
 
 

  

Abstract— We present a deterministic scheduling approach 
for robotic cycle shops based on a n-dimensional collision map. 
The map facilitates the optimization of periodic and non 
periodic robot schedules.  The method rests upon the finding 
that the release intervals of processes sent to the shop and the 
auto correlation lengths of robot and machine operations inside 
the shop are identical. For zero correlation, collisions of  robot 
operations are avoided as well as collisions on any multipurpose 
or loop machine. 
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I. PROBLEM STATEMENT 
cycle shop is the extension of a flow shop where all 
jobs (or processes P) obey the same sequence of 

operations on the processing machines, but in contrast to a 
flow shop, some operations can be repeated on some (multi 
purpose) machines a number of times. - We now insert an 
additional operation on an additional common machine 
between any two consecutive operations in each process. In 
general, this common server is called input-output resource 
R as contrasted to a processing resource [1]. In 
manufacturing, R is the pickup-delivery resource, the robot 
which performs transport and loading operations among 
different machines. A robotic cycle shop, therefore, contains 
at least two loops [2]: a multiple loop for the robot, and one 
or several loops at one machine. Fig. 1a shows the resource 
Gantt-chart of a rank 2 (number of loop machines) and 
multiplicity 7 (maximum number of loops per machine) 
process P1(t). In this chart, the operations r(t), m1(t), m2(t), 
… which are processed by the resources R, M1, M2, … , are 
arranged along the time axis according to the process plan 
(Table 1). Here, the robot is used for loaded transport only. 
The robot routing is predetermined and empty moves do not 
take place. 

The situation gets more complicated when a second 
process P2(t), either identical or different from P1(t), is 
released to the shop (Fig. 1b). Now the robot is forced to 
move back and forth unloaded to cope with the transport 
needs of two processes. Not only that more and more 
transport operations must be coordinated by the robot 
controller, depending on the degree of overlap among P1 
and P2. Now, additional (empty) move operations must be 
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squeezed into the uppermost row of Fig. 1b without 
collisions which means without overlap of operations. In this 
context, the robotic cycle shop control problem as dealt with 
in this paper is formulated as follows: For identical 
processes  released to the shop with release intervals vi , find 
the stationary schedule of robot operations which maximizes 
the shop productivity or, equivalently, minimizes Σ vi  (Fig. 
1c). 

 
 

 

 

 
Fig.1. Resource Gantt-chart for a 5 machine robotic cycle shop. 

 (a) Process plan P1(t). dm durations for machine 
operations ; dtr  durations of robot transport operations (b) 
Two process Gantt-chart P1(t), P2(t). v2 process release 
interval for P2. dmo duration of robot move operations (c) 
Gantt-chart for three processes P1(t), P2(t), P3(t) 
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Obviously, a collision free schedule depends on the proper 
choice of  release times vi , i standing for the number of 
processes being released to the shop. In Fig. 1c, v2  and v3 
have been chosen in such a way as to optimize the plant 
productivity. It happens that v2 = v3 here which is not 
necessarily true in all cases. Neither is there any guaranty 
about the schedule’s periodicity for i > 3. What is needed 
then is a systematic approach for deriving deterministic 
schedules for coupled discrete processes from first 
principles, without search. In this paper, we present a theory 
how  to transform deterministic process plans expressed as 
Gantt-charts into autocorrelation functions and how to 
construct periodic and non-periodic schedules from  the 
integrated auto correlation maps for robot and machine 
operations. We elaborate on a representation for collision 
avoidance recently put forward by us in [3] and extend it to 
robotic cycle shops including empty moves and multi 
purpose machines. In our applications, no buffers exist at 
machines and the robot is not allowed to wait anywhere 
when being loaded. 

II. ROBOTIC SCHEDULING: STATE OF THE ART 
Scheduling as a problem solving activity copes with the 

constraints of the real world by sequencing operations and 
allocating resources to operations in such a way as to 
optimize some performance measures. The robotic 
scheduling problem is a general shop scheduling problem 
with special constraints; for a classification and most recent 
bibliography see [2]. It is already NP-hard for robotic flow 
shops with more than two machines and for two or more 
different processes [1] not to speak of robotic cycle shops. 
Some practical work on robotic cycle shops has been done in 
the context of  hoist scheduling for automated electroplating 
lines. For an extensive bibliography see [4]; for a recent 
complex application including important references see [5]. 

