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Abstract— A passive walker with knees can walk down gentle
slope in a natural gait and can exhibit a stable limit cycle.
Though the passive walker is simple, it is a sort of hybrid
system which combines the continuous dynamics of leg-swing
motion and the discrete event of leg-exchange. We focus on the
mechanisms of generation and stabilization of a fixed point of
passive walking. We propose a generation method of fixed point
based on its physical structure. We derive the local stabilization
control method from a stability mechanism of a fixed point of
passive walking.

I. I

Passive walking [1] can be regarded as a physical phe-
nomenon generated by the hybrid system, which consists of
continuous dynamics of leg-swing motion and discrete event
of leg exchange. Gait generation and its stability must be
analyzed from the hybrid system. Passive walking can exhibit
a stable limit cycle. When the state keeps on the stable limit
cycle, walking system is stable.

McGeer [1][2] first studied the passive walking from
viewpoint of discrete-time system. He demonstrated the
stability of fixed point from Jacobian matrix obtained by
linearizing the discrete-time state equation (called “step to
step equation”). Goswami et al. [3], Coleman et al. [4],
and Garcia et al. [5] studied the stability of fixed point
of various passive walking in detail. However, these studies
have not demonstrated why the fixed point of passive walking
becomes stable.

Many dynamical systems reach an equilibrium state which
condition is minimum or local minimum point of energy
function. On the other hand, the fixed point of passive
walking is known that it keeps a balance between the energy
supplied by potential energy and the energy lost by heel-
strike [3][5][6]. However, it is nothing but the result obtained
by observing the phenomenon. Many researchers have not
considered the physical structure of fixed point. They merely
searched the fixed point by numerical method.

In recent years, several researchers [7]–[12] have studied
walking robots based on passive walking. The robots can
walk on level ground with efficient. These studies assume
that a stable fixed point of passive walking exists. In some
cases, fixed point of passive walking is not always generated,
and is not always stable. The studies except for [11] have
not considered the stabilization of passive walking.

Passive walking has not only a stable fixed point but also
a unstable fixed point. When 1-periodic gait turns 2-periodic
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Fig. 1. Model of passive walker with knees

gait, a stable fixed point of 1-periodic gait becomes unstable.
Several researchers [13]–[15] have proposed the stabilization
control method based on the existing control method. These
stabilization control methods are not particularly effective
stabilization method of passive walking because these don’t
consider the stability mechanism of a fixed point of passive
walking.

In this paper, we focus on the mechanisms of generation
and stabilization of a fixed point in passive walking. At first,
we demonstrate the physical structure of a fixed point, and
propose a generation method of a fixed point based on its
physical structure. Secondly, we derive the local stabilization
control method from a stability mechanism of a fixed point.
Though our stabilization control method is very simple, the
highest local stability of a fixed point can be achieved.
Finally, the validity of our proposed methods of generation
and stabilization is confirmed by the simulation.

II. M     

A. Leg–swing motion

Figure 1 shows the model of passive walker with knees.
The model consists of stance and swing legs. Knee of the
stance leg is locked straight. The motion is assumed to be
constrained to saggital plane. For the purpose of simplicity
and clarity of analysis, assumptions are given as follows:

M � m, M � m1, M � m2 (1)
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1) Motion equation of 3 links (with Knees): Stance leg is
assumed to be fixed on the ground without any slippage or
take off. The equation of leg-swing motion of 3 links can be
written as

MK(θK)θ̈K + HK(θK , θ̇K) + GK(θK , γ) = EKτK

(2)

where

MK(θK) =


l2

−(b1l + pll1) cos(θ − φ1)
−b2l cos(θ − φ2)

0 0
b2

1 + pl21 pb2l1 cos(φ1 − φ2)
b2l1 cos(φ1 − φ2) b2

2


HK(θK , θ̇K) =

0
(b1l + pll1) sin(θ − φ1)θ̇2 + pb2l1 sin(φ1 − φ2)φ̇2

2
b2l sin(θ − φ2)θ̇2 − b2l1 sin(φ1 − φ2)φ̇2

1



GK(θK , γ) =


−l sin(θ + γ)

