
Getting up Motion Planning using Mahalanobis Distance

Fumio Kanehiro, Kiyoshi Fujiwara, Hirohisa Hirukawa, Shin’ichiro Nakaoka and Mitsuharu Morisawa

Abstract— This paper presents a motion planner of getting
up motion using Mahalanobis distance. It is an indispensable
function for humanoid robots to get up by itself and some
humanoid robots are able to get up by themselves, but the
motion can start only from the states specified a prior. The
robots have to get up from an arbitrary lying state which
may result after an unexpected falling. The proposed method
(1)determines the degree of similarity between the current
falling state and predefined falling states using Mahalanobis
distance, (2)generates a collision-free motion to the most similar
state, and (3)plans a sequence of motions using a state transition
graph.

I. INTRODUCTION

Recent progress in the control of biped locomotion has
realized stable biped locomotion on several humanoid robots
including ASIMO[1], QRIO[2] and HRP-2[3]. No matter
how the control is improved, a humanoid robot must have
an ability to get up by itself after it has fallen on a floor.
Because even a human sometimes falls over.

A trial to let the robot get up started for a simple robot
with a few links. Morimoto et al. realized the acquisition of
stand-up behavior of a robot with three links by hierarchical
reinforcement learning, and the proposed method was exam-
ined by a simulation and experiment[4]. In recent years, the
motions have been investigated for humanoid robots with
many links. We have realized a getting up behavior on a
small size humanoid robot which was 30[cm] height [5].
morph[6], HOAP2[7], QRIO and its prototype SDR-3X[8]
are also small size humanoid robots that are able to get up.
On the other hand, there are a few life size humanoid robots
which can get up. HRP-2 can get up from lying states with
the face upward and downward. R.Daneel Study 1[9] can get
up quickly by swinging down its legs from a lying state on
the back[10].

These getting up motions can start only from predefined
falling states. But the robot may be in an arbitrary state when
it falls unexpectedly. In order to get up by itself and continue
working in the cases, the robot must be able to get up from
any falling state.

This paper aims to realize the getting up ability which
may start from an arbitrary lying state on the flat floor and
the proposed method (1)determines the degree of similarity
between the current falling state and predefined falling states
using Mahalanobis distance, (2)generates a collision-free

The authors are with Intelligent Systems Research Institute, National
Institute of Advanced Industrial Science and Technology(AIST),
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568
Japan {f-kanehiro, k-fujiwara, hiro.hirukawa,
s.nakaoka, m.morisawa}@aist.go.jp

1

2 3 4

5

67

89

10

11 12

Fig. 1. State Graph for Getting up Motion

motion to the most similar state, and (3)plans a sequence
of motions using a state transition graph.

This paper is organized as follows. Section 2 overviews
the proposed method, and Section 3 shows how to improve
it. Section 4 concludes the paper with future works.

II. GETTING UP MOTION PLANNING

A. Strategy

The getting up motions of HRP-2 was realized based
on the state transition graph as shown in Fig.1[11]. The
algorithm tries to find a path on the graph by a graph search
algorithm and the transitions between the consecutive states
are realized by the controllers assigned to the transitions.

When a robot falls over unexpectedly, the robot must get
up from the lying state after the falling which may not be
a state in the graph. If the robot can transfer from the state
to any of the states in the graph, it should be able to get
up by applying the available method to get up. The overall
structure of this strategy is similar to that of PRM[12]. The
graph is given not by learning but by hand and we devote
our attention to the problem how to let the robot transfer
from a given lying state to a state in the graph. The problem
includes issues, (1)how to select a target state of the graph to
transfer and (2)how to generate a motion to reach the state.

The proposed method tries to select a state which is most
similar to the current falling state in the sense as defined
below, and applies a linear interpolation to the posture of
the robot to reach a state of the graph.

B. Target Selection using Maharanobis Distance

Let q = [q1 · · · qn]T (n is the DOF) be the joint angle
vector of a robot and [φ θ ψ]T Euler angles of the base link.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC5.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2540

Since a lying state on the flat floor does not depend on ψ, a
lying state X can be defined by

X = [φ θ q]T .

