

Real Time Forward Kinematics Solutions for

General Stewart Platforms

Mahmoud Tarokh
Department of Computer Science

San Diego State University
San Diego, CA 92182-7720, U.S.A.

tarokh@cs.sdsu.edu

Abstract – A new paradigm is introduced for solving the
forward kinematics of general Stewart platforms in real-time.
It consists of an off-line preprocessing phase and an online real-
time evaluation phase. In the preprocessing phase, the
platform leg (link) space is decomposed into cells, and a large
set of data is generated for the platform position/orientation
(pose), and their corresponding link lengths are computed
using the known inverse kinematics. Due to the existence of
multiple solutions (poses) for a particular link vector, a data
classification technique is employed to identify various
solutions. The classified data are used to find the parameters of
a simple model that represents the forward kinematics within a
cell. These parameters are stored in a lookup table. During the
online phase, given the link lengths, the appropriate cell is
identified, the model parameters are retrieved from the lookup
table and the poses are computed. The proposed method is
tested on a Stewart platform, and the accuracy and online
times are presented to show the effectiveness of the proposed
method for real-time applications.

Index Terms –Stewart platforms, forward/direct kinematics.

I. INTRODUCTION

Hexapod robots, often referred to as Stewart Platforms, have
been the subject of increased attention due to their
applications in a variety of fields (see [1] for an extensive
review). These applications are brought about mainly due to
the rigidity of the structure relative to its size and weight.
Areas of the applications include flight and other motion
simulators, light weight and high precision machining, data
driven manufacturing, dextrous surgery robots, and active
vibration control systems for large space structures.

Although mechanical simplicity of Stewart Platforms
provides potential for many engineering applications, their
forward (direct) kinematics is very complex which limit
their real-time applications. This is due to the requirements
of solving a set of highly nonlinear equations or high degree
polynomials for a general Stewart Platform. Broadly
speaking, there are two approaches to the solution of the
forward kinematics of the platform, namely analytical and
numerical. In the first approach attempts are made to
develop closed form solutions in special cases where some
of the connection points at the platform or at the base are

coalesced in groups of two or three. In this way the general
6-6 configuration, i.e. 6 separate joints at base and platform,
is reduced to less than six at the base and/ or the platform
[2]-[5]. Another approach in the analytical category is to
place restriction on the geometry of the platform or the base,
or assume a certain relationship (e.g. linear) between the
base and platform coordinates at attachment points [6]-[9].

In the numerical approaches, Newton-Raphson method
or a variation of it is used to solve iteratively the set of
nonlinear forward kinematics equations. This approach
finds only one solution assuming a good starting point, but
no feasible solutions is guaranteed [10]-[11]. In order to
find all solutions, it is necessary to formulate the problem in
the form of polynomial equations and solve these equations
numerically. It has been shown that the upper bound on the
number of real and complex solutions for a general Stewart
platform is forty [12]-[14]. In general, numerical procedures
lead to heavy computation burden, and therefore are
unsuitable for real-time applications.

The above difficulties have prevented the Stewart
platform from being used in many high speed real-time
engineering applications. In this paper, we propose a
completely different approach to the forward kinematics
solution of a general Stewart platform. The method consists
of two phases, a preparatory off-line phase and a fast online
evaluation phase. In the offline phase to be described in
Sections II and III, the space of links (legs) is decomposed
into cells and pose-link data sets are generated via the
known inverse kinematics. Using this data, forward
kinematics are accurately approximated in each cell by
simple equations whose parameters are stored. In the online
phase, to be explained in Section III, appropriate stored
parameters are retrieved and the poses of the platform are
determined. Due to the pre-processing offline phase, the
online computation is extremely fast, making the method
uitable for real-time applications. s

II. DECOMPOSITION AND DATA GENERATION

Consider a fixed base B and attach a coordinate frame XYZ
to it. Similarly put a coordinate frame xyz to the moving
platform A, and let R be the 3 rotation matrix which
defines the rotating angles of this frame with respect to the

3×

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC6.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 901

fixed frame XYZ. Denote by D the displacement vector of
the frame xyz relative to XYZ. Let the position of the links
(legs) at the attachment to the base relative to the
coordinates XYZ be ; T

i,zi,yi,xi)BBB(B = 6,,2,1i L= .
Similarly denote the position of the links at the attachment to
the platform with respect to the coordinates xyz by

. We can now write the length of
each link connecting the base to the platform as

T
i,zi,yi,xi)aaa(a =

)p(f

BDaR

i

iii

=

−+=l
6,,2,1i L=

(1)

where is the inverse kinematics function, and p is the
platform pose. The latter is defined by the vector

 where is the coordinates of
the origin of the platform and

)p(f i

T)zyx(p γβα=)z,y,x(
),,(γβα is its orientation,

both with respect to the base frame. The pose space is the
six dimensional (6-D) space whose coordinates are the
components of p. The link vector is defined as

, and the link space is the 6-D space
whose coordinates are the components of l . The forward
kinematics problem maybe stated as follows: Given a link
vector , determine the set of poses p of the platform that
satisfy (1).