(b1 + pl1) sin(φ1 + γ)
b2 sin(φ2 + γ)

 g

EK =


1 0 0
0 1 −p
0 0 1

 τK =


u1/M
u2/m1

u3/m2


θK(= [θ, φ1, φ2]T ) is the vector of joint angles. g is the
acceleration of gravity. p is p = m2/m1. Setting a = {m1(l2 +
a1)+m2a2}/(m1+m2) and I = m2(l2−b2−a)2+m1(l2+a1−a)2,
stance leg is equal to swing leg.

2) Equations of knee-lock: Knee-lock occurs when the
swing leg becomes straight (φ1 = φ2 = φ). Assuming that
the swing knee locks instantaneously, angular momentum is
conserved through the knee-lock for the whole walker about
the contact point of stance foot, and the swing leg about
the hip. Angular velocities of stance and swing legs just
after knee-lock can be obtained from these conservations of
angular momentum as

θ̇+ = θ̇− (3)

φ̇+ =
(b2

1 + pl21 + pl1b2)φ̇−1 + (pb2
2 + pb2l1)φ̇−2

b2
1 + p(l1 + b2)2

(4)

The “+” superscript means “just after knee-lock,” and the
“−” superscript means “just before knee-lock”.

3) Motion equation of 2 links (Compass-type): After
knee-lock, the model can be regarded as compass-like biped
model. The equation of leg-swing motion of 2 links can be
written as

MC(θC)θ̈C + HC(θC , θ̇C) + GC(θC , γ) = ECτC (5)

where

MC(θC) =
[

l2 0
−(1 + p)bl cos(θ − φ) Ī + (1 + p)b2

]

HC(θC , θ̇C) =
[

0
(1 + p)bl sin(θ − φ)θ̇2

]

GC(θC , γ) =
[ −l sin(θ + γ)

(1 + p)b sin(φ + γ)

]
g

EC =

[
1 0
0 1

]
τC =

[
u1/M
u2/m1

]

θC (=[θ, φ]T ) is the vector of joint angles after knee-lock. Ī
is I/m1.

B. Leg-exchange

It supplies a leg-exchange rule when the swing foot hits
the ground. Collision occurs when the geometric condition

2θ − φ = 0 (6)

is met. For an inelastic no-sliding collision with the ground,
angular momentum is conserved through the collision for
the whole walker about the contact point of swing foot,
and the former stance leg about the hip [16]. Relational
expression can be obtained from these conservations of
angular momentum as

Q+(α)θ̇
+

C = Q−(α)θ̇
−
C (7)

where

Q+(α) =


l2 0

−bl cosα b2 +
Ī

1 + p


Q−(α) =


l2 cosα 0

−ab +
Ī

1 + p
0


The “+” superscript means “just after heel-strike,” and the
“−” superscript means “just before heel-strike”. α is inter-leg
angle at heel-strike. αk and αk+1 are assumed that 0 < αk <
π/2 and 0 < αk+1 < π/2.

From Eq. (7), the vector of angular velocity just after heel-
strike can be given as

θ̇
+

C = (Q+(α))−1Q−(α)θ̇
−
C (8)

III. F     

A. Physical structure of fixed point

Walking system generates a cyclic trajectory. When the
one cyclic trajectory is closed, the state just after heel-strike
is fixed as one point. This point is called “fixed point”. In
this section, we demonstrate the physical structure of a fixed
point.