Let dj be the distance between the current lying state X and
a state Xj(j = 1, · · ·, N) in the graph(N is the number of
known states in the graph). Xj that has the minimum dj is
the most similar state to X .

A simplest method to calculate dj must be Euclidean
distance which can be given by

d2
j = (X − Xj)T (X − Xj).

But this method is not appropriate, since all joints and Euler
angles are treated in the same way.

Another method is weighting each element in which dj is
given by

d2
j = (X − Xj)T diag(w)(X − Xj),

w = [w1 ... wn+2]T .

We have applied the method to realize the getting up motion
of a small size humanoid robot[13], but the problem was that
there is no reasonable criterion for deciding an appropriate
w other than an ad-hoc one.

Consequently we use Mahalanobis distance for evaluation
of the degree of similarity. Then dj is calculated by

d2
j = (X − µj)

T Σ−1
j (X − µj),

where µj and Σj are the average vector and a vari-
ance/covariance matrix of Sj which is a set of lying states
which can transfer to Xj respectively.

C. Acquisition of the Average Vector and Vari-
ance/Covariance Matrix

µj and Σj are acquired by the following procedure.
1) Generate a set of various lying states S using random

numbers.
2) Try a transition from Xi(Xi ∈ S) to Xj on a

simulator[14] and add it to Sj if the transition succeeds.
3) Calculate µj and Σj from Sj .
S is created by the following procedure.

1.1) Set values of qi within its movable range using
random numbers.

1.2) Check an occurrence of self-collision and go back to
1.1) if it occurs. Humanoid robots has wide movable
ranges and several links are connected sequentially.
This structure causes self-collision frequently. In this
step, about 80[%] of generated postures cause self-
collision.

1.3) Set values of φ and θ in range[−π, π) using random
numbers.

1.4) Set the position of the base link to [0 0 1]T .
1.5) Start a simulation and stop it when both of linear

velocity and angular velocity of the base link become
smaller than the threshold values for a period of time.

TABLE I
RESULTS OF TRANSITION TRIALS(UNIT:[%])

State No. success failure collision overload
5 2.5 43.9 17.6 36.1
6 3.4 0.6 20.9 75.1
7 5.2 42.2 15.1 37.5

10 4.1 15.8 40.3 39.8
11 25.1 2.3 33.5 39.1
12 42.1 5.3 15.1 37.5

Finally make X from the current state and add it to
S.

Transition trials are done as follows.

2.1) Start a simulation using Xi(Xi ∈ S) as an initial
state. A duration of a linear interpolation is decided
to be proportional to the maximum absolute difference
of joint angles of Xi and Xj .

2.2) Stop the simulation and go back to 2.1) when an
overload on a joint or self-collision is detected. These
may happen since a transition motion is generated by
a simple linear interpolation of postures.

2.3) After detecting the robot motion has stopped by the
method in 1.5), compare the current state and Xj and
add Xi to Sj if they looks identical. Whether states
are identical or not is decided by

arccos((R′
BRT

Bv)T v) < ε,

where v is a vertical unit vector, RB is a rotation
matrix of the base link calculated using Xj and R′

B

is also a rotation matrix of the base link gotten from
the simulation result.

Consequently, the results of the simulations are catego-
rized into four types, Success, Failure(a motion is successful
but an orientation is different), Overload and Collision.

D. Simulation

1) Calculation of the Average Vector and
Variance/Covariance Matrix: In order to get µj and
Σj , 6,000 random falling states are generated at first
and transitions to the graph are tried. Since trials on the
simulator take long time(It takes a few minutes to execute
one trial.), state #5, #6, #7, #10, #11 and #12 in Fig.1 are
selected and only transitions to those states are tried. They
are selected because it is considered that they are similar to
various falling states. Results of these trials are shown in
Table I.

