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Abstract – A new paradigm is introduced for solving the 
forward kinematics of general Stewart platforms in real-time.  
It consists of an off-line preprocessing phase and an online real-
time evaluation phase.  In the preprocessing phase, the 
platform leg (link) space is decomposed into cells, and a large 
set of data is generated for the platform position/orientation 
(pose), and their corresponding link lengths are computed 
using the known inverse kinematics.  Due to the existence of 
multiple solutions (poses) for a particular link vector, a data 
classification technique is employed to identify various 
solutions.  The classified data are used to find the parameters of 
a simple model that represents the forward kinematics within a 
cell.  These parameters are stored in a lookup table.  During the 
online phase, given the link lengths, the appropriate cell is 
identified, the model parameters are retrieved from the lookup 
table and the poses are computed.  The proposed method is 
tested on a Stewart platform, and the accuracy and online 
times are presented to show the effectiveness of the proposed 
method for real-time applications. 
 
Index Terms –Stewart platforms, forward/direct kinematics.  
 

I.  INTRODUCTION 

Hexapod robots, often referred to as Stewart Platforms, have 
been the subject of increased attention due to their 
applications in a variety of fields (see [1] for an extensive 
review).  These applications are brought about mainly due to 
the rigidity of the structure relative to its size and weight.  
Areas of the applications include flight and other motion 
simulators, light weight and high precision machining, data 
driven manufacturing, dextrous surgery robots, and active 
vibration control systems for large space structures.  

Although mechanical simplicity of Stewart Platforms 
provides potential for many engineering applications, their 
forward (direct) kinematics is very complex which limit 
their real-time applications.  This is due to the requirements 
of solving a set of highly nonlinear equations or high degree 
polynomials for a general Stewart Platform. Broadly 
speaking, there are two approaches to the solution of the 
forward kinematics of the platform, namely analytical and 
numerical.   In the first approach attempts are made to 
develop closed form solutions in special cases where some 
of the connection points at the platform or at the base are 

coalesced in groups of two or three.  In this way the general 
6-6 configuration, i.e. 6 separate joints at base and platform, 
is reduced to less than six at the base and/ or the platform 
[2]-[5].  Another approach in the analytical category is to 
place restriction on the geometry of the platform or the base, 
or assume a certain relationship (e.g. linear) between the 
base and platform coordinates at attachment points [6]-[9].  

In the numerical approaches, Newton-Raphson method 
or a variation of it is used to solve iteratively the set of 
nonlinear forward kinematics equations.  This approach 
finds only one solution assuming a good starting point, but 
no feasible solutions is guaranteed [10]-[11].  In order to 
find all solutions, it is necessary to formulate the problem in 
the form of polynomial equations and solve these equations 
numerically. It has been shown that the upper bound on the 
number of real and complex solutions for a general Stewart 
platform is forty [12]-[14].  In general, numerical procedures 
lead to heavy computation burden, and therefore are 
unsuitable for real-time applications.  

The above difficulties have prevented the Stewart 
platform from being used in many high speed real-time 
engineering applications.  In this paper, we propose a 
completely different approach to the forward kinematics 
solution of a general Stewart platform.  The method consists 
of two phases, a preparatory off-line phase and a fast online 
evaluation phase. In the offline phase to be described in 
Sections II and III, the space of links (legs) is decomposed 
into cells and pose-link data sets are generated via the 
known inverse kinematics. Using this data, forward 
kinematics are accurately approximated in each cell by 
simple equations whose parameters are stored.  In the online 
phase, to be explained in Section III, appropriate stored 
parameters are retrieved and the poses of the platform are 
determined.  Due to the pre-processing offline phase, the 
online computation is extremely fast, making the method 
uitable for real-time applications.   s 

II.  DECOMPOSITION AND DATA GENERATION 

Consider a fixed base B and attach a coordinate frame XYZ 
to it.  Similarly put a coordinate frame xyz to the moving 
platform A, and let R be the 3 rotation matrix which 
defines the rotating angles of this frame with respect to the 
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fixed frame XYZ.   Denote by D  the displacement vector of 
the frame xyz relative to XYZ.   Let the position of the links 
(legs) at the attachment to the base relative to the 
coordinates XYZ be ; T

i,zi,yi,xi )BBB(B = 6,,2,1i L= .  
Similarly denote the position of the links at the attachment to 
the platform with respect to the coordinates xyz by 