T
621)(lLlll =

l

In order to solve the forward kinematics of a general
Stewart platform, we propose a two phase strategy. In an
off-line phase the link space is decomposed into 6-D
hypercubes (cells), and the forward kinematics is
approximated in each cell by a simple model. This is
followed by an online phase that finds the poses for a given
link vector. In the following paragraphs and in Section III,
we describe the first phase. The link space is divided or
decomposed into regular 6-D cells. The cell side length
is a design parameter which determines the granularity of
the decomposition. The number of divisions along an axis of
the link space is

cl

c

min,imax,i
iN

l

ll −
= 6,,2,1i L=

(2)

where and are the minimum and maximum
lengths of the i-th link.

min,il max,il

We now generate a large number of pose vectors by
assigning values randomly within the ranges of βα ,,z,y,x
and γ . It is noted that regularly spaced intervals within the
range of pose components will not produce uniform link
space coverage due to the nonlinear forward kinematics
mapping. On the other hand random generation of poses
provides better coverage of the link space. The ranges of
pose components γβα ,,,z,y,x are either specified for the
application for which the platform is used, or in the absence
of such data, they can be gross estimates of the ranges
values. It is noted that some combinations of the pose
vector components may result in infeasible link values.
There can be two types of such infeasible values. The first
type occurs when substituting a generated pose vector in (1)
produces link lengths that are outside their physical range of

 to . The second type is due to mechanical
constraints, e.g. limitation on the joints connecting the links
to the base or platform, links crossing each other, etc.
Mechanical constraints are platform specific and can
generally be checked through the knowledge of the
mechanical design. In both cases, the infeasible link data
and their corresponding poses are removed from the data set
and will not be used in modelling

min,il max,il

At the conclusion of pose-link data generation and
rejection of infeasible data, we have n cells in the link space
that contain data points. The set of link data in a cell
have corresponding set of poses in a region in the pose
space,

jC

jR
n,,2,1j L= . Note that while link space cells are

regular hypercubes and have the same volume, the
corresponding regions in the pose space do not have the
same shape or volume. The data must now be processed
and stored for the online phase. This will be discussed in the
following section.

III. CLASSIFICATION AND CURVE FITTING

Typical generated data points in a pose region
corresponding to a link cell form clusters as shown in
Fig. 1. The 6-D pose space is shown in two subspaces, i.e.
position and orientation subspaces, for ease of visualization.
The units in these two subspaces are milammeters and
degrees, respectively. Each cluster shown in a color
represents a forward kinematic solution. These solutions
must be classified before modelling the forward kinematics
in a region.

jR

jC

Fig. 1. Solution clusters in a pose region, top – position subspace

and bottom – orientation subspace.

WeC6.4

902

There are many techniques for classification of data
[15]. Here we apply a modified “K-mean” clustering,
tailored for our application. The procedure starts with an
estimate , the maximum number of clusters (real
solutions). This estimate is based on the configuration of the
platform. It is known that the more general cases of Stewart
platforms, i.e. 6-6 configurations, have more solutions than
specific cases such as 3-3, or 6-3 configurations. A value of

 higher than that required produces some identical
solutions (poses) as will be seen in Section V. On the other
hand, a low value of , gives rise to errors when
modelling the forward kinematics by simple equations.
These considerations can be used during the off-line phase
to adjust accordingly. Once is chosen, the
stored pose regions , are searched to find the
one with the widest ranges of position and orientation. This
region is assigned the maximum number of solution
clusters . The number of solution clusters in other
regions is then decreased in proportion to their ranges of
position/orientations. In other words, wider spreading
clusters are assumed to represent forward kinematics with
more solutions.