Most schedulers rely on  the IP (integer programming) or 
CP (constraint programming) paradigm or a combination of 
both, often based on some kind of  prohibited-interval rule 
[6]. Simulation, heuristic and sometimes exhaustive search 
have been used as well [7]. However, no constructive 
analytical tool exists for real size NP-hard scheduling 
problems, of course. In support of short-term planning and 
look-ahead algorithms, therefore, deterministic correlation 
theory has been applied for robotic flow shop scheduling [3]. 
We extend this theory to robotic cycle shops in the 
following.   

III. BASIC IDEA OF CORRELATION SCHEDULING 
In developing the combined schedule P1+P2 for the 

running example (Fig. 1b) from the process plan P1 (Fig. 
1a), we intuitively performed this reasoning: Create P2 by 
duplicating P1, and shift P2 to the right along the time axis 
until no more overlaps exist for any of the black and grey 
bars for all resources including the robot. Result: the 
minimum shift or release time vmin to avoid parallel 
operations on each of the (limited) resources. - This 

reasoning mechanism is mathematically modelled by the 
collision function CO12(v) [3] :              

 12CO (v) P1(t) P2(t v)dt
+∞

−∞

= ⋅ −∫  (1) 

The functionality of Eqn. 1 is visualized with the help of 
Fig. 2: (a) P2 is duplicated from P1; (b) P2 is shifted to the 
right according to three different values of v; (c) 
P1(unshifted) and P2 (shifted) are multiplied; (d) the overlap 
among P1(t) and P2(t-v) is quantified by integration; (e) for 
three shift values including v=0 and v= vmin , CO12(v) is 
drawn point wise along the v-axis. - Thereby, the collision 
function measures the overlap of P1 and P2. For CO12(v) = 
0, P1 and P2 do not interfere. With other words, for the 
simple example of Fig. 2, every schedule v ≥ vmin is free of 
collisions. 

 
Fig.2. Collision function CO12(v) for three values of the process 

release interval v. 

For identical processes P1=P2, Eqn. 1 simplifies to 

12CO (v) P1(t) P1(t v)dt
+∞

−∞

= ⋅ −∫       (2) 

By transforming t-v=λ, dt=dλ in Eqn. 2 and renaming λ 
by t afterwards, we arrive at Eqn. 3 which is the well known 
auto correlation function AC12(v) [3]:      
 12AC (v) P1(t) P1(t v)dt= ⋅ +∫  (3) 

Therefore, for robotic cycle shops fed by identical 
consecutive processes, the collision function Eqn. 1 can be 
replaced by the auto correlation function Eqn. 3. The set of 
release intervals v2 for the second process which guaranty 
collision-free behaviour, is V2 (Eqn. 4) whereas the set of 
forbidden intervals is the complement  V2- (Eqn. 5).  
 }{ 2 12 2v AC (v ) 0= =2V  (4) 

 }{ 2 12 2v AC (v ) 0= ≠
2-V  (5) 
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Fig.3. Set representation of the auto correlation function AC12(v). 

(a) Process plan  (b) Auto correlation function of P(t) (c) 
Set representation of allowed (V2) and forbidden (V2-) 
release intervals (d), (e) Functional representation V2(v), 
V2-(v) of sets V2 and V2- 

Both sets are illustrated in Fig. 3 for a small loop shop 
with one machine only. This figure is a nice illustration of a 
general problem solving paradigm: The difficult 
(scheduling) problem as it occurs in time space t (Fig. 3a) is 
transformed into the interval space v (Fig. 3b) and solved 
now by simpler algorithms based on the new representation 
(Fig. 3c). The new representation is tailored to the specific 
scheduling problem and specialized in such a way as to shed 
some light to the problem from one angle and leaving others 
in the dark. Scheduling models based on correlation 
functions are indeed  very compact representations which 
hide some information related to sequence dependent 
constraints, see Section VII.  

