
 
 

 

  

Abstract—This paper presents a coordination scheme for 
standoff tracking of an uncertain moving target by cooperating 
mobile robots with range and bearing sensors. An algorithm is 
described that transforms a guidance vector field developed for 
loitering about circular patterns into a vector field that tracks 
ellipses. Specific elliptical tracking patterns are developed 
based on the covariance matrix of a stochastic estimation 
process. Simulation results demonstrate the ability of two aerial 
robots to coordinate their orbit around an uncertain target 
moving with constant velocity. 

I. INTRODUCTION 

CTIVE sensing in robot networks takes advantage of 
robot mobility to optimize or improve information 

gathering activities. For some applications, such as 
exploration, persistent surveillance, and area coverage, 
proactive motion and cooperation between multiple vehicles 
can improve performance in terms of execution time, search 
efficiency, and system flexibility or robustness. For other 
applications, such as bearing-only (or range-only) 
localization and target tracking (Fig. 1), active sensing in 
terms of single-robot motion or multi-robot collaboration is 
necessary to provide basic sensing observability. 

This paper presents a coordinated control scheme for 
cooperative stand-off tracking of uncertain moving targets 
using bearing and range measurements. Standoff tracking 
consists of following and orbiting around a (possibly 
moving) target with a specified minimum allowable 
separation distance. Although originally motivated by 
cooperative search and tracking of moving ground targets by 
teams of unmanned aircraft [1], the algorithms presented 
here apply equally well to tracking applications consisting of 
unmanned ground vehicles (UGVs), unmanned surface 
vehicles (USVs), and autonomous underwater vehicles 
(AUVs). 

A key component of active sensing systems is the 
dependence of information-gathering on robot motion and 
the ability to predict in advance the effect of robot motion 
on the quality of information that is collected. For model-
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based sensing tasks (e.g. feature localization, target tracking, 
and diffuse target tracking) information-theoretic concepts 
such as mutual information, Fisher information, and entropy 
are used to quantify the sensitivity of the sensing task to 
robot motion and planning algorithms can explicitly 
formulate sensing objectives in terms of these criteria. 
Example applications using this approach include: trajectory 
design to improve bearings-only tracking [2, 3]; path 
planning to enable a robotic manipulator to grasp a delicate 
object [4]; target tracking by active sensor networks [5, 6]; 
collaborative perception by unmanned ground and aerial 
vehicle teams [7]; vision-based navigation and control [8]; 
and hierarchical reconnaissance by teams of unmanned 
aircraft [9]. 

 
An alternative approach to incorporating information-

gathering criteria directly into the cooperative control 
framework is to decompose the problem into a hierarchical 
structure based on underlying assumptions related to active 
sensing concepts. For target geo-localization and tracking by 
cooperating robots, the optimal configuration consists of 
phased spacing about the target at the minimum allowable 
stand-off distance [10]. Thus, different tracking algorithms 
have been designed to coordinate robot motion without 
explicitly modeling the sensing performance. Control 
algorithms for the spacing of general oscillators (which can 
model UAS kinematics) about fixed points have been 
developed for arbitrary number of agents [11]. The optimal 
phasing of two UAS orbiting at a fixed radius is used as one 
of the heuristics in the reconnaissance architecture in Ref. 
[9]. Cooperative search and tracking of agile targets in the 
presence of background wind have also been performed by 
decoupling target assignment and orbit coordination based 
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on desired phasing between UAS [1, 12]. 
The optimal coordination algorithms referred to above are 

designed to minimize the uncertainty of target estimation, 
but do not incorporate this uncertainty back into the robot 
motion control. For cooperative standoff geo-localization 
and target motion estimation by two vehicles, optimal 
spacing is derived in order to minimize a scalar function of 
the resulting estimate error covariance matrix. 
Unfortunately, the coordinated control algorithms then 
invoke the certainty equivalence principle to derive circular 
orbit patterns around the current estimate [1, 12]. In order to 
insure standoff tracking, i.e. that the robot maintains the 
required separation distance, the orbit patterns must include 
this uncertainty. For planar estimation problems, this 
uncertainty leads to elliptical contours of constant 
probability and motivates the need to orbit elliptical patterns. 

The cooperative tracking algorithm presented here 
assumes some high-level coordination layer assigns 
individual robots to specific sensing tasks. In this work, the 
sensing task consists of stand-off tracking of an uncertain 
moving target using range and bearing sensors. The tracking 
algorithm described here transforms a guidance vector field 
with global stability properties developed for loitering about 
circular patterns [1] into a vector field that tracks ellipses. 
Specific elliptical tracking patterns are developed based on 
the covariance matrix of a stochastic estimation process. 
Cooperative phasing around the ellipse by multiple robots is 
achieved through differential speed commands.  