maxK

maxK

maxK

maxK maxK

jR n,,2,1i L=

maxK iK

 We must now classify (assign) each point in a region to
an appropriate solution cluster, i.e. identify different solution
clusters. Consider a region with poses (points) whose
estimated number of solutions is , and pick a random
pose in this region. This pose will be the nucleus of a
solution cluster in the region. Now we find the pose in this
region that is farthest away from the first picked pose. This
second pose, say , will be the nucleus of the second
solution cluster. The idea is that far apart poses must belong
to different clusters. Next we select the pose whose
sum of distances to and is the largest among the

yet unprocessed poses. The pose forms the
nucleus of the third cluster. We continue this process such
that at step the selected pose has the maximum
sum of distances to , , ... , . This process
yields the nucleuses for the solution clusters. We
must assign the remaining poses to theses
nucleuses. Now pick an unclassified pose and place it in the
nearest cluster and find the mean position and orientation of
the two poses in this cluster. The process of placing the
remaining poses to the nearest cluster is continued. It is
noted that after placing a new pose in a cluster, the mean of
position and orientation of that cluster is updated. The
closest cluster is the one that has minimum distance between
its mean value and the pose being classified. At the
conclusion of the classification, each region will have

solution clusters. In the example of Fig. 1, four solution
clusters have been identified. Note that some mixing that
appear in the position clusters are due to the plotting of 3-D
information on 2-D page. The two clusters are in fact
distinct, with one placed behind the other.

jR jn

jK

1,jp

2,jp

3,jp

1,jp 2,jp
)2n(j − 3,jp

jKk ≤ k,jp

1,jp 2,jp 1k,jp −

jK jK
)Kn(jj −

jR

jK

Each cluster in the pose region associated with the
link cell must be represented using a simple forward
kinematics model. In other words, given a link vector l in

, we must express the pose vector p in terms of l for
each cluster in . The simplicity or complexity of the
required model depends on the size of the link cell .
Smaller size cells will require simpler models to accurately
represent forward kinematics in them, but the number of
cells will be higher since the link pace volume is constant.
The opposite is true for larger cell sizes, which require more
complex models. We have explored several models
including polynomial and neural networks. It was found
that a second order (quadratic) polynomial model provides a
compromise between complexity of the model and the
desired accuracy. The model is expressed as

jR

jC

jC

jR

cl

 i

T
ii

T
i cbAp ++= lll 6,,2,1i L= (3)

where are the elements of the pose vector, i.e. ip xp1 = ,
γ== 62 p,,yp L ; is a symmetric parameter

matrix, is a
iA 66 ×

ib 16 × parameter vector, and is a scalar
parameter. Since is symmetric, it has only 21
independent parameters, giving a total of 28 parameters in
(3). These parameters can be found with a least square
(regression) method using the link and pose cluster data.
Suppose that the link and pose data for a cluster are denoted
by , k =1,2, …, d; where d is the number of

data points, and

 are pose and link vectors of k-th
data point, respectively. In order to determine the
parameters of the linear model, the following error function
is minimized

ic

iA

),p(kk l

()T6k1kk p,,pP L=
T

6k2k1kk),,,,(L lLll=

 2
ik

T
iki

T
kki

d

1k

6

1i
)cLbLALP(E −−−∑ ∑=

= =

(4)

A closed form solution to the above minimization exits and
can be obtained by setting to zero the derivatives of E with
respect to the elements of , and . The resulting
linear set of equations is solved to obtain closed-form
solutions for , and for each solution cluster in each
pose region.

iA ib ic

iA ib ic

 The model parameters are stored as records in a file or
for the subsequent online retrieval. Each record has a unique
address in the file where the parameters of the forward
kinematics model are stored. The address can be encoded in
a number of ways. One method is to encode the cell
address as

∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏=

= =

5

0i

i

1j
jiadrs NeC

(5)

where is in the range in the range of 0 to , the latter
is given by (2) and

ie iN
1N 0 = . The encoding (5) is similar to

WeC6.4

903

decimal number encoding except that instead of base 10 for
all digits we have bases , respectively, for
the least to most significant digits. At each address
representing a link cell, there is a solution number, followed
by the values of model parameters , and for the
particular cell. Note that the offline phase is done only once
for a platform.