One cycle is defined as the period from the state just after
heel-strike to the next state. We focus on the fixed point of
1–periodic gait. Torques of ankle, hip, and knee of k steps
are assumed to be constant as follows:

u1

M
= τ1k,

u2

m1
= τ2k,

u3

m2
= τ3k (9)
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By the assumption of M � m, term that includes m is much
smaller than term that includes M. Term that includes u2, u3

is much smaller than term that includes u1.
The state just after heel-strike consists of inter-leg angle
αk, angular velocities of stance, and swing legs θ̇+k , φ̇+k .
From energy conservation law and Eq. (7), discrete-time state
equation of θ̇+2

k can be derived as

θ̇+2
k+1 = e2

k+1

(
θ̇+2

k +
2g
l

{
cos

(
αk

2
− γ

)

− cos
(
αk+1

2
+ γ

)}
+
τ1k

l2
(αk + αk+1)

)
(10)

where ek+1 = cosαk+1. We call ek+1 (0 < ek+1 < 1) loss
coefficient. e2

k+1 means residual ratio of energy at heel-strike.
In the fixed point, αk+1 = αk, θ̇+k+1 = θ̇

+
k , and φ̇+k+1 = φ̇

+
k

hold. Angular velocity of stance leg θ̇+k is derived from
discrete-time state equation (10) as follows:

θ̇+k =

√
2e2

k

l(1 − e2
k)

2g sin
αk

2
sin γ +

τ1kαk

l

 (11)

Equation (11) can be rewritten as

1
2

Ml2θ̇+2
k

 1
e2

k

− 1
 = 2Mgl sin

αk

2
sin γ + Mτ1kαk (12)

Left part of Eq. (12) is denoted for the energy lost by heel-
strike 1. Right part of Eq. (12) is denoted for the energies
supplied by gravitational potential and ankle torque of stance
leg. Eq. (12) represents energy balance in one cycle.

From leg-exchange equation (7), equation can be obtained
as follows:

φ̇+k = q(αk)θ̇+k (13)

where

q(αk) =
− ab +

Ī

1 + p
+ bl cos2 αkb2 +

Ī

1 + p

 cosαk

The states just after heel-strike have a physical structure
constrained by Eq. (13). From Eqs. (11) and (13), the angular
velocity of swing leg φ̇+k can be derived as

φ̇+k = q(αk)

√
2e2

k

l(1 − e2
k)

2g sin
αk

2
sin γ +

τ1kαk

l

 (14)

From Eqs. (11) and (14), the fixed point is represented
by αk, θ̇+k (αk), and φ̇+k (αk). The fixed point is generated if
αk+1=αk. αk+1 is dependent on leg–swing motion.

As mentioned above, the fixed point is formed by the
physical structures of energy balance, leg-exchange, and leg-
swing motion.

1Energy lost by knee-lock is negligible by assumptions of Eq. (1).

B. Generation method of fixed point

Linearized equations of energy balance (11), leg-exchange
(13), and leg–swing motion (2)–(5) are given as follows:

θ̇+k =

√
2e2

kαk

l(1 − e2
k)

(
gγ +

τ1k

l

)
(15)

φ̇+k =

− ab +
Ī

1 + p
+ bl

b2 +
Ī

1 + p

θ̇+k (16)

and

MKL(θK)θ̈K + HKL(θK , θ̇K) + GKL(θK , γ) = EKτK

(17)

where

GKL(θK , γ) =


−l(θ + γ)

(b1 + pl1)(φ1 + γ)
b2(φ2 + γ)

 g

and

MCL(θC)θ̈C + HCL(θC , θ̇C) + GCL(θC , γ) = ECτC

(18)

where

GCL(θC , γ) =

[ −l(θ + γ)
(1 + p)b(φ + γ)

]
g

Due to limitations of space, the terms except for the gravity
term in Eqs. (17) and (18) are not written.