About 40[%] of the trials to state #12 succeeds and another
40[%] fails with an overload. It is considered that the result
is caused by the arrangement of movable ranges of the joints.
They are set to move arms and legs forward(Figure 2 shows
a posture where joint angles are set to the center of each
movable range.). Therefore, an overload on a joint of arms
and legs may often occur when the robot falls with the face
downward and the trials succeed when it falls with the face
upward.

ThC5.1

2541

Fig. 2. Posture(joint angles are set to the center of movable ranges)

TABLE II
RESULTS OF SELECTION AND TRANSITION TRIALS(UNIT:[%], ALL

FALLING STATES)

No. selected success failure collision overload
5 8.4 15.5 2.4 11.9 70.2
6 10.3 3.9 1.0 11.7 83.5
7 20.5 18.5 1.0 11.7 66.3

10 1.8 38.9 22.2 27.8 11.1
11 9.6 69.8 1.0 18.8 10.4
12 49.4 72.9 0.4 14.6 12.1

As a result of the same reason, 40[%] of trials to state #5
and #7 fails with an overload and another 40[%] fails with
different orientation.

In case of the trials to state #6, 70[%] fails with an
overload and the rate of Failure is almost zero. Since a
posture of state #6 is pulling its head up, an overload on neck
joints occurs even if it falls with the face upward. 53[%] of
Overload was caused by the neck joints.

State #7 and #12 have different orientations but the same
q. So their simulation results are same. Therefore they have
same Overload and Collision ratios. If the robot lies on the
back or on the face at the end of the simulation, a Success
ratio to state #7 must be the same with Failure ratio to state
#12. But they are slightly different. This is because the robot
lies on its side in a few cases.

2) Target Selection and Transition Trial: Target states for
new 1,000 falling states are selected using µj and Σj which
are calculated in the previous section and the transitions are
tried. Results are shown in Table II. Success ratios in Table
II increased compared to them in Table I. This means that
the proposed method works effectively.

But the total success ratio is only 48.9[%]. So the half of
transitions fails. One of major reasons is that some of 1,000
falling states can’t transfer to any of selected six states. To
confirm it, the transitions to all six states are tried in the
same way as Table I and the result shows only 56.4[%] of
them can transfer to any of six states. Hence the success ratio
can’t over the value. Table III shows result when falling states
which can transfer to any of the states in the graph are applied
to the proposed method. In the case, the total success ratio is
86.8[%]. From this result, it is expected that a transition will
succeed in a high rate if the falling state can transfer to any
of the states in the graph and it is important for increasing
the success ratio to decrease lying states which can’t transfer

TABLE III
RESULTS OF SELECTION AND TRANSITION TRIALS(UNIT:[%], ONLY

FOR FALLING STATES WHICH CAN TRANSIT TO KNOWN STATES)

No. selected success failure collision overload
5 2.7 86.7 0.0 0.0 13.3
6 4.3 16.7 4.2 4.2 75.0
7 9.8 69.1 3.6 1.8 25.5

10 2.7 46.7 26.7 20.0 6.7
11 13.7 87.0 1.3 3.9 7.8
12 67.0 95.2 0.5 0.0 4.2

Make Collision Free Motion(qs, qe)
1 qlist← (qs);
2 do
3 cinfo← Check Collision(qs, qe);
4 if cinfo then
5 do
6 qnew ← Make Collision Free Posture(cinfo);
7 cinfo← Check Collision(qs, qnew);
8 while cinfo
9 else

10 qnew ← qe;
11 qlist.append(qnew)
12 qs ← qnew

13 while qs �= qe

14 Return qlist;

Fig. 3. Algorithm for making collision free motion

to any state.

III. COLLISION-FREE TRANSITION MOTION

A. Collision-free Motion Generation

In order to decrease the lying states which can’t transfer to
any state in the graph, the occurrences of self-collision and an
overload must be prevented. In this section, a collision-free
motion generation method is introduced instead of a linear
interpolation to remove failures caused by self-collision.

