
 
 

 

  

Abstract— This study presents a design technique of an 
efficient biped walking robot on level ground with a simple 
mechanism based on passive-dynamic walking. A torso is used 
to generate active power replacing gravity used in passive walk. 
Swing-leg control is introduced to create a steady gait. 
Numerical simulations show that a biped robot with knees and a 
torso can walk efficiently on level ground. When we choose an 
appropriate parameter of the swing-leg control, the biped robot 
can walk stably over a wide range of speed. Furthermore, the 
walking performance of the robot increases with the increase of 
the radius of circular feet. 

I. INTRODUCTION 
tilizing the dynamical property of a robot system is a 
useful approach to achieve an efficient walking. 

Passive-dynamic walking first studied by McGeer [14] is a 
solution. McGeer showed that a biped robot without actuators 
and controllers can walk stably down a shallow slope in 
numerical simulations and experiments. Passive walkers 
exhibit stable gaits, which are not planned in advance 
depending on the robot dynamics and a slope angle. The 
usefulness of passive-dynamic walking for an efficient 
walking robot leads many studies of biped robots on level 
ground based on passive walkers, e.g. [5].  

Passive walkers can only walk on a shallow slope. On level 
ground, active walking should be studied. The mechanical 
energy is mainly lost through the swing-leg impacts with the 
ground at heel strike. The energy loss is recovered by using 
gravitational potential energy in the case of passive-dynamic 
walking. On level ground, active power source replacing 
gravity is necessary. McGeer has proposed various methods 
of energy input based on passive-dynamic walking as follows 
[13] [15]: 

1) Applying torque at the ankle joint and the hip joint. 
2) Applying an impulsive push when the stance-leg leaves 

the ground. 
3) Varying leg length. 
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4) Utilizing reaction torque against a leaning torso.  
Although ankle torque is mainly used for control e.g. [2] [3] 
[8] [16], and can imitate passive walking mechanism [1] [3], 
it has drawback from the viewpoints of zero moment point 
condition, discussed in [3]. Instead of the ankle torque, using 
a torso would be worth studying [13] [15]. 

This study aims at establishing a design technique of an 
efficient biped walking robot on level ground with a simple 
mechanism. We focus on passive walking mechanism to 
achieve efficient walking with a simple mechanism. We 
propose a level-ground walking by using a torso and 
swing-leg control based on passive walk. Although the use of 
the torso to recover the energy lost through the heel strike was 
proposed [13], there are few studies to use the torso explicitly 
for a biped robot on level ground based on passive walking. 
In addition to that, we introduce the swing-leg control in 
order to satisfy the condition of heel strike, which is essential 
to create a steady gait. 

In this paper, numerical simulations show that a biped 
robot with a torso and knees on level ground can walk stably 
and efficiently at various speeds by using the torso and 
swing-leg control. In particular, the swing-leg control is 
important to walk over a wide range of speed. Furthermore 
the effects of circular feet are confirmed. 

II. LEVEL-GROUND WALK BASED ON PASSIVE WALKING 
MECHANISM 

A. Passive-Dynamic Walking 
Although the simplest passive walker is composed of only 

two mass-less links and one mass at hip [7], the simplest 
biped can walk stably. The gait is stable if all sufficiently 
small perturbations in the states of the gait converge without 
falling down. From the simplest walking, passive dynamic 
walking mechanisms are summarized as follows: 

1) The stance-leg acts as an inverted pendulum and the 
robot moves forward. 

2) The swing-leg acts as a free pendulum and hits the 
ground before the robot falls down. That is, swing-leg 
motion is to avoid falling down.  

3) Energy supply should be required because the impact 
causes a loss of kinetic energy. In the case of passive 
walking, the energy loss is recovered by using potential 
energy to walk down a slope.  