II. SYSTEM MODELS 

This work is motivated by tracking applications using 
unmanned aircraft (UA). Thus, the algorithms presented 
here assume the mobile robots are equipped with a low-level 
control system that presents the following 2-D kinematic 
model to the higher level guidance layer: 
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where 2],[ ℜ∈Tyx  is the two-dimensional inertial position 
of the aircraft, [ )πψ 2,0∈  is the aircraft yaw angle, 

2],[ ℜ∈T
yx WW  are the components of the background 

(horizontal) wind velocity, and 2,1=∈ iUu ii  are the 
commanded air speed and turning rate, which are 
constrained to the limits 
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When expressed relative to a point T
ttt yx ],[=p  moving 

with speed 2],[ ℜ∈T
tt yx && , the kinematic model becomes 

(see Fig. 2) 
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Since the wind velocity and moving target velocity enter Eq. 
(3) in the same way, it is convenient to consider a “virtual” 
moving target with velocity 

T
ytxt

T
yxT WyWxTT ],[],[ −−== &&v . Thus, in the remaining 

sections of this paper we will refer to a moving target with 
the understanding that it is a virtual one whose velocity 
comes from the moving ground target and the background 
wind. Furthermore, the virtual moving target allows us to 
apply the same kinematic model to different vehicles such as 
unmanned aircraft and mobile ground robots. 

  
Robot guidance is achieved by specifying a desired 

guidance vector field and using a reference tracking control 
to follow it. Derivation of guidance vector fields for this 
application will be described in Section III. The guidance 
vector field gives the desired velocity which is used to 
generate the desired heading angle dψ  and desired turn rate 

dψ& . The heading angle error de ψψψ −=  is driven to zero 
by the control law 

 ( )ddu ψψλψ −⋅−= &2 . (4) 

which yields a heading angle error rate ψψ λee −=& . 
Ground target motion is modeled as constant velocity 

with accelerations acting as process noise. Thus, the 
equations of motion for the target are 

 [ ] [ ] [ ]kkk tt wGxFx ⋅+⋅=+1  (5) 

Inertial frame 
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Fig. 2 Tracking geometry with the ground target 
of interest at the origin of the local frame.
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where [ ]tttttt yyxx && ,,,=x , [ ] t
tE Qww = .  

In this work we consider two-dimensional problems in 
which the robots know their own locations and are equipped 
with sensors that measure the bearing angle and range to an 
obstacle. The measurement is given by 
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where kθ  is the vector of the 2-D position of the target 
object and v  is white noise with uncorrelated variances 2

Rσ  
and 2

θσ  in the range and bearing measurements 
respectively. The measurement equation Eq. (14) can 
describe many different types of sensors. Taking 

∞<∞= 22 , θσσ R  models passive non-cooperative (i.e. 
bearings-only) sensing such as EO/IR cameras or passive 
sonar. On the other hand, taking ∞=∞< 22 , θσσ R  
models pure trilateration, e.g. using some types of radar. 
Finally, conventional radar systems include both bearing and 
range measurements and would have finite values for both 
variances.  

III. TRACKING ELLIPTICAL CONTOURS USING LYAPUNOV 
VECTOR FIELDS 

In this section we describe an algorithm for generating 
guidance vector fields that follow elliptical contours. The 
algorithm is based on a Lyapunov vector field approach that 
leads to a circular loiter pattern [1]. A linear transformation 
is used to stretch the pattern into an ellipse whose shape can 
be defined by singular value decomposition of the 
transformation matrix. We prove stability of the resulting 
vector field to the ellipse in the case of any nonsingular 
transformation. 

Consider the Lyapunov function ( ) ( )222
dr rrV −=x , 

where ( ) ( )222
ttr

T
r yyxxr −+−== xx  is the squared radial 

distance of the robot from the target. The total time 
derivative of ( )xV  is given by  
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and this can be specified to be non-positive by choosing 
desired vehicle velocity dr xx && =  and dr yy && =  according to 
the guidance vector field ( )rxf  given by  
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where α  is non-negative. This vector field produces the 
non-positive rate of change of V  

 ( )
22
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d
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+
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=
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If α  is bounded away from zero, V& is zero only on the 
loiter circle )( drr =  and when 0=r . This ensures that the 
vector field produces a globally attractive limit cycle [1]. 
When r  is large compared to dr , the vector field points to 
the loiter circle center, but the field veers away when 
approaching the circle to smoothly entrain the motion into a 
left turn loiter.  