.  We can now write the length of 
each link connecting the base to the platform as 

T
i,zi,yi,xi )aaa(a =
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where  is the inverse kinematics function, and p is the 
platform pose. The latter is defined by the vector 

 where  is the coordinates of 
the origin of the platform and 

)p(f i

T)zyx(p γβα= )z,y,x(
),,( γβα is its orientation, 

both with respect to the base frame. The pose space is the 
six dimensional (6-D) space whose coordinates are the 
components of p. The link vector is defined as 

, and the link space is the 6-D space 
whose  coordinates are the components of l .  The forward 
kinematics problem maybe stated as follows: Given a link 
vector , determine the set of poses p of the platform that 
satisfy (1). 

T
621 )( lLlll =

l

In order to solve the forward kinematics of a general 
Stewart platform, we propose a two phase strategy.  In an 
off-line phase the link space is decomposed into 6-D 
hypercubes (cells), and the forward kinematics is 
approximated in each cell by a simple model.  This is 
followed by an online phase that finds the poses for a given 
link vector.  In the following paragraphs and in Section III, 
we describe the first phase.  The link space is divided or 
decomposed into regular 6-D cells.  The cell side length  
is a design parameter which determines the granularity of 
the decomposition. The number of divisions along an axis of 
the link space is 

cl

 
c

min,imax,i
iN

l

ll −
=  6,,2,1i L=
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where  and  are the  minimum and maximum 
lengths of the i-th link.   

min,il max,il

We now generate a large number of pose vectors by 
assigning values randomly within the ranges of βα ,,z,y,x  
and γ . It is noted that regularly spaced intervals within the 
range of pose components will not produce uniform link 
space coverage due to the nonlinear forward kinematics 
mapping. On the other hand random generation of poses 
provides better coverage of the link space. The ranges of 
pose components γβα ,,,z,y,x are either specified for the 
application for which the platform is used, or in the absence 
of such data, they can be gross estimates of the ranges 
values.   It is noted that some combinations of the pose 
vector components may result in infeasible link values.  
There can be two types of such infeasible values.  The first 
type occurs when substituting a generated pose vector in (1) 
produces link lengths that are outside their physical range of 

 to .  The second type is due to mechanical 
constraints, e.g. limitation on the joints connecting the links 
to the base or platform, links crossing each other, etc.  
Mechanical constraints are platform specific and can 
generally be checked through the knowledge of the 
mechanical design.  In both cases, the infeasible link data 
and their corresponding poses are removed from the data set 
and will not be used in modelling   

min,il max,il

At the conclusion of pose-link data generation and 
rejection of infeasible data, we have n cells in the link space 
that contain data points.  The set of link data in a cell  
have corresponding set of poses in a region  in the pose 
space, 

jC

jR
n,,2,1j L= .  Note that while link space cells are 

regular hypercubes and have the same volume, the 
corresponding regions in the pose space do not have the 
same shape or volume.   The data must now be processed 
and stored for the online phase.  This will be discussed in the 
following section. 

  

III.  CLASSIFICATION AND  CURVE FITTING 

Typical generated data points in a pose region  
corresponding to a link cell form clusters as shown in 
Fig. 1. The 6-D pose space is shown in two subspaces, i.e. 
position and orientation subspaces, for ease of visualization.  
The units in these two subspaces are milammeters and 
degrees, respectively. Each cluster shown in a color 
represents a forward kinematic solution. These solutions 
must be classified before modelling the forward kinematics 
in a region.   

jR

jC

 

           