Passive walk mechanisms show that stable gaits can be 
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realized simply by the stance-leg motion with energy supply 
and the swing-leg motion, but passive walkers have some 
limitations. The gaits depend on a slope angle. The walking 
speed decreases with the slope angle. Increasing the slope 
angle brings about a period doubling bifurcation leading to 
chaotic gaits and there are only unstable gaits in high speed 
region. Then, some mechanisms are required to overcome the 
limitations. This issue will be addressed in the proposed 
method. 

B. Proposed Method for Level-Ground Walking 
We propose a level-ground walking based on passive 

walking mechanisms mentioned in the previous section to 
overcome the limitations of passive walking. 

First, we assume that when the knee of the swing-leg 
reaches full extension, so called knee-strike, the knee joint is 
locked and the knee remains locked through stance phase. 
Before knee strike we model the system using the 4 link mode, 
while after knee strike corresponds to the 3 link mode as 
shown in Fig. 1. The locking mechanism on a real robot has 
been realized, e.g. using a latch disengaged by a solenoid [4]. 

 Second, we add a torso to the biped robot. To hold the 
torso which leans forward against the gravity, we apply a 
torque between the stance-leg and the torso. This leads to 
generating a forward-rotating torque at stance-leg. In this way, 
the kinetic energy which is mainly lost through the swing-leg 
impacts with the ground at heel strike is recovered. It should 
be noted that using the torso replacing gravity used in the case 
of passive-dynamic walking was proposed by McGeer [13]. 
By using the torso, a desired torso angle plays a similar role of 
the slope angle of passive walk. Then the robot can walk at 
various speeds by changing the desired torso angle. 

Finally, we introduce a swing-leg control which modifies 
the natural pendulum motion of the swing-leg to walk stably 
over a wide range of speed. The swing-leg control is 
important to avoid falling down. The swing-leg control 
overcomes the limitation of passive walk which is only 
unstable gaits in high speed region, e.g. [7]. Wisse et al. 
showed that the robot will never fall forward if the swing-leg 
is far enough in front of the stance-leg but the swing-leg 
shouldn’t be too far [18]. From this viewpoint, we propose 
that the swing-leg control should depend on the stance-leg 
motion because the impact condition of the swing-leg 
depends on the stance-leg. That is, the swing-leg control is 
applied in order to satisfy the impact condition. 
 

 

 

III. BIPED ROBOT MODEL 
The level-ground walking based on passive walk proposed 

in this paper needs a torso. A biped robot with a torso shown 
in Fig. 2, is considered. Values of the system parameters are 
shown in Table I.  

A. Swing Phase 
The dynamic model during swing phase is obtained by the 

method of Lagrange [10]. The swing model of the 4link mode 
is written in the form 
            ( ) ( ) ( )4 4 4 4 4 4 4 4 4 4,M C G B+ + = uθ θ θ θ θ θ            (1) 

where [ ]4
1 2 2 3

T
T Sθ θ θ θ=θ , [ ]1 2= Tu uu , and 

4

1 0
0 1
0 0
1 1

−⎡ ⎤
⎢ ⎥−= ⎢ ⎥
⎢ ⎥⎣ ⎦

B .                 (2) 

The model of the 3link mode is written in the form 

Knee unlocked

Knee strike Heel strike3link mode4link mode

Knee locked

Fig. 1  The gait cycle of a biped robot with knees 

TABLE I  VALUES OF THE SYSTEM PARAMETERS 
Parameter Unit Value Parameter Unit Value 

THm  kg  3 r  m 1 

SHm  kg 2 l  m 0.5 

Hm  kg  10 THc  m 0.3 

Tm  kg  10 SHc  m 0.3 
g  2m/s 9.80665 Fr  m 0/0.1/0.2/0.3 

 

Tml
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2r

SHm

THc

2r
SHc

Hm
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1u
2u
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1u

 
(a) Parameters      (b) Control inputs 

 

2Tθ

1θ−

3θ

2Sθ
2θ

 

1θ

3θ

2θ−

 
(c) Dynamic variables. 4link mode (left), 3link mode (right). 