621 N,,N,N L

iA ib ic

IV. ONLINE FORWARD KINEMATICS COMPUTATION

During the online phase, given the desired link vector , the
indices needed for computing the address in the file, where
the parameters are stored, are computed from

l

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

c

min,ii
i ceile

l

ll

(6)

The parameters for each solution region are retrieved and the
platform pose is computed using (3). Since computing the
address and determining the poses via (3) does not involve
trigonometric or inverse trigonometric functions, the online
computation is extremely fast, as will be seen in Section V.
 It is noted that for some applications, such as flight or
other motion simulators, finding the poses with a reasonably
good approximation (say with less than 0.1% error) is
sufficient. This type of approximation is achievable using
the above method, as will be seen in Section V. In case of
other applications, more exact values are needed. This can
be achieved by finding the approximate solutions as above,
and a correction step to arrive at the solution with high
accuracy. Suppose that for a desired given link vector l the
approximate value of a pose found by the above method is

. Substituting in the inverse kinematic (1) gives a link

vector approximation

p̂ p̂

l̂ . The incremental change
)p̂p(p iii −=Δ needed in the pose element to achieve

the correction of the link vector is obtained
from (3) as follows

ip

)ˆ(lll −=Δ

 () ll ΔΔ T
i

T
i bA2p += 6,,2,1i L= (7)

The correction requires one inverse kinematics evaluation
using (1) and finding the increments (7). Since no inverse
trigonometric functions, matrix inversion or nonlinear
equation solving is involved, the computation of correction
is also very fast, as will be seen in the next section. The
total online time is where: 321on TTTT ++=

1T = Time to compute the lookup table cell address from
 (5)-(6) for a given link vector, and retrieve the model
 parameters.

2T = Time to compute the position and orientation for each
solution via (3).

3T = Time to correct the acquired position and orientation
using (7). This time consists of three subcomponents,
i.e.times for substituting the acquired position and
orientation in the inverse kinematics (1), determining

the error lΔ , and finally computing the correction via
(7).
In the following section we will see that for a typical

platform, each of the above times is only a few
microseconds per solution using a standard PC.

V. EXAMPLE

The example to be used for investigation of the proposed
method is the one reported in [15]. It is a Stewart Platform
configuration with six linear actuators which constitute the
links. The base is a semiregular hexagon, and the platform
is an equilateral triangle. The links are connected to the
vertices of the base and platform with two and three degrees
freedom universal joints. The side lengths of the base semi-
regular hexagon are 15, 1, 15, 1, 15, 1 meters and those of
the platform are 10, 10, 10 meters. The minimum and
maximum lengths in meters of each link are respectively

8min,i =l and 15max,i =l , . This platform has a
regular shape and geometry, but the proposed method does
not use any simplifying geometric properties of this platform
and treats it just it would a general platform. The reason for
the choice of this particular platform was to check our
results against those obtained in [16].

6,,2,1i L=

 The decomposition method described in Section II was
applied with the link cell side of meters. Since the
range of the motion of the each link is

4.1c =l

7max,imax,i =− ll
meters, there are 7/1.4 = 5 cells along each of the six
dimensions of the link space. This produces
cells. Poses were generated randomly in the
ranges

15625)5(6 =

2x2 <<− , 2x2 <<− , (all ranges in
meters), and each of the orientation angles

13z2 <<
γβα ,, between

and . Higher pose ranges produced link lengths
that were mostly outside limits. The number of generated
valid poses in each pose region was about 1200. The
maximum number of solution clusters in a region was set to

o60− o60

8K max = . All computation was performed on a Pentium 4,
1.8 MHz PC with 512 MB of memory. The total off-line
time was about seven hours, which is done only once.
 We first compare the results of our method with those of
[16] where exact analytical solutions were reported for
extreme configurations. The results are summarized in
Table 1 and in all case the correction mentioned in the
previous section was implemented. The upper three
numbers in Table 1 cells were obtained by the proposed
method and the lower three numbers are the exact values
reported in [16]. The “Lowest Position” in the table refers to
the minimum link values, i.e. 8621 ==== lLll meters.
The values found by the proposed method are exactly the
same as the results of the analytical solutions. The same
conclusion is made for the case of “highest position” with

15621 ==== lLll meters. The other two cases are the
“Most Tilted” where 1521 == ll , 86543 ==== llll ,
and the “Most Twisted” where 8531 === lll and

15642 === lll . In both these cases the results are also
very close to the analytical solutions.