           
Fig. 1.  Solution clusters in a pose region,  top – position subspace 

and bottom – orientation subspace. 
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There are many techniques for classification of data 
[15].  Here we apply a modified “K-mean” clustering, 
tailored for our application.  The procedure starts with an 
estimate , the maximum number of clusters (real 
solutions).  This estimate is based on the configuration of the 
platform.  It is known that the more general cases of Stewart 
platforms, i.e. 6-6 configurations, have more solutions than 
specific cases such as 3-3, or 6-3 configurations. A value of 

 higher than that required produces some identical 
solutions (poses) as will be seen in Section V. On the other 
hand, a low value of , gives rise to errors when 
modelling the forward kinematics by simple equations. 
These considerations can be used during the off-line phase 
to adjust   accordingly.  Once  is chosen, the 
stored pose regions ,  are searched to find the 
one with the widest ranges of position and orientation.  This 
region is assigned the maximum number of solution 
clusters .  The number of solution clusters  in other 
regions is then decreased in proportion to their ranges of 
position/orientations.  In other words, wider spreading 
clusters are assumed to represent forward kinematics with 
more solutions.   

maxK

maxK

maxK

maxK maxK

jR n,,2,1i L=

maxK iK

 We must now classify (assign) each point in a region to 
an appropriate solution cluster, i.e. identify different solution 
clusters. Consider a region with poses (points) whose 
estimated number of solutions is , and pick a random 
pose  in this region.  This pose will be the nucleus of a 
solution cluster in the region.  Now we find the pose in this 
region that is farthest away from the first picked pose.  This 
second pose, say ,  will be the nucleus of the second 
solution cluster. The idea is that far apart poses must belong 
to different clusters.  Next we select the pose  whose 
sum of distances to  and is the largest among the 

yet unprocessed poses.  The pose  forms the 
nucleus of the third cluster.  We continue this process such 
that at step  the selected pose has the maximum 
sum of distances to , , ... , .  This process 
yields the nucleuses for the solution clusters.  We 
must assign the remaining   poses to theses 
nucleuses. Now pick an unclassified pose and place it in the 
nearest cluster and find the mean position and orientation of 
the two poses in this cluster.  The process of placing the 
remaining poses to the nearest cluster is continued.  It is 
noted that after placing a new pose in a cluster, the mean of 
position and orientation of that cluster is updated.  The 
closest cluster is the one that has minimum distance between 
its mean value and the pose being classified.   At the 
conclusion of the classification, each region will have 

solution clusters.  In the example of Fig. 1, four solution 
clusters have been identified.   Note that some mixing that 
appear in the position clusters are due to the plotting of 3-D 
information on 2-D page.  The two clusters are in fact 
distinct, with one placed behind the other.   

jR jn

jK

1,jp

2,jp

3,jp

1,jp 2,jp
)2n( j − 3,jp

jKk ≤ k,jp

1,jp 2,jp 1k,jp −

jK jK
)Kn( jj −

jR

jK

Each cluster in the pose region  associated with the 
link cell  must be represented using a simple forward 
kinematics model.  In other words, given a link vector l  in 

, we must express the pose vector p in terms of l  for 
each cluster in .  The simplicity or complexity of the 
required model depends on the size of the link cell .  
Smaller size cells will require simpler models to accurately 
represent forward kinematics in them, but the number of 
cells will be higher since the link pace volume is constant. 
The opposite is true for larger cell sizes, which require more 
complex models. We have explored several models 
including polynomial and neural networks.  It was found 
that a second order (quadratic) polynomial model provides a 
compromise between complexity of the model and the 
desired accuracy.  The model is expressed as 

jR

jC

jC

jR
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T
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T
i cbAp ++= lll  6,,2,1i L= (3) 

 

where  are the elements of the pose vector, i.e. ip xp1 = , 
γ== 62 p,,yp L ;  is a  symmetric parameter 

matrix,  is a 
iA 66 ×

ib 16 ×  parameter vector, and  is a scalar 
parameter. Since  is symmetric, it has only 21 
independent parameters, giving a total of 28 parameters in 
(3).  These parameters can be found with a least square 
(regression) method using the link and pose cluster data.  
Suppose that the link and pose data for a cluster are denoted 
by  , k =1,2, …, d;  where d is  the   number  of 

data points, and 

 are pose and link vectors of k-th 
data point, respectively.  In order to determine the 
parameters of the linear model, the following error function 
is minimized 

ic

iA

),p( kk l

( )T6k1kk p,,pP L=
T

6k2k1kk ),,,,(L lLll=

 2
ik

T
iki

T
kki

d

1k

6

1i
)cLbLALP(E −−−∑ ∑=

= =
  

(4) 

