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Gait Modeling for Human Identification

Bufu Huang, Meng Chen, Panfeng Huang and Yangsheng Xu

Abstract— Human gait is a kind of dynamic biometrical
feature which is complex and difficult to imitate, it is unique and
more secure than static features such as password, fingerprint
and facial feature. Analyzing people walking patterns, their
”step-prints”’, can lead to the recognition of personal identity.
In this paper, we propose to design, build, calibrate, analyze,
and use wearable intelligent shoes; then focus on classifying
the wearers into authorized ones and unauthorized ones by
modeling their individual gait performance. Firstly the intelli-
gent shoes for collecting and modeling human gait to measure
an unprecedented number of parameters relevant to gait are
presented. Then we introduce Cascade Neural Networks with
Node-Decoupled Extended Kalman Filtering (CNN-NDEKF) [1]
to apply for modeling and classifier generation. Finally, the
experimental results of learning algorithms and comparison
are described and verify that the proposed method is valid and
useful for human identification.

I. INTRODUCTION
A. Motivation

In recent years, researchers have begun to focus on wear-
able computers and sensor interfaces. One major benefit
provided by wearable intelligent devices is that they are
in close proximity to the users so that human data such
as motion and physiological information can be obtained
and analyzed anywhere at anytime. One niche for wearable
devices useful to human has, however, remained relatively
unexplored - namely, the design and implementation of
sensor and computer-equipped intelligent shoes. The on-
going miniaturization revolution in electronics, sensor and
battery technologies, driven largely by the cell phone and
hand-held device markets, has made possible an intelligent-
shoe implementation. Along with these hardware advances,
progresses in human data modeling and machine learning
algorithms have also made possible the analysis and interpre-
tation of complex, multi-channel sensor data. Therefore, we
propose to design, build, calibrate, analyze, and use wearable
intelligent shoes to measure an unprecedented number of
parameters relevant to gait.

Each person has a unique walking style. We sometimes
can even recognize our friends by only looking at their
walking style from afar, or by listening to the sound patterns
they make when they walk. The unique identity of a person
can be identified by analyzing the fingerprints, voiceprints,

The work described in this paper is partially supported by the grants
from the Research Grants Council of the Hong Kong Special Administration
Region (Projects no. CUHK 4317/02E and no.CUHK 4202/04E

Bufu Huang, Meng Chen and Yangsheng Xu are with the Department
of Automation and Computer-Aided Engineering, The Chinese Univer-
sity of Hongkong, Shatin NT, Hong Kong. {bfhuang, mchen,
ysxu}@acae.cuhk.edu.hk

Panfeng Huang is with the College of Astronautics, Northwestern Poly-
technical University, Xi’an, China. pfhuang@nwpu.edu.cn

1-4244-0602-1/07/$20.00 ©2007 IEEE.

and facial features. Similarly, analyzing the way the people
walk - their “step-prints”, can also lead to the recognition
of personal identity. Some work for human gait focused on
foot parameter detection, such as temperature, humidity, heel
off time, gait velocity, and so on. There is little work to
analyze the foot signal. As such, we propose to identify
individuals by modeling their gait patterns. Also, embedded
force, inertial and motion sensors in the intelligent shoe can
offer important clues about the current activity of a user.

In modeling human gait, as with other poorly understood
phenomena, we must rely on modeling by observation, or
learning, rather than theoretical or physical derivation. An
individual’s gait is characterized by unique, complex, and
unknown properties; as such, we require a learning paradigm
that can cope with many difficult challenges, first of all,
little if anything is known a priori about the a), structure,
b), order, c), granularity, or d), delay. Second, human gait
is dynamic, stochastic, and nonlinear in nature. Humans are
not machines, and their gait are prone to gradual changes
over time. In addition, human gait data can vary smoothly
as well as discontinuously with sensory detection. In order to
address these challenges, the CNN-NDEKF mentioned above
can satisfy the requirement from learning human gait data.