WeC6.4

904

TABLE 1 COMPARISON OF METHODS OF FINDING EXTREME

CONFIGUARTIONS

In order to test the performance and accuracy of the

method for a large set of data, we generated 1000 link
vectors whose elements were selected randomly between the
link length ranges of 8 and 15 meters. In order to find the
accuracy of the solutions, the following procedure was
adopted. For each of the 1000 desired link vector l , the
pose values were found using the proposed method. These
were then substituted in (1) to get their corresponding
approximated link value l̂ . The error E reported in Table 2
is the average absolute error for the 1000 trials with
and without correction using (7). The error standard
deviation is shown under the column

|ˆ| ll −

σ in Table 2. It is
seen the errors are small especially with correction. In the
latter case, the average absolute error is 0.00124 meters, or

 of full range. Even without the
correction, the errors are small. The memory needed to store
the parameters was 18.2 MB, which is reasonable
considering that a standard PC has 512 MB to 1 GB of
memory. The success rate is the number of valid link values
after finding the pose values and substituting them back into
(1).

%017.07/)00124.0(=

The times reported in Table 2, are defined in Section IV,
i.e. is required for parameter retrieval from the lookup
table (file), is for pose computation, and is the time

for correction, all measured in

1T
2T 3T

sμ (second). Most of
the total time in the case of correction is taken up by
computing the inverse kinematics that involves
trigonometric functions. Even with the correction the total
online time is extremely small. For example, even if
the platform has 20 pose solutions for each link vector, all
solutions can be computed in about 0.3 milliseconds.

610 −

onT

onT

TABLE 2 RESULTS OF 1000 TRIALS

Fig. 2 Using 8K max = , four clusters are identified in this region.

 Shown are position (top) and orientation subspaces

Fig. 3 Using 4K max = , two clusters are identified. Shown are

position (top) and orientation subspaces.

Configuration Position x,y,z
 (m)

Orientation γβα ,,
(deg)

Lowest
Position

0.000, 0.000, 2.646
0.000, 0.000, 2.646

0.00, 0.00, 0.00
0.00, 0.00, 0.00

Highest
Position

0.000, 0.000, 12.961
0.000, 0.000, 12.960

0.00, 0.00, 0.00
0.00, 0.00, 0.00

Most Tilted -1.239, -2.139, 5.506
-1.236, -2.142, 5.503

58.99, -74.00, -46.07
58.99, -73.84, -46.06

Most Twisted 0.000, 0.000, 7.194
0.000, 0.000, 7.192

0.00, 0.00, 68.34
0.00, 0.00, 68.36

σ
Correction E

(m) (m)
M

(MB)
S

(%)
Yes 0.00124 0.0038 18.2 97
No 0.00478 0.0089 18.2 96

1T 2T 3T
Correction (sμ) (sμ) (sμ)

onT
(sμ)

Yes 1.3 1.4 11.6 14.3
No 1.3 1.4 0 2.7

WeC6.4

905

TABLE 3 COMPARISON OF RESULTS IN TWO CASES

Finally, we discuss the effect of reducing the maximum

number of clusters . In an experiment, we chose
 instead of . In this case the accuracy of

solutions was not much affected. In other words, the data
presented in Tables 1 and 2 were similar for the two
values. This indicates that for the majority of link values
there are no more than four solutions. An investigation of
the solutions revealed that with , we obtained
repeated (identical) solutions in many regions. A typical
example of this situation is shown in Fig. 2 where the choice
of has produced four solution clusters in the
region, and in Fig. 3 with where only two
clusters have been formed in the same region. This means
that in the latter case, a pair of clusters has been combined
into one cluster. Table 3 shows the poses found by the
method for a randomly selected

 in the
link cell corresponding to the pose region shown in Fig. 2 or
3. It is seen that produced four solutions in
which solutions 1 and 3 were almost identical and so were
solutions 2 and 4. In such a case, redundant solutions are
eliminated. The error measured in the link value due to the
approximation in all cases reported in Table 3 was less than
0.002 meter or 0.03% of full range.

maxK
4K max = 8K max =

maxK

8K max =

8K max =
4K max =

T)327.13,763.11,270.13,200.11,574.8,249.9(=l

8K max =

VI. CONCLUSIONS
A new approach to the forward kinematics solutions of a
general Stewart platform is introduced that is extremely
fast and is suitable for real-time applications. Unlike the
analytical methods that are restricted to special types of
platforms, the proposed approach is applicable to a general
platform without placing any restrictions on the geometry
or link connection points. Furthermore, it does not suffer
from the problems associated with numerical methods of
solving a set of nonlinear or polynomial equations, such as
local minima, sensitivity to the initial values, finding only
one solution, and solutions with imaginary part. In fact
due to the particular method of data generation, only valid
link-pose data are considered for modelling, and multiple
solutions are generated and classified. The accuracy of the
solutions is very good, and only modest memory is
required for storing the model parameters. Finally, the
method is very flexible in the sense that depending on the

desired level of accuracy and online computation time, the
cell size can be adjusted accordingly. Orientation γβα ,,
 We have successfully applied the method to several
platforms, one of which is reported in this paper. A
possible limitation of the method is dealing with platforms
that have a large number of solutions, e.g. 16 or more
distinct real solutions. In such cases, more data must be
generated so that each solution cluster has enough data
points for curve fitting. This adds to the offline processing
and requires more memory to store the model parameters.
However, practical platforms with more than 16 distinct
real solutions are rare.