If an initial state and a final state are given in advance,
a motion between them can be generated offline and its
processing time is not restricted. However, in order to accept
arbitrary lying states, the motion generation must be done
online. So it is preferable that the generation finishes in
several seconds. Therefore, the expensive motion planners
can not be applied to this problem, and we used a method that
may trapped in local minima but can generate a motion in
a short period. It avoids self-collision locally using collision
information.

Figure 3 shows an algorithm of the collision-free motion
generation. It inputs an initial state qs and a target state
qe, inserts relay postures to avoid self-collision and outputs
a sequence of postures qlist. qlist is initialized using qs

in the first line. A transition to qe is tried in the third
line(Fig.3 left). Here Check Collision(q1, q2) is a function

ThC5.1

2542

Make Collision Free Posture(cinfo)
1 do
2 q ← Posture(cinfo);
3 δq ← 0;
4 foreach pair in Collision Pairs(cinfo)
5 p← Point(pair);
6 n← Normal(pair);
7 L1, L2 ← Link(pair);
8 J ← Jacobian(L1, L2, p);
9 δq ← δq+ Expand(αJ+n);

10 q ← q + δq;
11 cinfo← Check Collision(q);
12 while cinfo
13 Return q;

Fig. 4. Algorithm for making collision free posture

which checks an occurrence of self-collision while trans-
ferring between q1 and q2 by a linear interpolation and
returns collision information if self-collision is detected. In
that case, a collision-free posture qnew is generated using
collision information cinfo in the sixth line(Fig.3 middle).
In some cases, self-collision occurs in a transition between
qsand qnew. So it is checked in the seventh line and a qnew

is generated again using a new cinfo if self-collision is
detected. This procedure is repeated until a collision-free
transition to qnew is found and the found qnew is added
to qlist(the 11th line) and it is assigned to qs(the 12th line).
This procedure is repeated until a collision-free transition to
qe is found(Fig.3 right) and qlist is returned at last.

B. Collision-Free Posture Generation

An algorithm of Make Collision Free Posture in the sixth
line of Fig.3 is shown in Fig.4. It inputs collision information
cinfo and outputs a collision-free posture q. A collision
detected posture is used as an initial value of q in the second
line.

The following procedure is applied to each collision de-
tected pair of links(the fourth line). A Jacobian matrix J of
the joints between collision detected two links L1, L2 around
a contact point p is calculated(the 8th line). A variation of
joint angles is calculated using J and a contact normal n
which has the equivalent length to the penetration depth(the
9th line). Here J+ is a pseudo inverse matrix of J and α is a
positive value. A function Expand inserts zero and makes δq
which has the DOF length. δq for all the collided pairs are
added(the 9th line) and the final δq is added to q(the 10th
line). Then an occurrence of self-collision is checked(the
11th line) and this procedure is repeated while self-collision
is detected.

A geometric model of a robot is represented by a set
of triangles. And collision between them are tested by
RAPID[15]. Since the collision check is done for discrete
postures, many collisions occur at the same time. Let those
contacts points pi(i = 1, · · · , N), normal vectors ni and
penetration depths di respectively. Here N is the total
number of contacts. p and n are calculated by

p =
∑N

i=1 dipi
∑N

i=1 di

, n =
∑N

i=1 dini

N
.

Fig. 5. Examples of situations which can’t be solved by algorithm in Fig.4

9 δq ← δq+Expand(αJ+n)+Extract(β(qh − q));

Fig. 6. Modified part of algorithm for making collision free posture

In many cases, it is possible to generate a collision-
free posture using this procedure. But in some cases, a
collision occurrence and a collision-free posture generation
are repeated infinitely. Examples are shown in Fig.5. The left
is the case where relative velocity of colliding links heads
opposite direction to δq. The right is the case where a motion
goes into a pocket in the configuration space. These cases
occur because only local collision information is used for
collision avoidance.