IV. PROCESS AUTO CORRELATION FUNCTION 
In Fig. 2, two very simple processes were treated. We now 

return to our running example, the robotic cycle shop and its 
process plan P1 in Fig. 1a.  Each of the six machine 
processing operations  and seven robot transport operations 
of P1 (neglecting moves for the moment) may lead to a 
collision at the respective resource when confronted with the 
second process P2 entering the shop. Therefore, the no-
collision condition AC12(v)=0 must hold for each individual 
resource for a valid release time v. With other words, the 
auto correlation function for the complete process AC12 is 
built from autocorrelations for each individual resource M1, 
M2, … and for the robot R:  
 12 M1 M2 RAC (v) AC (v) AC (v) ... AC (v)= + + +  (6) 

 M1AC (v) m1(t) m1(t v)dt= ⋅ +∫  

 M2AC (v) m2(t) m2(t v)dt= ⋅ +∫  (7) 
               … 

 RAC (v) r(t) r(t v)dt= ⋅ +∫  

In Eqn. 7, m1(t), m2(t), ... , r(t) are the time functions of 
the operations taking place at the respective resources as 
prescribed by the process plan (Fig. 1a). The sets of 
admissible release intervals  per resource are 
 { }2 2M1

v AC (v ) 0= =2M1V  

 { }2 2M2
v AC (v ) 0= =2M2V  (8) 

       … 
 { }2 2R

v AC (v ) 0= =2RV  

The combined set V2 of admissible release intervals v2 for 
the complete process P1(t) is the intersection of the 
individual resources  from Eqn. 8: 
 ...=2 2M1 2M2 2RV V V V∩ ∩ ∩  (9) 

Similar considerations hold for the complement V2- which 
is the union of  forbidden release intervals v2 for each 
individual resource: 
 ...=

2 2 M1 2 M2 2 R- - - -V V V V∪ ∪ ∪  (10) 
Eqns. 8, 9 and 10 are illustrated in Figs. 4 and 5 for four 

fundamental structures of machine operations which 
constitute the Gantt-chart of Fig. 1 (and any Gantt-chart). 
These are: a single operation on one machine, one or more 
loops of  different width on one machine, and the 
combination of several machines into more complex 
processes. Finally, Fig. 6 shows the sets of possible and 
forbidden release intervals for the example process from Fig. 
1 and Table 1 as they develop from the machine correlations 
according to Eqns. 6, 7 and 9.   

  

 
Fig.4. Resource Gantt-chart for single machine processes and 

respective sets of allowed (V2 ; in black) and forbidden (V2- 
; in white) release intervals. (a) Single operation  (b) Single 
loop (c) Short loop (d) Three loops of different widths 
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Fig.5. Resource Gantt-chart for multi machine processes and 
respective sets of allowed (V2 ; in black) and forbidden (V2-
; in white) release intervals. (a) Job shop with 3 operations 
at 3 machines (b) Robotic cycle shop with 3 machine, and 4 
move and transport operations of the  robot 

 
Fig.6. Auto correlations AC of machine operations for process P1 

(Table 1). (a) AC of robot R (b) AC of machine M1 (c) AC 
of machine M4 (d) Allowed (V2 ; in black) and forbidden 
(V2- ; in white) release interval sets for the second process  

V. COMBINED AUTO CORRELATIONS 
In the preceding sections, we only considered two 

processes being sent to the system. As indicated in Fig. 1c, 
we now release a third one of the same kind, P1(t). With the 
release interval v3 of the third process as variable, and with 
v2∈V2 (Eqn. 4) as parameter, the collision function from 
Eqn. 2 now reads as   
 [ ]123 2 2 2CO (v , v) P1(t) P1(t v ) P1(t v v)dt= + − ⋅ − −∫  (11) 

The set of collision-free release intervals for the third 
process is V3 [3]: 
 { 3 12 2 12 3v AC (v ) 0 AC (v ) 0= = ∧ =3V  

 }12 2 3AC (v v ) 0∧ + =  (12) 

 
Fig.7. Constraining future release intervals: non periodic 

schedules. Process example from Fig. 3 

Graphically, V3 is obtained as illustrated in Fig.7. At the 
uppermost row, Fig 7a, the set V2 of admissible release 
intervals from Fig. 3a is duplicated in black. In the second 
row of Fig. 7b, the smallest possible interval v2  is chosen for 
the second process P1 to be released to the shop. The now 
two processes P1 underway in the system constrain the 
possible release intervals v3 for the third process, 
respectively the set V3 (Fig. 7c).  V3  is the intersection of the 
two autocorrelations shifted against each other by v2  and is 
calculated from  
 3 = 2 2shiftV V V∩  (13) 