B. Related Work

Some initial intelligent shoe systems have been proto-
typed. In particular, Skelly [2] has presented a rule-based
gait event detector with fuzzy logic and concluded that two
force sensitive resistors (FSRs) per insole are sufficient for
gait event detection during walking. The robustness however
to nonwalking activities (shifting the weight from one leg
to the other) is questionable. Williamson [3] has reported
excellent detection reliability by using three accelerometers
attached to the shank and a machine-learning algorithm to
detect in real time the transitions between five gait phases
during walking, but no results have been presented for a use
of this system with an FES system. The Salisbury Group
(U.K.) [4] has administered to several hundreds patients the
Odstock dropped foot stimulator (ODFS). The foot switch
indicates the heel-off and the heel-strike phases. The subjects
learn to keep the foot switch pressed when they stop walking
in order to avoid false stimulation triggers.

Moreover, various gait system is built with more functions
and more signals for motion research. Morley [5] has have
developed an electronic system for a shoe that monitors
temperature, pressure and humidity; however, only a hard-
ware design is presented and there is no discussion of how
the collected data is analyzed. Paradiso [6] has developed
a wearable computer system for digital music that consists
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of a pair of instrumented sneakers for interactive dance. In
this work, researchers have created a few musical mappings
with the shoes for computer-augmented dance. Also, Morris
[7] has developed a compact, wireless, and wearable sensor
package that is designed to provide continuous and realtime
monitoring of gait for clinical applications. Finally, Pappas
[8] has proposed to analyze human gait patterns by using
sensors attached to shoes; their system can distinguish walk-
ing from loading, unloading or sliding of the foot.

To date, many researchers have analyzed foot motion
through a set of heuristic rules. This approach, however, is
only effective for simple motion patterns. Moreover, action
recognition is typically based only around that of simple
motions of single individuals. We seek to expand both the
flexibility and adaptability of shoe-based interfaces through
our proposed intelligent-shoe system - flexibility to deal with
a larger set of motion types and monitoring tasks, adaptabil-
ity across many individuals, not just single individual. Also,
our system will be the first to incorporate sensors in shoes
for real-time human identification.

C. Paper Overview

In this paper, wearable intelligent shoes is designed, built,
calibrated, analyzed, and used to measure an unprecedented
number of parameters relevant to gait. The system is de-
signed to collect data unobtrusively, and in any walking
environment, over long period of time. It is built to be
worn on the shoes, without interfering with gait. The sensors
are calibrated, and the calibrated data are analyzed for
information about the gait of the user. Based on real-time
gait signal analysis, we can monitor human gait and identify
human by his gait. We treat gait as a human identification
mark.

The sections of this paper are built up as follows. In
section II, the intelligent shoes design will be introduced as
an information acquisition platform to sense the foot motion.
The system is small, portable and wearable. The platform is
mainly composed of four parts including a sensing module,
a computing module, a wireless communication module, and
a data visualization module.

We introduce Cascade Neural Networks with Node-
Decoupled Extended Kalman Filtering (CNN-NDEKF) to
model human gait performance. The mathematic description
of CNN-NDEKF will be discussed in Section III.

Furthermore, Section IV is devoted to present human
identification with CNN-NDEKF models. The experimental
result on human identification is also showed in this section.

Finally, the proposed method has produced satisfactory
results on human identification during test, and conclusions
are presented in Section VL.

II. HARDWARE DESIGN

The proposed shoe-based information gathering platform
consists of four subsystems. Fig. 1 shows the architecture of
our proposed platform.

Subsystem 1 is for sensing the parameters inside the
shoe. A variety of sensors are installed inside the package,
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Fig. 1. Outline of the hardware design and sensor

including force sensors, bend sensors, accelerometers, etc.
For the ease of use, we limit the size of each device as small
as possible. Existing MEMS technology makes it possible to
integrate all the sensors and circuits inside a small module.

Subsystem 2 is for gathering data from the sensors inside
the shoe and sending the processed data to the wireless mod-
ule. The processing power of micro-processor is limited. It
can only perform some simple calculations such as counting
and averaging.

