
 
 

 

  

Abstract— Constraint force minimization is essential to 
improve the dynamic performance of an industrial 
manipulator. An optimization method is proposed to minimize 
the constraint forces using the concept of dynamically 
equivalent system of point-masses. It is shown that for the six-
DOF PUMA robot the constraint forces are substantially 
reduced. 

I. INTRODUCTION 
he constraint forces are indispensable in modeling of all 
constrained system, e.g., industrial manipulators. In 

robotic literature, a lot emphasis has been given to eliminate 
the constraint forces from the equations of motion [1-4] in 
order to perform inverse and forward dynamics suitable for 
the robot control and simulation, respectively.  This is based 
on the fact that constraint forces do not contribute to the 
motion of the system under study.  However, they 
significantly influence the design of the mechanical 
components of a robot. Moreover, if the phenomena like 
friction, etc. play a significant role in the dynamics then 
constraint forces, etc. need to be considered for the 
calculation of the driving forces. Hence, the minimization of 
the constraint forces is also important from this point of 
view. Note that the friction forces are dependent on the 
normal reactions, i.e., constraint force, which are not 
constant but depend on the robot configurations. In [3] and 
others, however, these force were taken constant such 
simplification is not preferred in a realistic dynamic model. 
In all practical industrial robotic systems constraint forces 
are very high and their effect in the equations of motion can 
not be eliminated. Their reduction will not only help 
reducing the power losses due to friction but also weaken 
coupling of applied and constraint forces. In addition, this 
will reduce the noise and wear, improve the dynamic 
performances, and extend the fatigue life of the 
manipulators.  

When the dimensions of a manipulator and its joint 
trajectories are given, the inertia-induced constraint forces 
depend on only upon the mass distribution of the moving 
links, i.e., the link masses, their mass center locations, and 
the inertias of the moving links [5]. To minimize the 
constraint forces it is required to optimally distribute the 
masses of the links. This problem can be treated by the 
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dynamically equivalent system of point masses, which is a 
convenient way to represent the inertia properties. The 
dynamically equivalent system is also called equimomental 
system [6, 7]. The concept of equimomental system of point-
masses is used in [8, 9] to minimize the shaking force and 
shaking moment of multiloop planar mechanisms. The 
concept is extended here to minimize the constraint forces in 
industrial manipulators.  

First, the links of a manipulator under study are 
represented by the equimomental system of point masses. 
Then the equations of motion in the point-mass parameters 
are derived that state the equivalence between the given 
system and the set of point-masses. An optimization 
problem formulation is proposed to minimize the constraint 
forces due to inertia forces at the joints of the serial 
manipulator. Essentially what is done is that the masses and 
the inertias of links are represented by a collection of point 
masses, whose magnitudes are optimally distributed to 
reduce the inertia-induced forces and moments. This will 
minimize the constraint forces in the joints. If one needs to 
apply in an existing robot one should use counter-weight 
balancing in which the counterweights are represented as 
equimomental point-masses. The effectiveness of the 
methodology is shown by applying it to a six-DOF PUMA 
robot. 

II. SEVEN POINT-MASS MEDEL 
Let us consider the ith rigid link moving in the three-

dimensional Cartesian space as shown in Fig. 1. It has mass, 
mi, the mass center at ),,( iii zyx , the moment of inertia 
( xxiI , , yyiI , , zziI , ), and the product of inertia ( xyiI , , 

yziI , , zxiI , ), where the mass center and inertias are referred 

to the link fixed frame, Oi Xi Yi Zi. In order to optimally 
distribute link masses, each link is treated as a dynamically 
equivalent system of point masses. A set of seven point-
masses as discussed below is defined to dynamically 
represent the links. Any other set of point-masses can be 
taken provided it satisfies the equimomental conditions [7]. 
It is assumed that point-masses ijm are located at the 

vertices of a rectangular parallelepiped.  The center of the 
parallelepiped is at the origin point, Oi, and has sides 2hix, 
2hiy, and 2hiz, as shown in Fig. 1. The point masses are 
rigidly fixed to the frame, Oi Xi Yi Zi. 