Next, the smallest possible value for v3  is selected from 
V3  and the third process is added to the system (Fig. 8d). 
Again, V3  is constrained by the shifted auto correlation 
V2shift leading to V4 : 
 4 = 3 2shiftV V V∩  (14) 

V4  in Fig. 7e is empty except for admissible release 
intervals v4 > f , f being the process flow time as defined in 
Fig. 3a. That means, first, that no more than three jobs can 
be processed in this shop at a time, and secondly, that the job 
schedule v2 v3 v4  is non periodic (a periodic schedule 
requires v2 = v3 = v4 ). 

 
Fig.8.  Constraining future release intervals: periodic scheduling. 

Process example from Fig. 3           
         

However, periodic schedules exist, as exemplified in Fig. 
8:  v2 = v3 = v4 = … = vn is fulfilled and  V3 = V4 = … = Vn  
as well. The existence (and size) of periodic schedules can 
easily be proven by analyzing the auto correlation V2 : if all 
multiples of  n . v2  (n = 1, 2, …) are contained in V2 then v2 
is a periodic solution, n being the number of parallel 
processes being persistent in the shop. For n = 3, this 
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statement follows from Eqn. 12 with  v2 = v3 : 
 { }2 12 2 12 2v AC (v ) 0 AC (2v ) 0= = ∧ =3V  (15) 

For  n = 4, the statement is proven in [3]. The extension 
for n > 4 is simple.  

In Figs. 7 and 8, the non-periodic and periodic schedules  
are of equal lengths v2 + v3 +v4 . Both schedules achieve the 
same (optimal) shop productivity. That is interesting as the 
Greedy-like algorithm behind Fig. 7 normally is suboptimal 
as compared to the look-ahead approach in Fig. 8. We 
elaborate on this finding in the next section with a more 
realistic process. 

VI. CORRELATION MAPS 
In the preceding section, Figs. 7 and 8 were just a 

visualization of  two different scheduling algorithms based 
on Eqn. 12: The second process can only enter if  
AC12(v2)=0 is fulfilled (first row, Fig. 7a). Then, the third 
process can only enter if no collisions occur with the second 
process, meaning AC12(v3)=0, and with the first one, 
meaning AC12(v2+v3)=0 (third row, Fig. 7c). Then, the 
fourth process can only enter, if no collisions take place with 
the third one, AC12(v4)=0, with the second one, 
AC12(v3+v4)=0, and with the first one, AC12(v2+v3+v4)=0 
(fifth row, Fig. 7e). By this repetitive planning procedure, 
the space of admissible release intervals is constrained 
stepwise by taking choices, as in any planning. The set 
notation of the planning algorithm  is  
 =n+1 n 2shiftV V V∩   , n 2≥  (16) 
with V2 from Eqn. 4 and  V2shift  as illustrated in Figs. 7 and 
8. Different means exist to calculate Eqn. 16 and to visualize 
the results. For instance, the ordered set V2 may be 
represented as a  function V2(v) , see Fig. 4d. The shifts of 
Figs. 7 and 8 can then be modelled by correlating V2(v) 
similar to Eqn. 3 with the difference that we now correlate 
auto correlations AC instead of processes P, e.g. 
                  3 2 2V (x) V (v) V (v x)dv= ⋅ +∫  (17) 

 { }3 3 3 2 2v V (v ) 0 V (v ) 0= ≠ ∧ ≠3V          (18) 

However, as a useful decision support for large shops and 
real planning problems, we adopt two-dimensional 
correlation or collision maps as recently proposed in [3]. 
Each map, in a two dimensional array, displays the 
admissible  and forbidden release intervals for the next two 
processes to be sent to the shop. For example, for the process 
P1 of Table 1, V3 according to Eqn. 12 is sketched in Fig. 9 
as dependent on v2 and v3 . The map is shown as a grey scale 
image. As throughout this paper, the mostly interesting black 
areas refer to collision free sequences of release intervals v2 , 
v3 . We therefore restrict our attention to the black and white 
map of  Fig. 10. This figure shows how the final map 
(bottom right) is built up from individual maps for each 
single resource, by constraining the black areas with the 
white (forbidden) ones. Fig. 10 resembles Fig. 7 in Section 
III, where the process auto correlation AC12 is also summed 

up from resource auto correlations ACM1 , …, ACR .   