Subsystem 3 is for wireless communication. This commu-
nication system is composed of an emitter and a receiver. The
receiver is for collecting the data from the circuits described
in subsystem 2 while the emitter is for sending the data to
the host computer for further analysis.

Subsystem 4 is for visualization of the data. The received
data is stored and displayed in real-time on the screen of the
host computer as a visual interface. This visual interface can
be used for further applications.

The outlook of the Intelligent Shoe is shown in Fig. 2.

Fig. 2.

Outlook of Intelligent Shoes

A. Sensing the parameters inside the shoe

To detect the important parameters and features of gait, a
variety of sensors are installed in the shoes, including force
sensors, bend sensors, switch sensors, accelerometers, gyro
sensors and ultrasonic sensors. Existing MEMS technology
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Fig. 3.

A flexible instrumented insole

makes it possible to integrate all the sensors and circuits
inside a small module.

Force sensitive resistors (FSRs) and switch sensors are
selected to detect the gait timing and pressure parameters.
The force sensors operate with a voltage source and a fixed
resistor to produce a voltage that changes with the applied
forces. Two FSR402 sensors are put under the first and
fifth metatarsal head, and other two FSR400 sensors are put
medially and laterally underneath the heel pad, where support
the most of force through walking. We put two switch
sensors under the bigtoe and the heel, to provide additional
information about gait timing. Though four FSRs can’t detect
force distribution of whole foot, we can get the main force
feature and gait timing parameters for identification training.

One bend sensor is selected for gait flexion detection.
The bend sensor is put in the insole under bigtoe and heel.
The resistance of bend sensor changes as it is bent, which
can provide information about flexion between the toe and
the heel. The output of the bend sensor also contains rich
information about human motion, especially loading and
uploading of feet.

We select three single-axis gyroscope sensors and a three-
axis accelerometer to detect motion orientation of the foot.
Three single-axis MEMS gyroscope sensors (ENJ-03] Mu-
rata) are mounted. As a miniature vibrating-read gyro, it
uses piezoelectiric material to sustain vibration, while taking
advantage of Coriolis forces to measure angular rate. Each
gyro sensor can test one angular rate in one direction; thus
we can measure yaw, roll and pitch of shoe motion. Also,
a three-axis MEMS accelerometer (MMA7260Q Freescale
Semiconductor) is mounted, which can detect the acceler-
ation motion of shoe in three dimensions. The gyroscope
sensors and acclerometer can detect three-dimension rota-
tion parameters and three-dimension acceleration parameters,
which can be called Inertial Measurement Unit(IMU).

On the other hand, one ultrasonic sensor is added to
measure the height between the shoe and the ground. All
sensors installation can be seen in Fig. 2 and Fig. 3.

B. Gathering information from the sensors

This subsystem is mainly composed of a processor circuit
board. The original analog signal generated by the sensors
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is transmitted directly to the ADC channels of the micro-
processor( ATMega 8535). After A/D transform, the digital
signal is passed to wireless communication module through
the TXD port for transmission to PC for data analysis and
visualization. A micro battery cell will also be added to serve
as power supply. The circuit board is small and it can be
easily put into the heel of the shoe so that users will notice
little the difference between normal shoes and the intelligent
shoes.

C. Wireless communication

This subsystem is for transferring the data from the shoe
to the host computer. Many foot-based gait analysis system
do not use wireless system as it will introduce many trans-
mission errors that make the analysis result unstable. In our
system, the size of the data is relatively small and it is pos-
sible to use a wireless system. We select GW100b wireless
communication module, which has 192000bps transmission
speed and low power consumption less than 10mW. With
embedded micro-processor, GW100b can realize Forward Er-
ror Correction (FEC), which observably reduces transmission
error and improves wireless communication reliability. At the
same time, with the same power consumption and error rate
requirement, GW100b can transmit data for further distance
with the help of FEC than other wireless communication
modules without FEC function. The wireless communication
process flow is shown in Fig. 4.