 
A closed form solution to the above minimization exits and 
can be obtained by setting to zero the derivatives of E with 
respect to the elements of ,  and .  The resulting 
linear set of equations is solved to obtain closed-form 
solutions for ,  and  for each solution cluster in each 
pose region.  

iA ib ic

iA ib ic

   The model parameters are stored as records in a file or 
for the subsequent online retrieval. Each record has a unique 
address in the file where the parameters of the forward 
kinematics model are stored. The address can be encoded in 
a number of ways.   One method is to encode the cell 
address as  

 
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏=

= =

5

0i

i

1j
jiadrs NeC  

 
(5) 

where is in the range in the range of  0  to ,  the latter 
is given by (2) and

ie iN
1N 0 = . The encoding (5) is similar to 
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decimal number encoding except that instead of base 10 for 
all digits we have bases , respectively, for 
the least to most significant digits. At each address 
representing a link cell, there is a solution number, followed 
by the values of model parameters ,  and  for the 
particular cell.  Note that the offline phase is done only once 
for a platform. 

621 N,,N,N L

iA ib ic

IV.   ONLINE FORWARD KINEMATICS COMPUTATION 

During the online phase, given the desired link vector , the 
indices needed for computing the address in the file, where 
the parameters are stored,  are computed from  

l

 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

c

min,ii
i ceile

l

ll
  

(6) 

 
The parameters for each solution region are retrieved and the 
platform pose is computed using (3). Since computing the 
address and determining the poses via (3) does not involve 
trigonometric or inverse trigonometric functions, the online 
computation is extremely fast, as will be seen in Section V.  
 It is noted that for some applications, such as flight or 
other motion simulators, finding the poses with a reasonably 
good approximation (say with less than 0.1% error) is 
sufficient.  This type of approximation is achievable using 
the above method, as will be seen in Section V.  In case of 
other applications, more exact values are needed.  This can 
be achieved by finding the approximate solutions as above, 
and a correction step to arrive at the solution with high 
accuracy. Suppose that for a desired given link vector l  the 
approximate value of a pose found by the above method is 

.  Substituting  in the inverse kinematic (1) gives a link 

vector approximation 

p̂ p̂

l̂ .  The incremental change 
)p̂p(p iii −=Δ  needed in the pose element  to achieve 

the correction of the link vector  is obtained 
from (3) as follows 

ip

)ˆ( lll −=Δ

 ( ) ll ΔΔ T
i

T
i bA2p +=  6,,2,1i L= (7) 

 
The correction requires one inverse kinematics evaluation 
using (1) and finding the increments (7).  Since no inverse 
trigonometric functions, matrix inversion or nonlinear 
equation solving is involved, the computation of correction 
is also very fast, as will be seen in the next section.   The 
total online time is where: 321on TTTT ++=
 

1T  = Time to compute the lookup table cell address from 
        (5)-(6) for a given link vector, and retrieve the model  
         parameters. 

2T  = Time to compute the position and orientation for each  
solution via (3).   

3T  = Time to correct the acquired position and orientation 
using (7).  This time consists of three subcomponents, 
i.e.times for substituting the acquired position and 
orientation in the inverse kinematics (1), determining 

the error lΔ , and finally computing the correction via 
(7).   
In the following section we will see that for a typical 

platform, each of the above times is only a few 
microseconds per solution using a standard PC.   