Torque vectors τK , τC are set to

τK =


l(γ′ − γ)

−(b1 + pl1 + pb2)(γ′ − γ)
−b2(γ′ − γ)

 g (19)

τC =

[
l(γ′ − γ)

−(1 + p)b(γ′ − γ)
]

g (20)

where γ′ is constant number. The equations of the fixed point
are equivalent to the ones of passive walking in slope angle
γ. The equations are applicable to downhill (γ > 0), level
ground (γ = 0), and uphill (γ < 0). By inputting the constant
torques as shown in Eqs. (19) and (20), the same fixed point
as passive walking can be generated. We call the fixed point
“a fixed point of passive walking class”. It is generated by
same energy as passive walking.

As an example, we generate the fixed point of pas-
sive walking class on level ground (γ = 0). The
model parameters are set to l=0.7[m], l1=l2=0.35[m],
a=b=0.35[m], a1=b1=a2=b2=0.175[m], and p=0.4. γ′ is
set to 0.073[rad]. τK and τC are given by Eqs. (19) and
(20) as τK = [0.50078, –0.275429, –0.125195]T and τC =

[0.50078, –0.275429]T [Nm/kg]. Finally, the fixed point of
long period gait can be obtained as α f=0.73750[rad] and
θ̇+f =1.35140[rad/s]. The fixed point of short period gait can
be obtained as α f=0.68592[rad] and θ̇+f =1.44662[rad/s].
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A fixed point of passive walking class is not particular
class; hence it is equivalent to the virtual passive walking
proposed by Asano [8]. Main aim of gait generation method
[8][12] is to reproduce the mechanical energy, and a fixed
point is accordingly generated. Our proposed method is to
generate a fixed point directly by inputting the constant
torques. Also, it has feature that data of the fixed point is
integrated into our stabilization control method as mentioned
in Section IV.

IV. D-  
A. Stabilization mechanism of fixed point

In this section, we demonstrate the structure of stabiliza-
tion mechanism of a fixed point. The state quantities of the
state just after heel-strike are expressed as x+k =[αk, θ̇+k ]T .
Successive state is related as

x+k+1 = f (x+k ) (21)

The fixed point is expressed as x+f . The fixed point is related
as x+f = f (x+f ). For a small perturbation ∆x+k around the fixed
point, f is expressed in term of Taylor series expansion as

x+k+1 = f (x+f ) +
∂ f
∂x+

∣∣∣∣x+=x+f
∆x+k (22)

From Eqs.(21) and (22), linear discrete-time state equation
is derived as

∆x+k+1 =
∂ f
∂x+

∣∣∣∣x+=x+f
∆x+k ≡ J f∆x+k (23)

(∂θ̇+k+1/∂αk)| f and (∂θ̇+k+1/∂θ̇
+
k )| f can be derived from Eq. (10)

as
∂θ̇+k+1

∂αk

∣∣∣∣∣
f
= a f
∂αk+1

∂αk

∣∣∣∣∣
f
+ b f (24)

∂θ̇+k+1

∂θ̇+k

∣∣∣∣∣
f
= a f
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
+ c f (25)

See the appendix for the detail of a f , b f , and c f . From Eqs.
(24) and (25), Jacobian matrix J f in Eq. (23) can be obtained
as

J f =


∂αk+1

∂αk

∣∣∣∣∣
f

∂αk+1

∂θ̇+k

∣∣∣∣∣
f

a f
∂αk+1

∂αk

∣∣∣∣∣
f
+ b f a f

∂αk+1

∂θ̇+k

∣∣∣∣∣
f
+ c f


(26)

If all absolute values of eigenvalues of Jacobian matrix are
less than one, the fixed point is local-asymptotically stable.

