                                    (21)                      
where t  and Pω are the linear velocity of point G and 
angular velocity of the moving platform, respectively and 
are known. Also S  from the leg view is:  

                           SslS
L

Z ×++=
ω

ωω )(ˆ                        (22a)                       

where Lω  is the angular velocity of the leg, Zω is the 
component of Lω along 3z  andω is composed of the 
components of Lω  which are in the plane that has 3z  as the 

normal vector. Since Zω and S  have the same direction 
there cross product will be vanished. Therefore Eq. (22a) is: 

SslS ×+= ωˆ                                     (22b)                      
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Taking the dot and cross product of Eqs. (21) and (22b) with 
ŝ  respectively and equalling the results, one obtains: 

l
SsSsl ×=⋅=

ˆ
,ˆ ω                             (23)                                      

It must be noted that S is known from Eq. (21) and  the 
calculated angular velocity of the leg in Eq. (23), dose not 
have its component along the leg, Zω . To have this 
component the following steps have to be taken. Equaling 
the angular velocity of the cross symbol of the universal 
joint, from the platform and leg’s views, we have: 

hznp

l
ω

ω

ωωωω ++=+                          (24) 

In which nω is the relative angular velocity of the cross 
symbol of the universal joint w.r.t the platform and is in the 
direction of n ; hω is the relative angular velocity of the 
cross symbol of the universal joint w.r.t the leg which is in 
the direction of h and at last Zω is the component of the 
leg's angular velocity in the leg’s direction. 

Defining k as:      
hnk ×=                             (25)                                                                 

where n and h are shown in Fig. 4 and taking the dot 
product of the Eq. (24) with k  leads to: 

  zp kkk ωωω ⋅+⋅=⋅                               (26)                                                

Therefore Zω  which is the component of the leg’s angular 
velocity along itself is equal to: 
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Thus the angular velocity of the leg is ( ωωω += zl ):   
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 Eq. (28) in the matrix format is: 
  [ ] [ ] [ ]Tpl tSpvFpv ωω =                                  (29)  
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RULE I 
The rule below was used in deriving Eqs. (29-31): 
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Utilizing Eqs. (29-30) for the left and right legs, we have: 

P

p

RM

R

f

R

f

W

lR

lf t
Spv
Spv

Fpv
Fpv




















=









ωω
ω

)(
)(

)(
)(                   (34)                      

where, lRlf ωω , are the angular velocity of the left and right 

legs respectively. Also fFpv)( , RFpv)( , fSpv)( and RSpv)(  
are calculated from  Eqs. (30) and (31) for the right and left 
legs, respectively. Thus having  Pt ω,  the angular velocity of 
each leg is available. Moreover, the angular velocity of each 
leg in terms of θ  is: (as an example for the right leg) 

RLRRB RRV θω =− )()( 01                      (35)  
where                                        
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                              (36)                      
and RB R)( 0 is the rotation matrix between coordinate 0 of the 
right leg and the base frame coordinate frame. 

VII. FORWARD RATE KINEMATICS 
In forward rate kinematics, having the active joints 

velocity, the linear velocity of point G and angular velocity 
of the moving platform has to be obtained. From Eq. (34) 
one has: 

PWRM =−1)(                             (37)   
If the actuator rates are known, from Eq. (35) the angular 
velocity of each leg is (for example for the right leg): 

RRBLR RRV θω 101 ))()(( −−=  
Thus W in Eq. (34) is available and Eq. (37) gives 

angular velocity of moving platform and the linear velocity 
of the point G. More details for the rate kinematics and also 
acceleration calculation are available in [4] 

VIII. SINGULARITY ANALYSIS 
Having the closed form solution of the rate kinematics, 

the singularity points can be found setting the determinant of 
the relation matrix equal to zero and infinity. Therefore, two 
different set of singularity points with different natures will 
be obtained [5] . However, this method requires the solution 
of a complicated set of nonlinear equations.  Instead, here 
another approach with the same result but without any need 
to solve nonlinear equation will be presented. 
1) The first kind of singularity occurs when the left or right 
legs reaches either a boundary of its work space or an 
internal boundary limiting different sub regions of the 
workspace. This kind of singularity includes points where 
different solutions can exist for the inverse kinematics 
problem. In such cases the mechanism loses one or more 
degree(s) of freedom(s). To find such points, the Jacobian 
Matrix for the left and right legs is obtained and then its 
determinant is set to zero. Thus  

       0)det( 22
2 == φθ CCJ                    (37) 
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which leads to: 
00 == Rf or                         (38a) 

9090 22 ±=±= Rf orθθ                (38b) 

 9090 21 ±=±= ff orφφ               (38c) 
The schematics of the manipulator corresponding to Eqs. 
(38a-c) are given in figs. (5a-c), respectively. 

 
Fig.  5a: Schematic for Eq. (38a) when 0=f  

 
 

Fig.  5b: Schematic for Eq. (38b) when 02 =fθ  

 
Fig.  5c: Schematic for Eq. (38c) when 02 =fφ  

2) The second kind of singularity occurs when the moving 
platform is movable even when the actuators are locked. 
These kinds of singularity include points where different 
solution can exist for the forward kinematics problem. In 
such a case the mechanism gains one or more degree(s) of 
freedom(s). In the forward kinematics solution, the direction 
of the normal vector of the moving platform must be found 
by the cross product of left

B Z )( 5 and right
B Z )( 5 that is: 

=m left
B Z )( 5 ×  right

B Z )( 5                    (37)                                         

If left
B Z )( 5 and right

B Z )( 5 are parallel then their cross 
product will be vanish. So Eq. (9) is always true and the only 
constraint equation for the two unknowns Rf , is Eq. (10). 
Since the numbers of the unknowns are more than the 
number of equations there exist many solutions for Rf , .  
In this case if the actuated joints locked that are direction of 
left and right legs are fixed, the platform could take different 
configuration. A schematic of the second category of 
singular point for the introduced mechanism is shown in Fig. 
6.  

 
Fig. 6: Schematic of the manipulator correspond to the 

second category of the singular point 

IX. CONCLUSION 
In this article forward and inverse pose of the novel 

Spherically Actuated Manipulator introduced in [1], were 
presented. In the inverse pose solution, active joint variables 
were calculated with no need for the evaluation of the 
passive joint variables. It was shown that there are 16 
possible answers for the inverse pose problem. A closed 
form solution for the forward pose of the mechanism was 
obtained. Also it was verified that the maximum number of 
the solutions for the forward problem are four. The rate 
kinematics problem was solved and a closed form relation 
was achieved.  

Finally, two different sets of singularity points were 
given. Having the closed form rate kinematics solution, the 
singularity points could be found by setting the determinant 
of the Jabocian matrix equal to zero and infinity. By doing 
so a set of nonlinear equations should be solved. However, 
in our method the singularity points were derived form 
another way, which gives the same results, but with no need 
for solving any nonlinear algebraic equations. 
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