Transmit Data

Transmit Buffer Receive Buffer

| Error Correction Decoding |

Disinteorate

| Error Correction Coding |

RF Channel RF Channel

Fig. 4. Wireless Communication Process Flow

D. Data visualization
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Fig. 5. Time domain pressure signal of 1st metatarsal
As this platform is designed for general applications, we

display all parameters measured from the shoe. The host
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Fig. 6. A walking person by animation

computer gets the data from the wireless receiver via RS232.
Different functions for visualizing the data from different
sensors are developed and compacted. As an example, Fig. 5)
describes the realtime pressure signal of 1st Metatarsal. We
can also visualize a walking person by animation (in Fig. 6),
which is mapped from different motion status of the person.
All of the above provide a friendly interface to display the
data of the sensors obtained from the shoe.

III. CASCADE NEURAL NETWORK WITH
NODE-DECOUPLED EXTENDED KALMAN FILTERING FOR
GAIT MODELING

Our goal is to separate the wearers into two classes: au-
thorized wearer and others, according to a group of features.
We address this classification problem as a binary pattern
recognition with CNN-NDEKF.

In recent years, neural networks have shown great promise
in identifying complex non-linear mappings from observed
data, and have found many applications in non-linear system.
Despite significant progress in the application of neural
networks to many real-world problems, however, the vast
majority of neural network research still relies on fixed-
architecture networks trained through backpropagation or
some other slightly enhanced gradient descent algorithm.
There are two main problems with this prevailing approach.
First, the “appropriate” network architecture varies from
application to application; yet, it is difficult to guess this
architecture, the number of hidden units and number of
layers - a priori for a specific application without some
trial and error. Even within the same application, functional
complexity requirements can vary widely, as is the case,
for example, in modeling human tracking strategies from
different individuals [1]. Second, the backpropagation and
other gradient descent techniques tend to converge rather
slowly, often exhibit oscillatory behavior, and frequently
convergence to poor local minima.

Therefore, Nechyba and Xu[9]developed a new neural
network learning architecture to counter these problems
mentioned above. This neural network is well known flexible
Cascade Neural-Network with Node-Decoupled Extended
Kalman Filtering (CNN-NDEKF). Below, we briefly sum-
marize the CNN-NDEKF training algorithm and why we
selected this learning algorithm to model human gait and
capturing walking feature. First, no a priori model structure is
assumed; the neural-network automatically adds hidden units
to an initially minimal network as the training requires. Fig. 7
illustrates how a two point, single-output network grows as
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two hidden units are added. Thus, a cascade network with
inputs, hidden units and outputs, has connection where,

Np
Ny = NipNo + nh(nin + TLO) + (nh - 1)7’ (1)

Second, hidden unit activation function is not constrained
to be a particular type. Rather, for each new hidden unit, the
incrementally learning algorithm can select that functional
form, which maximally reduces the residual error over the
training data. Typical alternatives to the standard sigmoidal
function are sine, cosine, and the Gaussian function.

Finally, it has been shown that NDEKF, a quadratically
convergent alternative to slower gradient descent training
algorithms, such as backpropagation or quickprop, fits well
within the cascade learning framework and converges to good
local minima with less computation. NDEKF is a natural
formulation for cascade learning for we only train the input-
side weights of one hidden neuron and the output units at
any one time; we can partition the m weights by unit into
groups-one group for the current hidden unit, groups for the
output units. In fact, by iteratively training one hidden unit
at a time and then freezing that unit’s weights, we minimize
the potentially detrimental effect of the node-decoupling.

Denote w}, as the input-side weight vector of lengths m; at
iteration k, for unit¢ € 0,1, ..., ng, where ¢ = 0 corresponds
to the current hidden unit being trained, and 7 € 0, 1,...,ng
corresponds to the ith output unit.

The NDEKF weight-update recursion is given by

, . 7 .