Eigenvalues of Jacobian matrix J f are derived as follows:

R f = A f ±
√

D f (27)

where

A f =
1
2

∂αk+1

∂αk

∣∣∣∣∣
f
+ a f
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
+ c f

 (28)

D f =
1
4

∂αk+1

∂αk

∣∣∣∣∣
f
+ a f
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
+ c f

2

+b f
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
− c f
∂αk+1

∂αk

∣∣∣∣∣
f

(29)

Fig. 2. Relationship between stability region and fixed point

Equations of stability condition of the fixed point are
derived from Eq. (27) as follows:

−b f
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
+ c f
∂αk+1

∂αk

∣∣∣∣∣
f
< 1 (30)

(a f + b f )
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
− (c f − 1)

∂αk+1

∂αk

∣∣∣∣∣
f
+ c f < 1 (31)

−(a f − b f )
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
− (c f + 1)

∂αk+1

∂αk

∣∣∣∣∣
f
− c f < 1 (32)

(∂αk+1/∂αk)| f and (∂αk+1/∂θ̇
+
k )| f denote each rate of change

of inter-leg angle at heel-strike αk+1 for small perturbations
of inter-leg angle αk and angular velocity of stance leg θ̇+k .
When (∂αk+1/∂αk)| f and (∂αk+1/∂θ̇

+
k )| f meet Eqs. (30), (31),

and (32), the fixed point is local-asymptotically stable.
Figure 2 shows the stability region derived from Eqs. (30),

(31), and (32) as the shaded area. The fixed point (long period
gait) is mentioned in section III-B. Horizontal and vertical
axes denote each (∂αk+1/∂αk)| f and (∂αk+1/∂θ̇

+
k )| f .

(∂αk+1/∂αk)| f and (∂αk+1/∂θ̇
+
k )| f , which are obtained by

numerical analysis, are overlaid as the small triangle in Fig.
2. If the small triangle is included in the stability region, the
fixed point is stable. As shown in Fig. 2, the fixed point is
stable because the small triangle is included in the stability
region.

B. Local stabilization control method

In this section, we derive the stabilization control method
based on the stability mechanism of a fixed point of passive
walking.

Local stabilization of a fixed point is that (∂αk+1/∂αk)| f
and (∂αk+1/∂θ̇

+
k )| f are placed in proper stability region. In

this paper, we assume that a fixed point of passive walking
class and stability region are fixed.

FrA3.3

3221



(∂αk+1/∂αk)| f and (∂αk+1/∂θ̇
+
k )| f can be written as

∂αk+1

∂αk

∣∣∣∣∣
f
≈ αk+1 − α f

αk − α f
,
∂αk+1

∂θ̇+k

∣∣∣∣∣
f
≈ αk+1 − α f

θ̇+k − θ̇+f
(33)

By changing αk+1 for αk − α f and θ̇+k − θ̇+f , the placement of
(∂αk+1/∂αk)| f and (∂αk+1/∂θ̇

+
k )| f can be changed. Inter-leg

angle at heel-strike αk+1 can be controlled by inputting the
hip torque τ2k. We propose the stabilization control method
as follows:

τ2k = Kα(αk − α f ) + Kθ̇(θ̇
+
k − θ̇+f ) + τ2 f (34)

where Kα and Kθ̇ are control coefficients. τ2 f is the torque to
generate a fixed point of passive walking class. (∂αk+1/∂αk)| f
and (∂αk+1/∂θ̇

+
k )| f can separately be controlled by setting

each Kα and Kθ̇.
In this study, (∂αk+1/∂αk)| f and (∂αk+1/∂θ̇

+
k )| f are placed

in position that eigenvalues R f are zero. As seen in Eq.
(27), |R f |=0 holds if A f = 0 and D f = 0. (∂αk+1/∂αk)| f and
(∂αk+1/∂θ̇

+
k )| f are derived from Eqs. (28) and (29) as follows:

∂αk+1

∂αk

∣∣∣∣∣
f
= − b f c f

b f + a f c f
(35)

∂αk+1

∂θ̇+k

∣∣∣∣∣
f
= −

c2
f

b f + a f c f
(36)

As mentioned above, the design procedure of generation
and stabilization of a fixed point is given as follows:

Step 1 γ′ correspond to slope angle is set.
Step 2 Torque vectors τK , τC are calculated with

Eqs. (19) and (20).
Step 3 Fixed points α f , θ̇+f are calculated with

Eq. (12) of energy balance, Eq. (13) of leg-
exchange, Eqs. (2)–(5) of leg-swing motion.