V.  EXAMPLE 

The example to be used for investigation of the proposed 
method is the one reported in [15].  It is a Stewart Platform 
configuration with six linear actuators which constitute the 
links.  The base is a semiregular hexagon, and the platform 
is an equilateral triangle.  The links are connected to the 
vertices of the base and platform with two and three degrees 
freedom universal joints.  The side lengths of the base semi-
regular hexagon are 15, 1, 15, 1, 15, 1 meters and those of 
the platform are 10, 10, 10 meters.  The minimum and 
maximum lengths in meters of each link are respectively 

8min,i =l and 15max,i =l , . This platform has a 
regular shape and geometry, but the proposed method does 
not use any simplifying geometric properties of this platform 
and treats it just it would a general platform.   The reason for 
the choice of this particular platform was to check our 
results against those obtained in [16].  

6,,2,1i L=

 The decomposition method described in Section II was 
applied with the link cell side of  meters.  Since the 
range of the motion of the each link is 

4.1c =l

7max,imax,i =− ll  
meters, there are 7/1.4 = 5 cells along each of the six 
dimensions of the link space.  This produces  
cells.  Poses were generated randomly in the 
ranges

15625)5( 6 =

2x2 <<− , 2x2 <<− , (all ranges in 
meters), and each of the orientation angles 

13z2 <<
γβα ,,  between 

and .  Higher pose ranges produced link lengths 
that were mostly outside limits.  The number of generated 
valid poses in each pose region was about 1200.  The 
maximum number of solution clusters in a region was set to 

o60− o60

8K max = . All computation was performed on a Pentium 4, 
1.8 MHz PC with 512 MB of memory. The total off-line 
time was about seven hours, which is done only once.        
 We first compare the results of our method with those of 
[16] where exact analytical solutions were reported for 
extreme configurations.  The results are summarized in 
Table 1 and in all case the correction mentioned in the 
previous section was implemented.  The upper three 
numbers in Table 1 cells were obtained by the proposed 
method and the lower three numbers are the exact values 
reported in [16]. The “Lowest Position” in the table refers to 
the minimum link values, i.e. 8621 ==== lLll  meters.  
The values found by the proposed method are exactly the 
same as the results of the analytical solutions. The same 
conclusion is made for the case of “highest position” with 

15621 ==== lLll  meters.  The other two cases are the 
“Most Tilted” where 1521 == ll , 86543 ==== llll , 
and the “Most Twisted” where  8531 === lll  and 

15642 === lll .  In both these cases the results are also 
very close to the analytical solutions.     
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TABLE 1 COMPARISON OF METHODS OF FINDING EXTREME 

CONFIGUARTIONS 

 
 
In order to test the performance and accuracy of the 

method for a large set of data, we generated 1000 link 
vectors whose elements were selected randomly between the 
link length ranges of 8 and 15 meters.  In order to find the 
accuracy of the solutions, the following procedure was 
adopted. For each of the 1000 desired link vector l , the 
pose values were found using the proposed method.  These 
were then substituted in (1) to get their corresponding 
approximated link value l̂ .  The error E reported in Table 2 
is the average absolute error  for the 1000 trials with 
and without correction using (7).   The error standard 
deviation is shown under the column 

|ˆ| ll −

σ in Table 2.  It is 
seen the errors are small especially with correction.  In the 
latter case, the average absolute error is 0.00124 meters, or 

 of full range.   Even without the 
correction, the errors are small.  The memory needed to store 
the parameters was 18.2 MB, which is reasonable 
considering that a standard PC has 512 MB to 1 GB of 
memory.  The success rate is the number of valid link values 
after finding the pose values and substituting them back into 
(1). 

%017.07/)00124.0( =

The times reported in Table 2, are defined in Section IV, 
i.e.  is required for parameter retrieval from the lookup 
table (file), is for pose computation, and   is the time 

for correction, all measured in 

1T
2T 3T

sμ  (  second).  Most of 
the total time in the case of correction is taken up by 
computing the inverse kinematics that involves 
trigonometric functions.  Even with the correction the total 
online time  is extremely small.  For example, even if 
the platform has 20 pose solutions for each link vector, all 
solutions can be computed in about 0.3 milliseconds.   

610 −

onT

onT

 
TABLE 2   RESULTS OF 1000 TRIALS 

 
 

 
 
 
 
       
 

 
 
 

        

 
Fig. 2  Using 8K max = , four clusters are identified in this region.  