Wiy = Wi + (k)" (Aedr) ), (2)

where &, is the ng-dimensional error vector for the current

training pattern, 1}, is the no-dimensional error vector for the

partial derivatives of the network’s output unit signals with
respect to the ith unit’s net input, and

o1, = PiCh 3)
n() . . . .
Ap = (T+) () i l[ok(0h) D! )
=0
Pi =Pl — i) (Apdy) b (85)" +nl (5)

where ¢§)7 is the m;-dimensional input vector for the
ith unit, P} 41 is the m; X m; approximate conditional error
covariance matrix for the ith unit, and n is a small real
number which alleviates singularity problem for P} y1

The flexible functional form which cascade learning al-
lows, is ideal for modeling human gait and capturing walking
feature. By making as few aprior assumptions as possible in
modeling gait, we improve the likelihood that the learning
algorithm will converge to a good model of the walking data.

The skill that we are considering is modeling human
gait to realize human identification. Here, we consider the
human gait as the measurable stochastic process and the
knowledge behind it as the underlying stochastic process. A
CNN-NDEKEF is employed to generate classifier for human
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identification, and the model parameters are updated through
a learning process that ensures that the model best represents
the training data. Based on the trained model and the most
likely performance criterion, the best data is selected from
all the recorded data files. The procedures for CNN-NDEKF-
based learning can be summarized as follows:

1. Initially, there are no hidden units in the network, only
direct input-output connections. These weights are trained
first, thereby capturing any linear relationship between the
inputs and the outputs.

2. With no further significant decrease in the root mean
square (RMS) error between the network outputs and the
training data (eRMS), a first hidden unit is added to the
network from a pool of candidate units. These candidate
units are trained independently and in parallel with different
random initial weights by using the quick-prop algorithm.

3. The best candidate unit will be selected and installed
into the network if no more appreciable error reduction
occurs, therefore, the first hidden node is produced.

4. Once the hidden unit is installed, the hidden-unit input
weights are frozen, while the weights to the output unit are
going to train again. This allows for such faster convergence
of the weights during training than a standard multi-layer
feed-forward network.

5. This process (from step2-step4) is repeated until the
eRMS reduces sufficiently for the training set or the number
of hidden units reach a predefined maximum number.

IV. EXPERIMENTAL RESULTS

In this experiment, we try to recognize whether there is
any unauthorized person wearing the shoes by analyzing the
real time gait performance.

A. Database

In order to estimate the gait performance of the proposed
system, we invite 9 human subjects to wear the Intelligent
Shoes system, who are HUANG, CHA, LIANG, MENG,
SHI, WANG, XIA, YE, and ZHONG. The gait data are
collected and then classified through CNN-NDEKEF into 2
group: HUANG as the authorized wearer and other 8 people
as the unauthorized wearers.

The sampling rate is set at 50 Hz based on the gait motion
frequency. 5784 x 28 data segment can be produced by
HUANG as authorized wearer data, and 12663 x 28 data
segment by other 8 wearer as unauthorized wearer data for
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evaluation. Applying Fast Fourier Transform data processing,
we can change the data to 5784 x 84 and 12663 x 84 with
three order FFT. A set of eigenvectors can be computed
from training data and some of eigenvectors are selected
for classification according to the value of corresponding
eigenvalue.

B. FFT, PCA and ICA

We compare the data preprocessing using original data,
FFT, PCA and ICA. Table I shows the test results using
different data preprocessing methods. With the same training
and testing sample, the retrieved vector is trained in the
CNN-NDEKF and the testing results are listed in Table
I. FFT is found effectively to apply to data preprocessing
for Intelligent Shoes original data, and data preprocessing
method based on FFT is found to give the best data classifi-
cation results compared to the other two processing methods
presented.

TABLE I
TEST RESULTS USING DIFFERENT PREPROCESSING METHODS.