 
Fig. 2  A biped walking model. The robot is composed of a torso, hips, and 
two legs composed of thighs and shanks with feet. All masses are lumped. 
Dynamic variable values are measured from ground normal. Two torques  

1u  and 2u , between the torso and the stance-leg, and between the torso 
and the swing-leg are applied, respectively. No torque is applied at the 
knee in the 4link mode. When the swing-leg reaches full extension the 
knee joint is locked and the knee remains locked through stance phase. 
Then we model the biped robot using the 4link mode before knee strike, 
corresponds to the 3link mode after knee strike.  The motion of the robot is 
constrained to the sagittal plane. 
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           ( ) ( ) ( )3 3 3 3 3 3 3 3 3 3,M C G B+ + = uθ θ θ θ θ θ     (3) 

where [ ]3
1 2 3

Tθ θ θ=θ , [ ]1 2
Tu u=u , and  

3
1 0

0 1
1 1

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

B .              (4) 

The details of the matrices M , C , and G  in (1) and (3) are 
omitted due to space restriction. 

B. Impact Phase 
Impacts occur when the knee of the swing-leg reaches full 

extension and when the swing-leg touches the ground.  
1) Knee Strike: The condition of the impact is given by 

2 2=T Sθ θ .              (5) 
The impact is assumed to be inelastic. Angular momentum is 
conserved at the impact [6] [9] [14]for the whole robot about 
the stance-leg contact point, for the torso about the hip, and 
for the swing-leg about the hip. The conservation law of the 
angular momentum leads to the following compact equation 
between the pre- and post-impact angular velocities 

( ) ( )3 3 4 4K K K K K KQ Q+ + + − − −=θ θ θ θ .            (6) 

The superscripts “K − ” and “K + ” respectively denote pre- 
and post-impact of the knee. During the impact phase of the 
knee, the configuration remains unchanged. Then we have 

( ) ( )13 4 4 4K K K K K KQ Q
−+ + − − − −=θ θ θ θ .           (7) 

The details of the matrices are omitted due to space 
restriction. 

2) Heel Strike: The condition of the impact is given by 
1 2 0θ θ+ = .                                   (8) 

The impact is assumed to be inelastic and without slipping, 
and the stance-leg lifts from the ground without interaction 
[10] [11]. Angular momentum is conserved at the impact  [6] 
[9] [14] for the whole robot about the new stance-leg contact 
point, for the torso about the hip, for the new swing-leg about 
the hip, and for the shank of the new swing-leg about the knee 
of the new swing-leg. The conservation law of the angular 
momentum leads to the following compact equation between 
the pre- and post-impact angular velocities: 
                ( ) ( )4 4 3 3H H H H H HQ Q+ + + − − −=θ θ θ θ .                  (9) 

The superscripts “H − ” and “H + ” respectively denote pre- 
and post-impact of the heel. During the impact phase, the 
configuration remains unchanged. Then the pre- and 
post-impact angles are identified with 

4 3

0 1 0
1 0 0
1 0 0
0 0 1

H H+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

θ θ .                                (10) 

From (9) and (10) we have 

( ) ( )14 3 3 3H H H H H HQ Q
−+ + − − − −=θ θ θ θ .              (11) 

The details of the matrices are omitted due to space 
restriction. 

IV. TORSO AND SWING-LEG CONTROL 

A. Torso Control 
To hold the torso around a desired angle by applying the 

torque of the torso, τT , the simple PD control scheme given 
by  
 ( )3 3 3τ θ θ θ= − − −P d D

T T Tk k                      (12) 

is considered [13].  3
dθ  is the desired torso angle, P

Tk and D
Tk  

are control gain. P
Tk and D

Tk  are determined as follows [13]. 
If the legs are firmly planted on the ground, the linearized 
equation of the torso motion with the PD control about 

3 0θ =  becomes 

( )2
3 3 3 0θ θ θ+ + − =D P

T T T Tm l k k m gl .               (13) 