To extend the original Lyapunov vector approach for 
circular patterns to elliptical ones we prove the following: 

 
Theorem 1: Given the linear transformation rxMx 1−=′  
where M is a nonsingular matrix and the vector field ( )rxf  
described by (8) that drives the Lyapunov function 

( ) ( )222
dr rrV −=x  to zero, then the vector field   

 ( ) ( )rr xMfMxf 1−⋅=′   (10) 

drives the new Lyapunov function  

 ( ) ( ) ( )222
dr rrVV −′=′=′ xx   (11) 

to zero, where r
TT

r
Tr xMMxxx 12 −−=′′=′ . 

 
Proof: The time rate of change of the new Lyapunov 
function is 
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Taking ( ) ( )rrrx xMfMxf 1−⋅=′=&  yields 
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which is equivalent to (7) when substituting x′  for rx . 
Thus, 
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If α is bounded away from zero, V ′&  is zero when 22
drr =′ . 

Rewriting this expression reveals the equation for an ellipse 
21

dr
T
r rP =− xx  where MMP T= .  

 
Figure 3 shows an example elliptical vector field. This 

field was generated using (8) with rd = 1m and matrix 

 ⎥
⎦

⎤
⎢
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⎡ −
=

07.10613.212
07.10613.212

M  

which generates an ellipse rotated 45 degrees counter-
clockwise with major and minor axis of 300m and 150m 
respectively.  

 
Figures 4 and 5 show a single robot tracking the elliptical 

pattern described above. The robot has speed v0 = 20 m/s, 
maximum turn rate ωmax = 0.3 rad/s, and initial position 
[800m, 800m]. Figure 4 shows the path of the robot as it 
converges to the ellipse. Figure 5 shows the Mahalanobis 
distance 21

dr
T
rm rPd −= − xx  as a function of time. The limit 

cycle behavior is due to the fact that a discrete controller is 
used with a sample time of 1.0 s and the fact that the desired 
turn rate dψ&  is numerically estimated 
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When the target velocity is known, a correction term is 
added to the desired relative velocity vector to ensure that 
the robot remains on the desired contour [1]. We take 
advantage of the variable scaling factor α  in the Lyapunov 
vector field to recover the commanded speed and retain 
global convergence as follows.  Set the desired inertial 
velocity of the robot as 
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where xT  and yT  are the virtual target velocities defined in 
Section II. Taking the norm of Eq. (16) and setting it to the 
commanded speed ov  leads to the following expression for 

the scale factor: 
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Provided the robot speed ov  is larger than the virtual target 
speed, Eq. (17) has one positive real solution for α , 
showing that the scaled vector field remains globally 
convergent to the loiter circle. 

Phase coordination of multiple robots around the desired 
contour is produced by a second control law, which adjusts 
the speed of the vehicles (within limits).  The resulting speed 
commands are then processed through the correction 
algorithm (17) to maintain the desired standoff distance to 
the moving target. For two cooperating robots with phase 
angles 1θ  and 2θ  defined relative to the instantaneous target 
location, the speed commands 
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drive the relative angle 12 θθ − to the desired offset Dθ  [1]. 

IV. TRACKING AN UNCERTAIN MOVING TARGET 

In this work we assume either a statistical or set-
membership representation of the uncertain moving target. 
In either representation the uncertain target is given by an 

Fig. 5 Elliptical Lyapunov vector field. 
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Fig. 3 Path of UA tracking elliptical loiter pattern. 

Fig. 4 Mahalanobis distance versus time.
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estimate [ ]tttttt yxyx && ,,,=x  of the target state that includes 
inertial position and velocity and a matrix P  that describes 
the uncertainty in the estimate. For the statistical 
representation the matrix is the estimate error covariance 

( ) ( )[ ]tE xxxx −⋅− . The covariance matrix defines hyper-
surfaces of constant probability density and can define 
hyperellipsoidal confidence regions 

 ( ) ( ) 2
σnt ≤−− xxPxx  (19) 

where σn  is a scalar parameter that determines the 
confidence level. For the set-membership representation the 
matrix P is used to define a bounding hyper-ellipsoid 
around the estimate that contains the true state using (19) 
with 1=σn . 

In order to guarantee stand-off tracking of an uncertain 
target, a loiter pattern is defined that keeps the robot the 
specified separation distance offr  from the boundary of the 
bounding position ellipse pP  defined by the uncertainty 
matrix:  

 [ ] ( )2:1,2:1~~ PppPp =⋅= tE . (20) 

In order to use the guidance law defined in (10) we 
calculate the transformation matrix M  from the bounding 
position ellipse. First, the square root matrix is determined 
and scaled by σn  
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Next, the singular value decomposition of the resulting 
matrix S  is calculated. The singular values of S  represent 
the lengths of the major and minor axis of the bounding 
ellipse while the orthonormal matrices VU,  define its 
orientation. The specified stand-off distance is added to each 
singular value and the transformation matrix M  is created 
by re-multiplying by the orthonormal matrices to yield 
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The net effect is to stretch the bounding ellipsoid by the 
distance offr  in the direction of both axes of the ellipse. The 
resulting ellipse over-approximates the guaranteed stand-off 
distance, but is easier to compute from the original bounding 
ellipse pP . 