Step 4 a f , b f , and c f are calculated with Eqs. (37),
(38), and (39), respectively.

Step 5 (∂αk+1/∂αk)| f and (∂αk+1/∂θ̇
+
k )| f are calcu-

lated with Eqs. (35) and (36).
Step 6 Kα, Kθ̇ of the stabilization control method

(34) are set to coincide with the numerical
value obtained by Step 5.

Our proposed control method (34) has the similar structure
of the control method based on OGY method [13]. However,
our proposed stabilization control method is inevitably led
by the stabilization mechanism of a fixed point of passive
walking, and it can achieve the highest local stability of
discrete-time system.

V. S
In this section, the validity of our proposed method is

demonstrated by the simulation.
In case of the fixed point of passive walking class of long

period gait mentioned in section III-B, max |R f | is obtained
as 0.83. The condition, which |R f | = 0 holds, can be derived
from Eqs. (35) and (36) as (∂αk+1/∂αk)| f=–0.54861 and

(a) Inter-leg angle αk at heel-strike

(b) Angular velocity θ̇+k of stance leg just after leg-exchange

(c) Torque τ2k of hip joint

Fig. 3. Simulation results of finite time settling (level ground)

(∂αk+1 /∂θ̇
+
k )| f= 0.36845 [s] (small circle in Fig .2). In this

case, Kα and Kθ̇ are derived as Kα=–1.7582 and Kθ̇=1.4508
by numerical calculation.

Figure 3 shows the simulation results. Initial conditions are
set to α0=0.73[rad] and θ̇+0=1.35[rad/s]. Figure 3 (a) shows
the variation of inter-leg angle at heel-strike αk. Figure 3 (b)
shows the variation of angular velocity of stance leg just after
heel-strike θ̇+k . Figure 3 (c) shows the variation of hip torque
τ2k. In these figures, the small triangle denotes the normal
walking. The small circle denotes the walking stabilized by
stabilization control method (34).

As shown in Figs. 3 (a) and (b), in case of normal
walking, convergence steps are many steps. While, in case

FrA3.3

3222



of stabilized walking, convergence steps are only 3 steps.
As shown in Fig. 3 (c), hip torque τ2k is inputted by the
stabilization control. Finally, τ2k becomes hip torque of the
fixed point τ f .

As mentioned above, the validity of our proposed meth-
ods of generation and stabilization of a fixed point was
demonstrated. In this paper, a fixed point of long period
gait could be stabilized by our stabilization method. In
addition, an unstable fixed point of short period gait, an
unstable fixed point after bifurcation can be stabilized by
our stabilization method. Our stabilization method functions
effectively around the fixed point. We must derive a global
stabilization method of a fixed point [17].

VI. C

In this paper, we derived a generation method of a fixed
point from its physical structure, which is formed by en-
ergy balance, leg-exchange, and leg-swing motion. On level
ground and uphill, a fixed point of passive walking class can
be generated only by inputting the constant torques.

In local stabilization control of a fixed point, it is desired
to maximize the stability. The stability of a fixed point
is dependent on the leg-swing motion (inter-leg angle at
heel-strike). Local stabilization of a fixed point is that
(∂αk+1/∂αk)| f and (∂αk+1/∂θ̇

+
k )| f are placed in proper stability

region. We derived a simple stabilization method, which can
easily control the placement of these partial differentiations.

To achieve the highest local stability of discrete-time
system, the pole must be placed in the original point.
Corresponding placement of partial differentiations can be
derived. Our stabilization control method can realize the
highest local stability of discrete-time system. The validity
of our proposed methods was demonstrated by the walking
simulation.

We assumed that next state just after heel–strike exists.
However, this assumption may not always hold in experi-
ment. For example, passive walker falls down by stubbing
its toe. We must solve this problem.
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