The frequency of the torso is 

2
ˆ

P
T T

T
T

k m gl
m l

ω −
= .                               (14) 

The damping ratio is 

2
ˆ

ˆ2
=

D
T

T
T T

k
m l

ζ
ω

.                                   (15) 

On the other hand, if the stance-leg is firmly planted on the 
ground and the knee of the swing-leg is locked, the linearized 
equation of the swing-leg motion about 2 0θ =  becomes 

           ( )( )1
2 22 0+ + + =S TH T SH SI m gc m g r cθ θ               (16) 

where 
                    ( )22 1

2= + +S TH T SH SI m c m r c .                      (17) 
The natural frequency of the swing-leg is 

 
( )1

2ω
+ +

= TH T SH S
S

S

m gc m g r c
I

.                  (18) 

In this paper, the torso control parameters, P
Tk and D

Tk , are 
determined to satisfy  
 ˆ 3T Sω ω= ,                                    (19) 

 ˆ 0.7Tζ = .                                     (20) 

B. Swing-Leg Control 
In order to satisfy the transition condition (8) before the 

robot falls down by applying the torque of the swing-leg, τ S , 
we use the simple control law given by 

( )( )2 1τ θ θ= − − −P
S Sk .                          (21) 

The swing-leg control leads to modifying the natural motion 
of the swing-leg. Note that, in the control law, 1θ−  becomes 
the desired angle of the swing-leg, which is opposed to the 
spring model between the legs [12] [17]. If the stance-leg 
angle is constant and the knee of the swing-leg is locked, the 
linearized equation of the swing-leg motion with the 
swing-leg control about 2 0θ =  becomes 

( )( )1
2 22 0+ + + + =P

S S TH T SH SI k m gc m g r cθ θ .    (22) 
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The frequency is 

 
( )1

2ˆ
+ + +

=
P
S TH T SH S

S
S

k m gc m g r c
I

ω .         (23) 

P
Sk  is determined to satisfy 

ˆS SKω ω= .                                (24) 
K  is a new swing-leg control parameter which shows the 
ratio between the frequencies of the swing-leg with the 
swing-leg control and without the swing-leg control. We will 
investigate the effect of the swing-leg control parameter, K  
later.  

C. Control Inputs 
From the torso and the swing-leg control, the control inputs 

are given by 
1 τ τ= +T Su , (25) 

2 τ= − Su ,                               (26) 
as shown in Fig. 3. 

V. SIMULATION RESULTS 
By using the Newton-Raphson method, we can find stable 

or unstable period-one gaits [7]. In addition to that, we search 
period-doubling bifurcations of stable gaits to increase the 
desired torso angle from 0.01rad in steps of 0.001rad. The 
simulations were run by using MATLAB®/SIMULINK®. We 
use ODE45 and specify a scalar relative error tolerance of 
1e-8 and an absolute error tolerance of 1e-8. The heel strike 
of the biped robot was detected by zero-crossing detection in 
SIMULINK®. 

A. Definition of Gait Characteristics 
The main gait characteristics of interest in this paper are 

speed and energetic cost. We define the characteristics of the 
gait as follows. Average walking speed is defined as 

1k k
k CM CM

k

x xv
T

+ − +−
=                                (27) 

where T  is the step period, CMx  is the center of mass of the 
robot, the superscript “ k ” denotes step number, and “ + ” 
denotes post-impact between the swing-leg and the ground. 
An average input power is defined as [3]  

( ) ( )( )3 1 1 3 2 2
0

1
= − + −∫

T

Tp u u dt
T

θ θ θ θ .         (28) 

Note 2Tθ  is replaced with 2θ  in the case of the 3 link mode. 
The specific cost of transport is defined as 

( )2 2
=

+ + +TH SH H T

pSpecificCost
m m m m gv

.      (29) 

 
Fig. 5  Simulation results of the robot walking without circular feet  
i.e. 0=Fr . Specific cost of transport as a function of the walking 
speed where K= 1.4 compared with passive walking. 