V. SIMULATION RESULTS 

Implementation of the guidance law defined by (10), (18), 
and (22) requires calculation of the full target state. In this 
paper we use a two step approach. First, measurements for 
the two robots are combined at each sample time to form an 
instantaneous estimate of the target position. Second, this 

estimate is used as the measurement vector for a Kalman 
filter that estimates the entire target state. 

In this work we assume each robot measures the range 
and bearing to the target. From these measurements, we can 
invert the measurement function to obtain a local estimate of 
the target position 

 ( )i
k

i
k

i
k h xzp ,ˆ 1−=  (23) 

and calculate the Cramer-Rao Lower Bound of the position 
error covariance matrix 
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where i
kH   is the derivative of the measurement function (6) 

with respect to the target position and R  is the 
measurement noise covariance matrix.   

The measurements from each robot are combined to give 
the instantaneous position estimate 

 ⎟
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⎝
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with new error covariance matrix 
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The full target state is then estimated by using kk pz =  as 
the measurement vector with noise covariance kk PR ˆ=  in a 
standard Kalman filter.  

Simulations were carried out with 2 robots tracking a 
single moving ground target. The robots start from positions 
[800m, 800m] and [900m, 890m], have nominal speed 

0v =20 m/s with constraints vmin = 15 m/s and vmax = 25 m/s, 
and maximum turn rate ωmax = 0.2 rad/s. The target starts at 
the origin and moves with constant velocity [10 m/s, 0 m/s]. 
The process noise covariance is Qt = 1.0*I m/s2. The range 
and bearing sensor variances used for the simulation are σr = 
200 m and σθ = 5 degrees. The stand-off distance is roff = 
300 m, the sample time is Ts = 1s, and nσ = 3. 

Figures 6-8 show the simulation results. Figure 6a shows 
the Mahalanobis distance between each robot and the 
boundary of the instantaneous loiter pattern versus time. 
Since the uncertainty in the target estimate decreases with 
time the loiter pattern boundary also changes. Figure 6b 
shows the separation distance between each robot and the 
true target location. The robots stay beyond the stand-off 
distance throughout the entire flight except briefly at 
approximately 225 s. Figure 6a shows a negative 
Mahalanobis distance which indicates that the robots were 
within the boundary ellipse. This tracking error is due to the 
approximation of the feedforward term given by (15). These 
results imply that the ellipse given by (22) provides adequate 
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separation from the uncertain target but that tracking errors 
can cause the robots to violate the stand-off constraint. 

 
Figure 7 shows the turning rate and speed commands of 

the two robots. The turn rate command has high frequency 
oscillation due to the behavior of the position estimates of 
the target (Fig. 8). Otherwise, the guidance vector law yields 
good performance without hitting the turn rate constraints at 
0.2 rad/sec. The speed commands also oscillate about the 
nominal value of 20 m/s. In this case, the oscillation 

indicates that the vehicles were unable to maintain the 
desired 90 degree phasing due to the motion of the target. 

Figure 8 shows the performance of the target tracking 
estimation versus time. The position errors initially oscillate 
with a magnitude of 50 meters but settle in to within 10 
meters after 100 s. Likewise, the velocity errors settle to less 
than 0.5 m/s. Comparing Fig. 8 and Fig. 6 reveals that the 
estimation performance improves greatly when the robots 
reach the loiter pattern (Mahalanobis distance close to zero 
in Fig. 6a) close to the stand-off distance from the target 
(separation distance close to 300 m). 

VI. CONCLUSION 

This paper presented a coordination scheme for standoff 
tracking of an uncertain moving ground target by two 
unmanned aircraft. By transforming a circular guidance 
vector field into elliptical patterns, guaranteed standoff 
tracking can be achieved that incorporates target uncertainty 
into the robot motion control. Simulation results 
demonstrated the ability of two robots to coordinate their 
orbit around an uncertain target moving with constant 
velocity. 
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Fig. 6 Lyapunov function and standoff distances 
versus time for two UA track a moving target. 

Fig. 7 Two UA track a moving target. 
Turn rate and speed commands. 
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Fig. 8 Two UA track a moving target. 
Estimator performance. 
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