Now the two systems, i.e., the rigid link and the system of 
seven point-masses, are dynamically equivalent if the 
following conditions are satisfied [7]: 
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Fig. 1 Equimomental system of seven point-masses 
 

Equation (1) ensures that the total mass of the equimomental 
system of point-masses is equal to the mass of the rigid link. 
Equations (2)-(4) satisfy the conditions of the mass center 
location, whereas  (5)-(10) ensure the same inertia tensor for 
the equivalent point mass system and the link about the 
point, Oi. Rearranging  (8)-(10) yields 
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)2/()( ,,,
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izziyyixxiiy mIIIh +−=         (12) 
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where  (1) is used. The moments of inertias, xxiI , , yyiI , , 

and zziI ,  , are such that the sum of any two of them is 
always greater than the third one [6], which implies that 

0)( ,,, >++− zziyyixxi III ; 0)( ,,, >+− zziyyixxi III ; and

 0)( ,,, >−+ zziyyixxi III            (14) 

Hence, hix, hiy, and hiz will never have imaginary values. 
Knowing these parameters, the remaining unknowns, ijm , 

can be determined easily using  (1)-(7), which are linear in 
the point-masses. Such a system of point masses is 
dynamically identical to the rigid link. 

III. EQUATIONS OF MOTION 
Referring to the ith rigid link of a serial manipulator (Fig. 

2a), points Oi and Oi+1 are the joints where the link is 
connected to its previous, (i-1)st, and  the subsequent, 
(i+1)st, links, respectively. The Newton-Euler (NE) 
equations of motion of the ith link in a fixed inertial frame 
are given by [10]  

iiiiiii wtEMWtM =+&            (15) 
where the 6×6 matrices Mi, Wi and Ei are the mass, angular 
velocity,  and coupling matrices, respectively, and defined as 
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Fig. 2 Definitions of vectors 

 
in which Ii is the inertia tensor of the link with respect to Oi, 
whereas the 3×3 skew symmetric matrices, id~  and iω~ , are 
associated with the 3-vectors, id  and ωi, respectively, i.e., 

xdxd ×= ii
~ , and xx ×= ii ωω~ , for the 3-vector, x. The 
matrix, O, is the zero matrix of appropriate size based on 
where it appears. Furthermore, the 6-vectors of twist, it , 

twist rate, it& , and  wrench, iw , are defined as 
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where iω , iv , in  and if , are the angular velocity, linear 
velocity, the resultant moment, and the resultant force acting 
on the ith link, respectively,  at Oi of the link.  

mi5 

Oi+1 

mi4 

mi3 

mi1 

mi7 

mi2 

Oi 

ai,i+1 

ri1 

di1 

mi6 
di 

mi 

ri

mi5 

Oi 

Yi 

Zi 

Xi 

mi4 

mi3 

mi1 

mi7 

mi6 

mi2 

(hix, hiy, -hiz) 
(-hix, hiy, -hiz) 

(-hix, hiy, hiz) 

(-hix, -hiy, hiz) (hix, -hiy, hiz) 

(hix, -hiy, -hiz) 

(hix, hiy, hiz) 

Ci 
mi 

ThA10.3

1955



 
 

 

Referring to Fig. 2b, the 3-vectors, dij and rij, are the the 
positions the point-mass, mij, from the origins Oi and Oi+1, 
respectively. Subscripts i and j denote the ith link and its jth 
point-mass, respectively. Using  (2)-(4), vector di locating 
the total mass center in terms of dij’s is obtained as  
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Denoting T
ijzijyijxij ddd ],,[≡d  , the 3×3 skew-symmetric 

matrix, id~ , associated with the vector, di, is given by 
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Using the conditions of equality for each component of the 
inertia tensor, i.e.,  (5)-(10), the inertia tensor, Ii, about Oi, 
as in (16), in terms of the point mass parameters has the 
following representation: 
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Equations (18)-(20) define the mass matrix, Mi, of the ith 
link in terms of the parameters of the equimomental seven 
point masses. Next, the joint reactions are determined using 
a recursive algorithm, e.g., the one proposed in [10]. To 
minimize these reactions an optimization method is 
proposed in Section IV. 

IV. OPTIMIZATION PROBLEM 
A Optimality criteria 
There are many possible criteria by which the joint 

reactions, i.e., the constraint forces at each joint can be 
minimized.  For example, one criterion could be the 
combination of the root mean squares (RMS) of the 
constraint forces. Besides, RMS values there are other ways 
to specify the dynamic quantities, namely, by maximum 
values, or by the amplitude of the specified harmonics, or by 
the amplitudes at certain point in the cycle. The choice of 
course depends on the requirements. Here, the RMS value is 
preferred over others as it gives equal emphasis on the 
results of every time instances of the cycle, and every 
harmonic component. In order to reduce constraint forces at 
the joints, the following objective function is proposed 
based on the RMS values: 
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where wi1 and wi2 are the weighting factors whose values 
may vary depending on an application, whereas c

if
~

and 
c
in~ are the RMS values of the constraint force, c

i
c

if f= , 

and moment, c
i

c
in n= , at the ith joint, respectively. For 

example, if 01 =iw  the function, z of  (21), will minimize 
the constraint moments only, whereas 02 =iw  will 
minimize the constraint forces only. Moreover, 10 1 >< iw  , 