To prevent occurrence of these situations, the 9th line of
Fig.4 is modified as Fig.6. Here qh is the posture in Fig.2
and β is a positive value. And function Extract extracts joint
angles between L1 and L2. This third term adds an effect
which pulls q to a collision-free posture in Fig.2 and then
the cases in Fig.5 can be solved.

C. Motion Refinement

An acquired sequence of postures may include unnec-
essary postures since it is generated based on the local
collision avoidance. So it is refined by an algorithm shown in
Fig.7. This algorithm inputs a sequence of postures qlist and
outputs refined one qlistnew. qlistnew and qs are initialized
using the head of qlist(the first and the second line). A
posture to which qs can transfer without self-collision is
searched from the end of qlist(the 6th line). The found
posture q is added to qlistnew and is assigned to qs(the
8th and the 9th lines). This procedure is repeated until a
collision-free transition to qe is found.

The basic concept of the algorithm is shown in Fig.8. In
case of Fig.8 left, q0 is used as qs at first. The transitions are
tried from q5 in turn and a successful transition from q3 is

Refine Motion(qlist)
1 qs ← qlist[0];
2 qlistnew ← (qs);
3 qlistr ← Reverse(qlist);
4 qe ← qlistr[0];
5 while qs �= qe

6 foreach q in qlistr do
7 if not Check Collision(qs, q) then
8 qlistnew.append(q);
9 qs ← q;

10 Break;
11 Return qlistnew;

Fig. 7. Algorithm for removing unnecessary relay postures

ThC5.1

2543

Fig. 8. Example of refinement of posture sequence(left:before, right:after)

Fig. 9. Example of collision free motion generation

found. Then q3 is set to qs. In the same way, q4 and q5 are
added and a sequence of postures in Fig.8 right is acquired
finally.

Figure 9 shows an actual example of this motion gen-
eration. A motion from a posture shown in Fig.9 leftmost
to rightmost is generated. If the transition is done by a
linear interpolation, the wrists of the robot collides. The
algorithm Fig.6 is effective in the case since a relative
velocity of the wrists and a contact normal goes into the
opposite direction. A sequence of 77 postures is generated
by Make Collision Free Motion and it is reduced into five
postures shown in Fig.9 by Refine Motion. In this case, it
takes 6.3[s] and 2.2[s] on Pentium4 3.4[GHz] to execute
Make Collision Free Motion and Refine Motion respectively.

D. Simulation

The simulations in Section II-D are executed again us-
ing the collision-free transition motion generation method.
Additionally, a part of judgment method is modified. If an
overload on any of joints is detected, the simulation was
stopped in the method of Section II-D. This time, even if an
overload is detected on neck or finger joints which do not
have strong structure and torque, the simulation is continued.

Table IV shows results of simulations of transitions from
6,000 falling states to six known states as Table I. As a
judgment method is modified, an Overload ratio of the
transition to state #6 decreased significantly. Instead a Failure
ratio increased. Ratios of Overload and Failure became
almost same as ratios of to state #5 and to state #7. As a
transition motion is modified, Success ratios to state #11 and
#12 increased. An Overload ratio to state #10 changed into
Failure and Collision and a Success ratio did not change.

Figure 10 shows the averages of falling states which
could transfer to state #6(left) and could not because of

TABLE IV
RESULTS OF TRANSITION TRIALS(UNIT:[%])

State No. success failure collision overload
5 3.2 55.6 0.0 41.1
6 7.9 47.1 0.0 41.1
7 9.8 52.1 0.0 38.1

10 5.1 49.7 0.1 45.2
11 46.6 13.1 0.0 40.3
12 52.0 9.9 0.0 38.1

Fig. 10. The averages of falling states that could transfer to state #6(left)
and could not because of overload(right) respectively

t=0.00 t=0.42 t=0.84 t=1.26 t=1.68

Fig. 11. Example of failed transitions(Unit:[s])

overload(right). The main difference between these states is
joint angles of shoulders. When a transition starts from a
posture raising arms, the arms collides with the floor, push
up its body and suffer from heavy load while transferring
to state #6. Actually, 80[%] of the overload was detected at
arm joints. Figure 11 shows an example of failed transitions
to state #6. In this case, an overload of a wrist joint of the
right arm was detected.