 
Fig.9. Collision map for process P1 (Table 1; no moves) 

 
 
Fig.10. Collision maps for P1 (Table 1; no moves). Individual 

maps for robot, machines M1 and  M4, and combined map.
  

Fig. 10 resembles Fig. 7 in Section III, where the process 
auto correlation AC12 is summed up from resource auto 
correlations ACM1 , …, ACR in a similar way.  

In Figs. 9 and 10, the horizontal structures refer to 
AC12(v2)≠0 and collisions among P1, P2; the vertical ones to 
AC12(v3) )≠0  and collisions among P2, P3; and the diagonal 
ones to AC12(v2+v3) )≠0  and collisions among P1 and P3. 
Following the same line of reasoning, higher order maps can 
be constructed as well. The four quadrants of Fig 11 show 
the sequence  of  V2 , V4 , V6 , V8  for a rank 1, multiplicity 
11 process. The trajectory refers to a Greedy-like, apparently 
non-periodic schedule of  0, 480, 480, 540, 531, 489, … 
(which turns out to be 6-part periodic). Most important, 
though, are the 1-part periodic schedules. By inspection of 
the correlation maps we obtain 0, 516, 516, 516, … as the 
optimum , i.e. shortest periodic schedule. 
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Fig.11. Four collision maps V2 , V4 , V6 , V8  arranged in a clockwise  

manner. The trajectory shows the first 8 release intervals v2 
, v3 , v4 , … , v9 of a non periodic schedule 

Here, with an average release period of v = 504, the 6-
periodic solution is slightly better than the 1-periodic one. 
However, more investigations of the dominance or non- 
dominance of  1-periodic schedules (the ‘1-cycle conjecture’ 
[1]) are needed.  

VII. FURTHER APPLICATIONS AND CONSTRAINTS 
Most problems encountered with cycle shop control arise 

from collisions caused by routing loops. These loops are 
clearly visible as diagonals in the correlation maps, see Fig. 
10 for example. Size and location of the diagonals sensibly 
depend on the loop characteristics: Fig. 10 (upper left map) 
shows multiple small cycles of the robot whereas in Fig. 12 
(right hand  map) the big loop at machine M1 of process P2 
(Table 2) exempts many release intervals (white areas).     

 

 

 
Fig.12. Collision maps for short loop process P1 from Table 1 

including moves (left); big loop process P2 from Table 2 
(right) 

The previous examples did not consider varying transport 
times and empty moves of the robot. According to Fig. 5b, 
these can easily be incorporated into the Gantt-chart and the 
robot auto correlation function. Fig. 12 (left hand side) takes 
into account empty moves of process P1 (Table 1). As 
expected, the resulting collision map is slightly more 
constrained than the previous one without moves (Fig.10, 
bottom right). Similarly, precedence or other constraints 
posed by the process plan, can be modeled by proper 
combination of auto correlations. The method was 
successfully employed for the complex 2-robot 24-machine 
rank-5 multiplicity-28 cycle shop described in [5]. 

What remains a problem for this and almost all other 
analytical approaches, are sequence dependent set-up and 
move times. It is an inherent feature of correlation methods 
that some absolute time and sequence information is 
suppressed in favour of a compact representation, compare 
Figs. 4 and 5.   

VIII.  CONCLUSION 
Main characteristics of a robotic cycle shop are multi  

purpose machines and loops in the transport routing. Each 
loop is permanently endangered by collisions and therefore 
needs to be controlled. By collision maps as presented in this 
paper, the impact of each individual loop on future planning 
decisions can be conveniently analysed, displayed and 
quantized. The underlying deterministic correlation theory 
was applied to periodic and non periodic schedules of 
identical processes but can be adopted for the general robotic 
job shop problem as well. The extension to probabilistic 
processes is possible, too.    
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