[ Preprocessing method [[ Errors of authorized | Errors of unauthorized

Original data 1500 3369
FFT 142 889
PCA 259 1582
ICA 285 1503

C. Error and Hidden Unit

Besides of previous parameters, MaxHidden is important
to the regression result. We compare, in Fig. 8, the number
of Maximum Hidden Unit and error identification rate of the
learning machine with MaxHidden set to different value.

Hidden Unit No. versus Error Rates

Error Rate

(0] 1 2 3 4 5 6 7 8 9 10
Hidden Unit No.

Fig. 8. Hidden Unit No. versus Error Rate

As shown in Fig. 8, when MaxHidden is 10, the testing
accuracy is 96.133%. This result proves that our approach
can get a very high accuracy in human identification with
Intelligent Shoes. When MaxHidden increases from 2 to 10,
the error rate reduces from 4.692% to 3.867%. Although
larger MaxHidden corresponds to higher testing accuracy, as
well as more iterations, to avoid the over fitting, it can not
be too large. Further explanation is required for the balance
between the regularization term and the training errors. Thus,
a larger MaxHidden generate a higher accuracy and however
over fitting will occur.
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D. Final Testing Result

Then we utilize the aforementioned methods in real time
human identification based on gait analysis with Intelligent
Shoes. Corresponsively, Table. II shows the identification
performance to each wearer. It can be seen that there are 4220
HUANG gait performance data applied in the evaluation
process, 4081 of them are identified as authorized wearer
and success rate is 96.71%. On the other hand, 21786 data
collected from 8 testers are used for the test and 21126
of them are classified as unauthorized wearers successfully.
The average accuracy is 96.97% and the worst classification
accuracy is 89.14%. The table illustrates that there is an
excellent agreement between the model and experimental
results throughout identification based on gait analysis with
intelligent shoes.

TABLE I
TEST RESULTS ON INDIVIDUALS.

[ No. [ Name [[ Totals | Correct Failed [[ Successful rate ]

[ | HUANG || 2013 | 1906 107 94.68%
2207 | 2175 32 98.55%
2 [ CHA 1178 | 1164 4 9881%
1359 | 1345 14 98.97%
3 [ LIANG 1705 | 1663 5 97.54%
1618 | 1533 85 94.75%
4 | MENG 1160 | 1034 126 89.14%
1329 | 1238 91 93.15%
5[ SHI 1272 [ 1260 2 99.06%
1211 | 1201 10 99.17%
6 | WANG 1450 | 1444 6 99.59%
1302 | 1368 24 98.28%
7| XIA 1544 | 1474 70 95.47%
1376 | 1340 36 97.38%
8| YE 1380 | 1336 24 98.26%
1334 | 1324 10 99.25%
9 | ZHONG || 1261 | 1190 71 94.37%
1217 | 1182 35 97.12%

[ TOTAL || 26006 | 25207 799 || _ 96.93% |

V. CONCLUSIONS

In this paper, we have built intelligent shoes for human
identification under the framework of capturing and ana-
lyzing dynamic human gait. Firstly, data is collected from
different sensors installed in the shoe. Secondly, the data is
computed and transmitted wirelessly to the host computer.
Finally, the data is visualized on the screen. The platform
is scalable and programmable. By utilizing this dynamic
property we focus on the research ideal of classifying the
wearers into authorized ones and unauthorized ones by
modeling their individual gait performance.

Realtime gait parameters will be collected from 9 wearers
and then processed through Fast Fourier Transform (FFT) for
data preprocessing and feature generation. Cascade Neural
Networks with Node-Decoupled Extended Kalman Filtering
(CNN-NDEKF) will be applied for training and classifier
generation. The experimental results verify that the proposed
method is valid and useful with a success human identifica-
tion rate about 96.93%.

FrE8.2

In the future, more experiments will be conducted on po-
tential user groups to realize multi-object identification, and
find out more precise system and wider applications. We will
also introduce Hidden Markov Models(HMM) to achieve
and compare the modules of multi-object identification.
The proposed research opens up tremendous new human-
computer interface possibilities, resulting in rich academic
research contents and potential product lines in consumer
electronics and multimedia industries.
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