10 2 >< iw , and 121 =+ ii ww .  
B Design variables and constraints 
Based on the equations of motion presented in Section III, 

the constraint forces and moments are expressed as the 
function of the parameters of the point-masses. The point 
masses, 1im , …, 7im , per link  are taken as the design 
variables. Note that the locations of the point-masses for 
each link are fixed in the link-fixed frame. For a manipulator 
having n moving links, the 7n-vector of the design variables, 
x, is then defined as  

TT
n

T ]...,,[ 1 mmx ≡            (22) 
where the 7-vector, im , is as follows: 

[ ]Tiiiiiiii mmmmmmm 7654321≡m  
in which ijm  is defined in Section II. Considering the 

minimum, min,im , and the maximum mass, max,im , of the 
ith link, the problem of minimization of constraint forces is 
finally stated as 
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for i=1, …,n. Note here that the 3-vector, ijd , is constant in 

a link-fixed frame. If the link-fixed frame is located at Oi+1 
and its axes are parallel to the sides of the parallelepiped, as 
shown in Fig. 1, then the vector, ijd , is given by 

ijiiij rad += +1,             (24) 

where the components of ijr  are as follows: 
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Furthermore, the minimum moments of inertia of the ith link 
in the link- fixed frame are as follows: 
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Similarly, one can find expression for the product of inertias 
also. It is now evident from (25)-(27) that the minimum 
moment of inertia is always positive and depends on the 
limits of the link masses.  Hence, the optimization problem 
formulated finds a value for each point mass while the total 
mass of each link is subjected to a lower and an upper limit. 
The optimization method is task based and optimizes the 
dynamic performance of the robotic manipulator. The 
dynamic performance is measured by the weighted 
combination of the root-mean-squared values of the 
constraint forces and moments generated during the 
execution of the specified trajectories. In the method, it is 
necessary for the designer to provide the appropriate 
constraints for the design parameters. These constraints 
directly affect the results. 

The optimization problem is solved here using the 
optimization toolbox of MATLAB.  From the optimized 
values of point-masses ( *

ijm ), optimized total mass ( *
im ), 

the location of the mass center ( *** ,, iii zyx ), and the inertias 

( *
,

*
,

*
,

*
,

*
,

*
, ,,,,, zxiyzixyizziyyixxi IIIIII ) of each link are 

determined using the equimomental conditions, (1)-(10). 

V. NUMERICAL EXAMPLE 
The six-DOF PUMA robot is considered here to minimize 

the constraint forces and moments using the methodology 
proposed in this paper. The dimensions and configuration of 
the robot is defined using the Denavit-Hartenberg (DH) 
parameters provided in Appendix. The DH parameters, and 
mass and inertias of the links of the robot, which are taken 

from [11], are given in Table 1. Note here that the off-
diagonal elements of the inertia tensors, namely, ixyI , iyzI , 

izxI , are taken zeros, whereas, the inertias of the links are 
given in the local frame. In Table 1, ixr , iyr  and izr  denote 

the vector ir for link i, Fig. 2, in its local frame. The joint 
trajectories are taken as given in the local frames. In Table 1, 

ixr , iyr  and izr  denote 
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where T=10 sec, 0)0( =iθ , o
i T 180)( =θ . Choosing equal 

weight to the constrain force and the constraint moment, 
some suitable limits on the link masses, as given by (23), 
then the optimization problem for the PUMA robot for the 
specified trajectories, (28), is formally stated as 
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where o
im is the original mass of the ith link. The 

comparison of the RMS values of the constraint forces and 
moments for the optimized and the original manipulator is 
shown in Table 2, whereas their reactions are shown in Figs. 
3, 4. Table 3 shows the optimized values for the masses and 
inertias of the links. Note that The RMS values of  constraint 
moments for first four joints is reduced drastically compared 
to for the last two joints for which the values are 
insignificant. The constraint forces fluctuation due to inertia 
forces reduce to their static constraint forces due to gravity 
which cannot be decreased for a given system of masses. 
However, constraint forces due to the inertia forces have 
reduced, as clearly evident for the first four joints shown in 
Fig. 3(a-d).  