 
(a) 

 
(b) 

Fig. 4  Simulation results of the robot walking without circular feet  
i.e. 0=Fr . Walking speed as a function of the desired torso angle 
where (a) K=1.3, 1.35, and 1.4, (b) K=1.4, 1.45, and 1.5. 

 

( )2 τ− = Su

( )1 2τ = +T u u

1u
2u

2u
1u

 
Fig. 3 Relationship between the desired torque, τT , τ S , and the control 
inputs, 1u , 2u . 
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B. Walking Performance of the Biped Robot without 
Circular Feet 

First, we confirm the effectiveness of the swing-leg control in 
the case of the biped robot without circular feet, i.e. 0=Fr . 
We search a stable walking when only the torque between the 
stance-leg and the torso is applied, while the swing-leg is left 
free, i.e. 1K = . In the search, a steady gait is not found. Then 
we introduce the swing-leg control. Fig. 4 shows the 
evolution of the walking speed as a function of the desired 
torso angle where the swing-leg control parameters, 1.3=K , 
1.35 , 1.4 , 1.45, and 1.5. Fig. 4(a) demonstrates that a stable 
waking is realized by introducing the swing-leg control and 
the maximum walking speed of the stable gait increases with 
the swing-leg control parameter. Note that when we increase 
further the swing-leg control parameter, K , period-doubling 
bifurcations occur and the maximum walking speed doesn’t 
necessarily increase with the swing-leg control parameter as 
shown in Fig.4(b). From Fig. 4, the walking speed increases 
with the desired torso angle. Then the desired torso angle 
plays a similar role of the slope angle of passive walk. In Fig. 

5, the efficiency of locomotion on level-ground is compared 
with passive walking of the compass-model [9]. The specific 
cost of transport of passive walking is just equal to sin γ  
where γ  is the slope angle [14]. From Fig. 5, we conclude 
that the proposed method enables the biped robot on level 
ground to walk efficiently over a wide range of speed because 
the specific cost of transport is about as small as the 
passive-dynamic walking.  

C. The Effects of the Circular Feet 
In this section, we investigate the effects of the circular feet. 

Fig. 6 shows that the walking speed increases with the radius 
of the circular feet at an equal desired torso angle. Fig. 7 
shows that when the walking speed is high the specific cost of 
transport decreases with the increase of the radius of the 
circular feet. Fig. 8 shows stick diagrams of biped walking 
with circular feet and without the feet. In each case, the 
walking speed is about 1.3 m/s. The desired torso angle of the 
biped robot with circular feet is smaller than without the feet. 
The specific cost of transport of the biped robot with circular 
feet is smaller than without the feet. 
 

 
(a) 

 
(b) 

Fig. 8  Stick diagrams from just after a heel strike to after the next heel 
strike. (a) 0=Fr  and 3 0.7=dθ . The walking speed is about 1.3m/s. 
The specific cost of transport is 0.14. (b) 0.3=Fr  and 3 0.35=dθ . The 
walking speed is about 1.3m/s which is the same of case (a). The 
specific cost of transport is 0.09, i.e. more efficient walking than case 
(a). 

 
Fig. 7  Specific cost of transport as a function of the walking speed 
where 0=Fr , 0.1, 0.2, and 0.3 compared with passive walking. In all 
cases, the swing-leg control parameter, K=1.4. 

 
Fig. 6  Walking speed as a function of the desired torso angle where 

0=Fr , 0.1, 0.2, and 0.3. In all cases, the swing-leg control parameter, 
K=1.4.  
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VI. CONCLUSION 
By using the torso and swing-leg control, the biped 

walking robot on level ground exhibits stable and efficient 
gaits which are not planned in advance. In particular, by 
introducing the swing-leg control, the biped robot can walk 
stably over a wide range of speed. Furthermore the 
simulations show that the increase of the radius of the circular 
feet increases walking performance. 
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