Although the collision-free motion generation method is
used, there are 12 cases where Collision occurs in 36,000
simulations. They are categorized into two cases. One is
cases where there is no collision-free path between a lying
state and the states in the graph. The other is cases where
δq calculated by Fig.6 is canceled by an original transition
motion.

Next, the target selections and transition trials are executed
using 1,000 lying states used in Section II-D. Table V shows
results which correspond to Table II. A selection ratio to state
#11 increased since falling states which can transfer to state
#11 increased. As Collision almost never happens, Success
ratios are improved.

The total success ratio became 62.5[%] which is about
10[%] higher than the result in Section II-D. And the ratio
of falling states which can transit to any of six known states
became 72.5[%] which is about 15[%] higher than the result
in Section II-D by changing a transition motion generation
method and a judgment method.

Table VI shows results of the transitions from lying states
which can transfer to one of six states as Table III. In this
case, the total success ratio is 86.2[%] and it is almost same
in the case of Section II-D.

Figure 12 shows examples of the transitions. A lying
state in the transition to state #12 looks similar to state #10

TABLE V
RESULTS OF SELECTION AND TRANSITION TRIALS(UNIT:[%], ALL

FALLING STATES)

No. selected success failure collision overload
5 8.8 21.6 3.4 0.0 75.0
6 17.0 20.6 1.2 0.0 78.2
7 13.9 29.5 0.7 0.0 69.8

10 2.4 37.5 37.5 0.0 25.0
11 23.3 91.8 0.4 0.0 7.7
12 34.6 88.7 0.6 0.0 10.7

ThC5.1

2544

t = 0.00 t = 3.60t = 2.70t = 1.80t = 0.90

t = 0.00 t = 1.20t = 0.90t = 0.60t = 0.30t = 0.00 t = 0.75t = 0.50t = 0.25 t = 1.00

t = 0.00 t = 0.90t = 0.60t = 0.30 t = 1.20

t = 0.00 t = 2.20t = 1.10 t = 1.65t = 0.55t = 0.00 t = 2.20t = 1.65t = 1.10t = 0.55

State #5 State #10

State #7

State #6

State #12

State #11

Fig. 12. Examples of transitions(Unit:[s])

TABLE VI
RESULTS OF SELECTION AND TRANSITION TRIALS(UNIT:[%], ONLY

FOR FALLING STATES WHICH CAN TRANSIT TO KNOWN STATES)

No. selected success failure collision overload
5 3.6 73.1 0.0 0.0 26.9
6 9.4 51.5 1.5 0.0 47.1
7 7.7 73.2 1.8 0.0 25.0

10 3.2 39.1 39.1 0.0 21.7
11 31.6 93.4 0.4 0.0 6.1
12 44.6 95.2 0.3 0.0 4.6

because it is moving up its upper body on the first glance.
And a falling state in a transition to state #10 looks similar
to state #12 because it is lying on the back. It is interesting
that different states are selected and those transitions succeed
actually. The transitions to state #7 and #10 may produce
large impact forces when legs or the body contact the ground.
To plan feasible motions on a real robot, several evaluation
criteria must be added to the acquisition process of µj and
Σj .

IV. SUMMARY AND CONCLUSION

This paper aims to realize the getting up ability which
can start from an arbitrary lying state on the flat floor and
the proposed method (1)determines the degree of similarity
between the current falling state and predefined falling states
using Mahalanobis distance, (2)generates a collision-free
motion to the most similar state, and (3)plans a sequence
of motions using a state transition graph.

The simulation results show that a correct target state
can be selected with 85[%], provided a lying state can
transfer to any of the state in the graph. Actually, about
30[%] of lying states did not meet this condition and the
total success ratio was about 60[%]. In order to improve
the ratio, the lying states which can not to transfer to any
state must be decreased. To this end, a new transition motion
generation method is required which remove heavy load on
joints caused by contacts with the ground. Future works
include the development of this method and a strategy which
accepts environments which have slopes and terrains.