REFERENCES
[1] B. Dasgupta and T.S. Mruthyunjaya, “The Stewart Platform

manipulators: A review”, Mechanism and Machine Theory,
vol. 35, no. 1, pp. 15-40, 2000.

[2] M. Griffis and J. Duffy, “A forward displacement analysis
of a class of Stewart platforms,” J. Robot. Syst. , vol. 6, no.
6, pp. 703-720, 1989.

[3] C. Innocenti, and V. Parenti-Castelli, “Direct position
analysis of the Stewart platform mechanism, “ Mech. Mach.
Theory, vol. 26, no. 6, pp. 611-621, 1990.

[4] M.S. Tsai, T. N. Shiau and Y. J. Tsai, “Direct kinematic
analysis of a 3-PRS parallel mechanism,” Mech. Mach.
Theory, vol. 38, pp. 71-83, 2003.

[5] I.D. Akcali and H. Mutlu, “A novel approach in the direct
kinematics of Steward platform with planar platforms,”
ASME Trans. J. Mech. Design, vol. 128, pp. 252-263, 2006.

[6] G. Wang, “Forward displacement analysis of a class of 6-6
 Stewart platforms,” Robot., Spatial Mechan. Syst. , vol. 45,
 pp. 113-117, 1992.
[7] S.V. Sreenivasan, K. J. Waldron, and P. Nanua, “Closed

form direct displacement analysis of a class of a 6-6
platform,” Mechanisms and Machine Theory, vol. 29, no. 6,
pp. 855-868, 1994.

[8] J. Yang and Z. J. Geng, “Closed form forward kinematics
solution of a class of hexapod robots,” IEEE Trans. Robot.
Automat., vol. 14, pp. 503-508, 1998.

[9] P. Ji and H. Wu, “A closed form forward kinematics
solution for 6-6P Stewart platform,” IEEE Trans. Robotics
and Automation, vol. 17, no. 4, pp. 522-526, 2001.

[10] D. M. Ku, “Direct displacement analysis of a Stewart
platform mechanism,” Mech. Mach. Theory, vol. 34, pp.
453-465, 1999.

[11] L.-C. Wang and C.C. Chen, IEEE Trans, Robot Automn.,
vol. 9, no. 3, pp. 272-285, 1993.

[12] M. Raghaven, “The Stewart platform of general
geometry has 40 configurations,” ASME J. Mech.
Design, vol. 115, pp. 277-282, 1993.

[13] M.L. Husty, “An algorithm for solving the direct
kinematics of general Stewart-Gough platforms,”
Mech. Mach. Theory, vol. 31, no. 4, pp. 365-379,
1996.

Position x,y,z maxK
 (m) (deg)

4

-1.7297 -0.8595 7.0496
-1.2639 0.3873 8.0563

-46.03 58.50 -39.46
-28.42 21.01 -14.85

8

-1.7296 -0.8588 7.0500
-1.2638 0.3876 8.0565
-1.7296 -0.8587 7.0501
-1.2639 0.3873 8.0563

-46.03 58.49 -39.45
-28.41 21.00 -14.84
-46.02 58.48 -39.45
-28.42 21.01 -14.85

[14] P. Dietmair, “The Stewart-Gough platform of general
geometry can have 40 real postures,” Advances in
Robot Kinematics: Analysis and Control, J. Lenarcic
and M.L. Hust (eds), pp. 7-16, Kluwer Academic
Publications, 1998.

[15] R. O. Duda, P.E. Hart and D. G. Stork, Pattern Classification,
2nd edition, Wiley 2001.

[16] K. Liu, J.M. Fitzgerald and F.L. Lewis, “Kinematics
analysis of a Stewart platform Manipulator,” IEEE
Trans. Industrial Electronics, vol. 40, no. 2, pp. 282-
293, 1993.

WeC6.4

906