    Shown are position (top) and orientation subspaces   

 

 
Fig. 3  Using 4K max = , two clusters are identified.  Shown are 

position (top) and orientation subspaces. 
 
 
 

Configuration Position x,y,z 
 (m) 

Orientation γβα ,,  
(deg) 

Lowest 
Position  

 

0.000,  0.000,   2.646 
0.000,  0.000,   2.646 

0.00,  0.00,  0.00 
0.00,  0.00,  0.00 

Highest  
Position 

0.000,  0.000,  12.961 
0.000,  0.000,  12.960 

0.00,  0.00,  0.00 
0.00,  0.00,  0.00 

Most Tilted -1.239,  -2.139,  5.506 
-1.236,  -2.142,  5.503 

58.99, -74.00, -46.07 
58.99, -73.84, -46.06 

Most Twisted 0.000,  0.000,   7.194 
0.000,  0.000,   7.192 

0.00,  0.00,  68.34 
0.00,  0.00,  68.36 

σ   
Correction E  

(m) (m) 
M  

(MB) 
S  

(%) 
Yes 0.00124 0.0038 18.2 97 
No 0.00478 0.0089 18.2 96 

1T  2T  3T  
Correction ( sμ ) ( sμ ) ( sμ ) 

onT  
( sμ ) 

Yes 1.3 1.4 11.6 14.3 
No 1.3 1.4 0    2.7 
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TABLE 3 COMPARISON OF RESULTS IN TWO CASES 

 
Finally, we discuss the effect of reducing the maximum 

number of clusters . In an experiment, we chose 
 instead of .  In this case the accuracy of 

solutions was not much affected.  In other words, the data 
presented in Tables 1 and 2 were similar for the two  
values.  This indicates that for the majority of link values 
there are no more than four solutions.  An investigation of 
the solutions revealed that with , we obtained 
repeated (identical) solutions in many regions.  A typical 
example of this situation is shown in Fig. 2 where the choice 
of  has produced four solution clusters in the 
region, and in Fig. 3 with  where only two 
clusters have been formed in the same region.  This means 
that in the latter case, a pair of clusters has been combined 
into one cluster.  Table 3 shows the poses found by the 
method for a randomly selected 

 in the 
link cell corresponding to the pose region shown in Fig. 2 or 
3.   It is seen that  produced four solutions in 
which solutions 1 and 3 were almost identical and so were 
solutions 2 and 4.  In such a case, redundant solutions are 
eliminated.  The error measured in the link value due to the 
approximation in all cases reported in Table 3 was less than 
0.002 meter or 0.03% of full range.   

maxK
4K max = 8K max =

maxK

8K max =

8K max =
4K max =

T)327.13,763.11,270.13,200.11,574.8,249.9(=l

8K max =

 

VI. CONCLUSIONS 
A new approach to the forward kinematics solutions of a 
general Stewart platform is introduced that is extremely 
fast and is suitable for real-time applications.  Unlike the 
analytical methods that are restricted to special types of 
platforms, the proposed approach is applicable to a general 
platform without placing any restrictions on the geometry 
or link connection points.  Furthermore, it does not suffer 
from the problems associated with numerical methods of 
solving a set of nonlinear or polynomial equations, such as 
local minima, sensitivity to the initial values, finding only 
one solution, and solutions with imaginary part.  In fact 
due to the particular method of data generation, only valid 
link-pose data are considered for modelling, and multiple 
solutions are generated and classified. The accuracy of the 
solutions is very good, and only modest memory is 
required for storing the model parameters.  Finally, the 
method is very flexible in the sense that depending on the 

desired level of accuracy and online computation time, the 
cell size can be adjusted accordingly.  Orientation γβα ,,  
 We have successfully applied the method to several 
platforms, one of which is reported in this paper.  A 
possible limitation of the method is dealing with platforms 
that have a large number of solutions, e.g. 16 or more 
distinct real solutions. In such cases, more data must be 
generated so that each solution cluster has enough data 
points for curve fitting.  This adds to the offline processing 
and requires more memory to store the model parameters.  
However, practical platforms with more than 16 distinct 
real solutions are rare.   
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