REFERENCES

[1] M. Hirose, Y. Haikawa, T. Takenaka, and K. Hirai. Development of
Humanoid Robot ASIMO. In Int. Conference on Itelligent Robots and
Systems, Workshop2, 2001.

[2] Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, and J. Y amaguchi. A
Small Biped Entertainment Robot Exploring Attractive Applications.
In Proc. of the 2003 IEEE International Conference on Robotics &
Automation, pp. 471–476, 2003.

[3] Kenji KANEKO, Fumio KANEHIRO, Shuuji KAJITA, Masaru HI-
RATA, Kazuhiko AKACHI, and Takakatsu ISOZUMI. Humanoid
Robot HRP-2. In Proc. of the 2004 IEEE International Conference
on Robotics & Automation, pp. 1083–1090, 2004.

[4] J.Morimoto and K.Doya. Acquisition of standup-up behavior by a
real robot using hiera rchical reinforcement learning. Robotics and
Autonomous Systems, Vol. 36, No. 1, pp. 37–51, 2001.

[5] M.Inaba, F.Kanehiro, S.Kagami, and H.Inoue. Two-Armed Bipedal
Robot that can Walk, Roll-over and Stand up. Proc. of Int. Conf. on
Intelligent Robots and Systems, pp. 297–302, 1995.

[6] Takayuki Furuta, Yu Okumura, Tetsuo Tawara, and Hiroaki Kitano.
’morph’: A Small-size Humanoid Platform for Behavior Coordination
Research. In Proc. of the IEEE-RAS International Conference on
Humanoid Robots, pp. 165–171, 2001.

[7] Fujitsu Automation Limited. http://www.automation.
fujitsu.com/group/fja/services/hoap/.

[8] Y. Kuroki, T. Ishida, J. Yamaguchi, M. Fujita, and T. T. Doi. A Small
Biped Entertainment Robot. In Proc. of the IEEE-RAS International
Conference on Humanoid Robots, pp. 181–186, 2001.

[9] Y. Kuniyoshi, G. Cheng, and A. Nagakubo. Etl-humanoid: A research
vehicle for open-ended action imitati on. In Int. Symp. on Robotics
Research, Vol. 1, pp. 42–49, 2001.

[10] Y.Kuniyoshi, Y.Ohmura, K.Terada, and A.Nagakubo. Dynamic Roll-
and-Rise Motion by an Adult-Size Humanoid Robot. Journal of the
Robotics Society of Japan, Vol. 23, No. 6, pp. 706–717, 2005.

[11] F.Kanehiro, K.Kaneko, K.Fujiwara, K.Harada, S.Kajita, K.Yokoi,
H.Hirukawa, K.Akachi, and T.Isozumi. The First Humanoid Robot
that has the Same Size as a Human and that can Lie down and Get
up. In Proc. of the 2003 IEEE International Conference on Robotics
& Automation, pp. 1633–1639, 2003.

[12] L.E.Kavraki, P.Svestka, J.-C.Latombe, and M.H.Overmars. Probabilis-
tic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,
Vol. 12, No. 4, pp. 566–580, 1996.

[13] F.Kanehiro, M.Inaba, H.Inoue, and S.Hirai. Developmental Realization
of Whole-Body Humanoid Behaviors Based on StateNet Architecture
Containing Error Recovery Functions. In Proc. of the First IEEE-RAS
International Conference on Humanoid Robots, 2000.

[14] Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Kajita. OpenHRP:
Open Architecture Humanoid Robotics Platform. The International
Journal of Robotics Research, Vol. 23, No. 2, pp. 155–165, 2004.

[15] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree:A Hierarchical
Structure for Rapid Interference Detection. In Proc. of ACM Siggraph
’96, 1996.

ThC5.1

2545