 

TABLE 1 DH parameters, and mass and inertia properties  

i ia  ib  iα  iθ  im  ixr  iyr  izr  ixxI  iyyI  izzI  

 (m) (m) (deg) (deg) (Kg)  (m)  (Kg-m2) 
1 0 0 -90 θ1 10.521 0 0 -0.054 1.612 1.612 0.5091 
2 0.432 0.149 0 θ2 15.761 -

0.292 
0 0 0.4898 8.0783 8.2672 

3 0.02 0 90 θ3 8.767 -0.02 0 0.197 3.3768 3.3768 0.3009 
4 0 0.432 -90 θ4 1.052 0 -

0.057 
0 0.181 0.1273 0.181 

5 0 0 90 θ5 1.052 0 0 0.007 0.0735 0.1273 0.0735 
6 0 0.056 0 θ6 0.351 0 0 -0.019 0.0071 0.0071 0.0141 
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Table 2 The RMS values of the constraint moments and forces 

 RMS values: )~,~,~,~,~,~,
~

,
~

,
~
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~
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~

,
~

( 654321654321 nnnnnnffffff  

Original  (367.975  264.788  110.219   24.138   13.797    3.452   73.119   75.613   14.474    5.433  0.111    0.0755) 

Optimized (367.912   264.702  110.123   24.089   13.797    3.450    1.947    1.867    1.227    1.048    0.238    0.0673) 

 
TABLE 3 Optimized mass and inertia properties  

i *
im  *

ixr  *
iyr  *

izr  *
ixxI  *

iyyI  *
izzI  *

ixyI  *
iyzI  *

izxI  

 (kg) (m) Kg/m2 

1 10.521 -0.001 -0.005 -0.002 1.6423 1.6423 0.5088 0.0142 -0.0761 0.0399 
2 15.767 -0.737 0.000 -0.253 0.4896 9.4224 9.6112 -1.2058 -0.1971 -0.9016 
3 8.767 -0.025 0.01 0.027 3.7168 3.7203 0.3044 -0.1440 1.0677 -0.3595 
4 1.052 0.051 1.087 -0.017 0.1844 0.1273 0.1844 -0.7766 0.3608 -0.0124 
5 1.052 -0.007 0.014 0.007 0.0736 0.1274 0.0735 -0.0438 0.0699 -0.1936 
6 0.351 -0.014 0.008 -0.055 0.0072 0.0072 0.0141 0.0290 0.0020 -0.0048 
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(a) Joint 1           (b) Joint 2        (c) Joint 3 
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Fig. 3 Constraint forces ⎯⎯ Original; ------ Optimized 
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Fig. 4 Constraint moments,  ⎯⎯ Original; ------ Optimized 
 

VI. CONCLUSION 
Realizing the importance of the constraint forces in an 

industrial manipulator, their minimization problem is posed 
as an optimization problem. For this, the dynamic modeling 
of the manipulators is presented in terms of the 
equimomental system of point-masses. The solution of the 
optimization problem provides the redistribution of the link 
masses such that the constraint forces of joints is reduced to 
minimum. Such results have not been reported in the 
robotics literature and one of the major contribution of this 
paper, along with dynamic and optimization formulations. 
The effectiveness of the proposed methodology is illustrated 
using the six-DOF PUMA robot. A significant reduction in 
constraint forces due to inertia-induced forces is obtained. 
The method is generic and can be used for any spatial 
robotic system. 
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Appendix: DH Parameters 
With each link, namely, the (i-1)st one, a Cartesian 

coordinate system, OiXiYiZi, denoted by iF , is attached at Oi. 
Point Oi is the origin of the ith coordinate system and 
located at the intersection of Xi and Zi. The axis, Zi, is along 
the ith joint axis, whereas Xi is the common perpendicular 
between consecutive axes Zi-1 to Zi directed from the former 
to the latter. The axis Yi is then defined to complete a right-
handed system OiXiYiZi. The distance between Zi and Zi+1 is 
defined as ai, which is positive. The Zi coordinate of the 
intersection point on Zi with Xi+1 is denoted by bi. The angles 
between, Zi and Zi+1, and Xi and Xi+1, are αi, and θi, measured 
about the positive direction of Xi+1 and Zi, respectively. For a 
revolute joint, only the parameter θi varies and is called the 
joint variable. The parameters ai, bi, αi, and θi, for each link 
are DH parameters, as shown in Fig. 6. 

 
Fig. 5 Coordinate frames and associated parameters 
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